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Lie derivatives on a real hypersurface in complex
two-plane Grassmannians

By JUAN DE DIOS PÉREZ (Granada)

Abstract. On a real hypersurface of a complex two-plane Grassmannian we have

two connections: the Levi–Civita one, and for any nonnull k the k-th generalized

Tanaka–Webster connection. Therefore we have the corresponding Lie derivatives. We

classify such real hypersurfaces for which both Lie derivatives coincide when we apply

them to the shape operator of the hypersurface.

1. Introduction

The generalized Tanaka–Webster connection (from now on, g-Tanaka–Web-

ster connnection) for contact metric manifolds was introduced by Tanno [9] as

a generalization of the connection defined by Tanaka in [8] and, independently,

by Webster in [10]. This connection coincides with Tanaka–Webster connection

if the associated CR-structure is integrable. The Tanaka–Webster connection is

defined as a canonical affine connection on a non-degenerate, pseudo-Hermitian

CR-manifold. A real hypersurfaceM in a Kähler manifold has an (integrable) CR-

structure associated with the almost contact structure (φ, ξ, η, g) induced on M

by the Kähler structure, but, in general, this CR-structure is not guaranteed to

be pseudo-Hermitian. Cho [4] and Tanno [9] defined the k-th g-Tanaka–Webster

connection for a real hypersurface of a Kähler manifold by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.1)
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for any X,Y tangent to M , where ∇ denotes the Levi–Civita connection on M , A

is the shape operator on M and k is a non-zero real number. In particular, if the

real hypersurface satisfies Aφ+φA = 2kφ, then the g-Tanaka–Webster connection

∇̂(k) coincides with the Tanaka–Webster connection, see [4].

We define the k-th Cho operator on M associated to a tangent vector field X

as F
(k)
X Y = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY , for any Y tangent to M .

Now let us denote by G2(Cm+2) the set of all complex 2-dimensional linear

subspaces in Cm+2. This Riemannian symmetric space has a remarkable geo-

metric structure. It is known to be the unique compact irreducible Riemannian

symmetric space equipped with both a Kähler structure J and a quaternionic

Kähler structure J not containing J (see Berndt and Suh [2]). In other words,

G2(Cm+2) is the unique compact, irreducible Kähler, quaternionic Kähler mani-

fold which is not a hyper-Kähler manifold.

Let M be a real hypersurface in G2(Cm+2) and N a local normal unit vector

field on M . Let also A be the shape operator of M associated to N . The almost

contact structure vector field ξ = −JN is said to be a Reeb vector field. Moreover,

if {J1, J2, J3} is a local basis of J, we define ξi = −JiN , i = 1, 2, 3. We will call

D⊥ = Span{ξ1, ξ2, ξ3}. Its orthogonal complement in TM will be denoted by D.

Berndt and Suh [2] proved that for a connected hypersurface M in

G2(Cm+2), m ≥ 3, both Span{ξ} and D⊥ are invariant under the shape oper-

ator A if and only if either (A) M is an open part of a tube around a totally

geodesic G2(Cm+1) in G2(Cm+2), or (B) m is even, say m = 2n and M is an

open part of a tube around a totally geodesic HPn in G2(Cm+2). Both types of

real hypersurfaces have constant principal curvatures.

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape

operator A. The 1-dimensional foliation of M by the integral manifolds of the

Reeb vector field ξ is said to be a Hopf foliation of M . We say that M is a

Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation of M is totally

geodesic. This is equivalent to the fact that the Reeb vector field is Hopf, see [3].

In [5] Jeong, Lee and Suh studied real hypersurfaces in complex two-plane

Grassmannians such that ∇̂(k)A = ∇A. They obtained a non-existence result for

such real hypersurfaces.

Let L denote the Lie derivative of a real hypersurface M . Therefore LXY =

∇XY −∇YX for any X,Y tangent to M . In [6] Jeong, Pak and Suh consider a

so-called Lie derivative associated to the k-th g-Tanaka–Webster connection L̂(k).

Thus L̂
(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X for any X,Y tangent to M .

This paper is devoted to study real hypersurfaces in complex two-plane Grass-

mannians whose shape operator satisfies LA = L̂(k)A. Our results are
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Theorem 1.1. Let M be a real hypersurface in G2(Cm+2), m ≥ 3. Then

LξA = L̂
(k)
ξ A for some nonnull k if and only if M is locally congruent to a real

hypersurface of type (A).

Theorem 1.2. There do not exist Hopf real hypersurfaces in G2(Cm+2),

m ≥ 3, such that LXA = L̂
(k)
X A for any X ∈ D⊥ and some nonnull k.

Theorem 1.3. There do not exist Hopf real hypersurfaces in G2(Cm+2),

m ≥ 3, such that LXA = L̂
(k)
X A for any X ∈ D and some nonnull k.

From these Theorems we conclude

Corollary 1.4. There do not exist real hypersurfaces in G2(Cm+2), m ≥ 3,

such that LA = L̂(k)A for some nonnull k.

2. Preliminaries

For the study of the Riemannian geometry of G2(Cm+2), see [1]. All the

notations we will use from now on are the ones in [2] and [3]. We will suppose

that the metric g of G2(Cm+2) is normalized for the maximal sectional curvature

of the manifold to be eight.

Let M be a real hypersurface of G2(Cm+2). If (LXA)Y = (L̂
(k)
X A)Y for any

X,Y tangent to M , we get F
(k)
X AY − F (k)

AYX −AF
(k)
X Y +AF

(k)
Y X = 0. That is

g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY − g(φA2Y,X)ξ

+ η(X)φA2Y + kη(AY )φX − g(φAX, Y )Aξ + η(Y )AφAX

+ kη(X)AφY + g(φAY,X)Aξ − η(X)AφAY − kη(Y )AφX = 0 (2.1)

for any X,Y tangent to M .

To be used in the sequel we mention the following Propositions due to

Berndt and Suh [2, Propositions 3 and 2].

Proposition 2.1. Let M be a connected real hypersurface of G2(Cm+2).

Suppose that AD ⊂ D, Aξ = αξ and ξ is tangent to D⊥. Let J1∈J =

Span{J1, J2, J3} be the almost Hermitian structure such that JN = J1N . Then

M has three (if r = π/2
√

8) or four (otherwise) distinct constant principal cur-

vatures

α =
√

8 cot(
√

8r) , β =
√

2 cot(
√

2r) , λ = −
√

2 tan(
√

2r), µ = 0
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with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ)

and as the corresponding eigenspaces we have

Tα = Rξ = RJN = Rξ1, Tβ = C⊥ξ = C⊥N = Rξ2⊕Rξ3,
Tλ = {X|X⊥Hξ, JX = J1X}, Tµ = {X|X⊥Hξ, JX = −J1X},

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of

the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Proposition 2.2. Let M be a connected real hypersurface of G2(Cm+2).

Suppose that AD ⊂ D, Aξ = αξ and ξ is tangent to D. Then the quaternionic

dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant

principal curvatures

α = −2 tan(2r) , β = 2 cot(2r) γ = 0 , λ = cot(r) , µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1 , m(β) = 3 = m(γ) , m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ , Tβ = JJξ , Tγ = Jξ , Tλ , Tµ ,

where

Tλ ⊕ Tµ = (HCξ)⊥ , JTλ = Tλ , JTµ = Tµ , JTλ = Tµ .

Theorem 2.3 ([7]). Let M be a connected orientable Hopf real hypersurface

in G2(Cm+2), m ≥ 3. Then the Reeb vector field ξ belongs to the distribution D
if and only if M is locally congruent to an open part of a tube around a totally

geodesic HPn in G2(Cm+2), where m = 2n.

3. Some lemmas

Lemma 3.1. Let M be a real hypersurface in G2(Cm+2), m ≥ 3, such that

(LξA)Y = (L̂
(k)
ξ A)Y for any Y ∈ TM and some nonnull k. Then M is Hopf.
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Proof. Suppose that M is non-Hopf. Then we can write Aξ = αξ + βU ,

where U is a unit vector field orthogonal to ξ, α and β are functions on M and

β 6= 0. From (2.1), taking X = ξ, we have

βg(φU,AY )ξ − βη(AY )φU − kφAY + φA2Y − βg(φU, Y )Aξ

+ βη(Y )AφU + kAφY −AφAY = 0 (3.1)

for any Y tangent to M . If we take the scalar product of (3.1) with ξ we get

AφU =
α+ k

2
φU. (3.2)

Take Y = ξ in (3.1). We obtain φAU = kφU . This gives

AU = βξ + kU. (3.3)

If we take Y = φU in (3.1), bearing in mind (3.2), we have

k − α
2

AU = β

(
k − α

2

)
ξ +

(
k2 − α2

4
− β2

)
U. (3.4)

If α = k, we get β2U = 0, which is impossible. Thus we obtain

AU = βξ +

(
2

k − α

)(
k2 − α2

4
− β2

)
U. (3.5)

From (3.3) and (3.5) k(k − α) = k2−α2

2 − 2β2. This yields (k − α)2 = −4β2,

which is impossible, finishing the proof. �

Suppose now that M is a Hopf real hypersurface in G2(Cm+2) and write

Aξ = αξ. Then we have

Lemma 3.2. Let M be a Hopf real hypersurface in G2(Cm+2), m ≥ 3,

satisfying (LXA)Y = (L̂
(k)
X A)Y , for any X,Y tangent to M and some nonnull k.

Then η(X)(−kφAY + φA2Y + kAφY −AφAY ) = 0.

Proof. As we suppose M is Hopf, (2.1) yields

g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY − g(φA2Y,X)ξ

+ η(X)φA2Y + kη(AY )φX − αg(φAX, Y )ξ + η(Y )AφAX

+ kη(X)AφY + αg(φAY,X)ξ − η(X)AφAY − kη(Y )AφX = 0 (3.6)
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for any X,Y tangent to M . Taking Y = ξ in (3.6) we get

−αφAX + kαφX +AφAX − kAφX = 0 (3.7)

for any X tangent to M . From (3.7), (3.6) becomes

g(φAX,AY )ξ − kη(X)φAY − g(φA2Y,X)ξ + η(X)φA2Y

− αg(φAX, Y )ξ + kη(X)AφY + αg(φAY,X)ξ − η(X)AφAY = 0 (3.8)

for any X,Y tangent to M .

The scalar product of (3.8) and ξ gives −kη(X)φAY + η(X)φA2Y +

kη(X)AφY − η(X)AφAY = 0 and this finishes the proof. �

Finally we have the

Lemma 3.3. Let M be a real hypersurface in G2(Cm+2), m ≥ 3. Then

(Aφ− φA)A = γ(Aφ− φA) for some non vanishing function γ on M if and only

if M is locally congruent to a type (A) real hypersurface.

Proof. Aφ − φA is a symmetric operator on M . Moreover, for any X,Y

tangent to M g((Aφ−φA)AX,Y ) = γg((Aφ−φA)X,Y ) = γg(X, (Aφ−φA)Y ) =

g(X, (Aφ − φA)AY ) = g(A(Aφ − φA)X,Y ). This means that (Aφ − φA)A =

A(Aφ − φA). Thus we can find an orthonormal basis in TM that diagonalizes

both Aφ − φA and A. Let Y be a vector field in such a basis and suppose that

(Aφ − φA)Y = λY and AY = µY . Therefore AφY − µφY = λY . The scalar

product of this equation and Y yields λ = 0. Thus any eigenvalue of Aφ − φA
is null and Aφ = φA. From [2] M is locally congruent to a real hypersurface

of type (A). The converse is trivial and we finish the proof. �

4. Proofs of the theorems

(1) Let us take X = ξ. From Lemma 3.1 M is Hopf. Taking X = ξ in

Lemma 3.2 we get (Aφ−φA)AY = k(Aφ−φA)Y for any Y tangent to M . Then

from Lemma 3.3 we prove Theorem 1.

(2) Suppose that M is Hopf and take X ∈ D⊥. From Lemma 3.2 we have

two possibilities.

The first one is η(X) = 0 for any X ∈ D⊥. This yields ξ ∈ D and from

Theorem 2.3 M is locally congruent to a real hypersurface of type (B).

If not, k(Aφ− φA) = (Aφ− φA)A for some nonnull k and from Lemma 3.3

M is locally congruent to a real hypersurface of type (A).
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Let us suppose that M is a real hypersurface of type (A). We write ξ = ξ1.

From (3.8) and the proof of Lemma 3.2 we have AφAX+A2φX−αφAX−αAφX=0

for any X ∈ D⊥. Take X = ξ2 in this expression. From Proposition 2.1 we have

−βAξ3 −A2ξ3 + αβξ3 + αAξ3 = 0. This yields 2β2 = 2αβ, that is, α = β, which

is impossible.

Suppose now that M is a real hypersurface of type (B). Taking X = ξ1 in

the expression of the above case and bearing in mind Proposition 2.2 as Aφξ1 = 0

we obtain −αβφξ1 = 0. As αβ = −4 we arrive to a contradiction, finishing the

proof of Theorem 1.2.

(3) Suppose M is Hopf and X ∈ D. From Lemma 3.2 we have two possibities

again.

First, if k(φA − Aφ) = (Aφ − φA)A for some nonnull k, from Lemma 3.3,

M is locally congruent to a real hypersurface of type (A).

If not, η(X) = 0 for any X ∈ D. That means ξ ∈ D⊥. We can write ξ = ξ1.

From [2] we have

2AφAX = αAφX + αφAX + 2φX + 2φ1X (4.1)

for any X ∈ D. From (4.1) and (3.7) we get

α(φA−Aφ)X + 2kAφX = (2kα+ 2)φX + 2φ1X (4.2)

for any X ∈ D. The scalar product of (4.2) and ξ2 yields

αg(AX, ξ3) + (2k − α)g(AφX, ξ2) = 0 (4.3)

and the scalar product of (4.2) and ξ3 gives

−αg(AX, ξ2) + (2k − α)g(AφX, ξ3) = 0 (4.4)

for any X ∈ D. Taking φX instead of X in (4.3) we have

−(2k − α)g(AX, ξ2) + αg(AφX, ξ3) = 0. (4.5)

The determinant of the coefficient matrix of the linear system given by (4.4)

and (4.5) is −α2 + (2k − α)2. It vanishes if and only if α = k. If α 6= k we

obtain g(AX, ξ2) = g(AφX, ξ3) = 0. Therefore g(AD,D⊥) = 0 and M is locally

congruent to a real hypersurface of type (A).

Let us suppose α = k. In this case (4.2) becomes

k(φA+Aφ)X = (2k2 + 2)φX + 2φ1X (4.6)
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for any X ∈ D. From (3.7) we also have

A(φA+Aφ)X = k(φA+Aφ)X (4.7)

for any X ∈ D. From (4.6) and (4.7) we get

1

k
((2k2 + 2)AφX + 2Aφ1X) = (2k2 + 2)φX + 2φ1X (4.8)

for any X ∈ D. The scalar product of (4.8) and ξν , ν = 2, 3, gives

(2k2 + 2)g(AφX, ξν) + 2g(Aφ1X, ξν) = 0 (4.9)

for any X ∈ D. Taking φX instead of X in (4.9) we get

−(2k2 + 2)g(AX, ξν) + 2g(Aφ1φX, ξν) = 0 (4.10)

and taking φ1X instead of X in (4.9) we have

−2g(AX, ξν) + (2k2 + 2)g(Aφφ1X, ξν) = 0 (4.11)

for any X ∈ D. For such an X φ1φX = φφ1X. As −(2k2 +2)2 +4 = 0 if and only

if 2k2 + 2 = 2, which is impossible, we obtain g(AX, ξν) = 0, for any X ∈ D and

any ν = 2, 3 and again M is locally congruent to a real hypersurface of type (A).

For such a hypersurface, from Proposition 2.1, take X ∈ Tλ. Then φX ∈ Tλ.

As AφAX+A2φX−αφAX−αAφX = 0, we get 2λ2−2αλ = 0. Thus either λ = 0

or λ = α. Both situations are impossible and we finish the proof of Theorem 1.3.
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