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Approximately Jensen-convex functions

By NOEMI NAGY (Miskolc)

Abstract. In this paper we show that if a function satisfies the Jensen-inequality
(or the inequality describing Q-convexity) with an appropriate error term, then the
function is Jensen-convex (without error) as well.

First we consider a function f, which is defined on an open interval I of R. We
prove that if f: I — R satisfies the inequality

T+ T) +
f( y)gf() f(y)+,¢,(‘m_y|)
2 2
for every x,y € I, where tlir&_ % =0, then f is Jensen-convex.
—

We also prove that if a real function f, which is defined on an F-algebraically open
and F-convex subset D of a vector space X over F (where F is a subfield of R), satisfies
the inequality

FOz+ 1 =Ny) <Af(2) + (1 =N f(y) + A1 =) |z —yl]”

for every z,y € D and A € [0, 1]NTF, with a fixed non-negative real number ¢ and a fixed
exponent p > 1, then it has to be F-convex, i.e., f satisfies the above inequality with
¢ =0 as well. Considering F = Q, we obtain another characterization of Jensen-convex
functions.
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1. Introduction

The first paper devoted to approximately convex functions is due to
HYERs and UraM [6]. Their result motivated further investigations of approxi-
mate convexity (see, for instance, [5], [8], [9], [11], [12], [13], [17] and the references
therein).

RoOLEWICZ [14], [15], [16] investigated continuous real functions f satisfying
the functional inequality

fltz+ (1 =t)y) <tf(z)+ (1 -0)f(y) + Ct(1 - t)a(lz —yl) (1)

for every z,y € R, t € [0, 1], with a non-negative constant C' and a non-decreasing
function « : [0, +o00[— [0, +oo[ fulfilling tlir&_ a(t)/t = 0. In particular, he proved
—

that under the additional assumption

a(t)

— 7 — 0
t—0+ 2 ’

every continuous solution f of inequality (1) is convex. Motivated by this result
we deal with an analogue of (1) for Jensen-convexity (i.e., when ¢ = 1/2) on an
open interval without any regularity assumption.

In [1], BOROS and the present author considered the inequality

fOz+ 1 =Ny) < AM(x) + (1= N f(y) + ML= A) [z —y[]". (2)

It was supposed that the function f was defined on a convex, open subset D of a
linear normed space, ¢ was a fixed non-negative real number, p > 1 was a fixed
exponent, and the inequality (2) was satisfied by every xz,y € D and XA € [0, 1].
The properties of F-differentiability and F-convexity and their connection were
described by BoRros and PALES in [3]. Based on these results we can show for
any function f, which satisfies (2) under the additional restriction A € T, that
f is F-convex.

2. Rolewicz theorem for approximate Jensen-convexity

For the proof of our first theorem we also have to define the difference op-
erator A? by the following recursion. If I is an open interval and f : I — R,
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let
Apf(x)=flx+h)— flx) (xel,heR:x+hel),
AGf(@) = ALALf (@)
= fle+2h) —2f(x+h)+ f(z) (zel,heR:z+2hel),

and we define the second order lower Dinghas interval derivative of f: I — R at
el as

Ajf(z)
D2 — T z .
D'7® (w,h)ﬁ(ftf)r)l,glgggaﬁzh h?

The following statement is a particular case of a result proved by GILANYI
and PALES [4, Corollary 1] (see also the details in the paragraphs preceding
Proposition 2 in [2]):

Proposition 2.1. A function f : I — R is Jensen-convex if and only if
D?f(&) >0 for every £ € 1.

The following result claims that approximate Jensen-convexity implies Jen-
sen-convexity if the error function 1 is sufficiently small in the vicinity of zero.

Theorem 2.2. Let I C R be an open interval, d; be the length of the
interval I, and J; = [0,d;[. Let the function ¢ : J; — [0, +o0[ satisfy
0
t—0+ t2
If a function f : I — R satisfies
f (I;y> < f(ﬂ?);rf(y)

for all x,y € I, then f is Jensen-convex.

=0.

+(lz —yl)

PROOF. Let us consider z € I and a positive real number h such that y =
z+2h €1. Then ¥ =z + h, |z — y| = 2h, and we have

flx+2h) —2f(x+ h) + f(x) > —2¢(2h). (3)
Dividing by h?, inequality (3) can be rewritten as
A? 2h

Now let & € I be arbitrary and let us take the liminf on both sides of (4) as h
tends to 0 and = tends to £ such that x < ¢ < x + 2h. We obtain that

D*f(¢) > 0.
Applying Proposition 2.1, we get that the function f is Jensen-convex. O
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A similar result was established in [10, Theorem 5 and Corollary 6]. In fact,
[10, Theorem 5] seems to be more general. However, its proof is more complicated
as well. The short proof of our theorem allows generalizations for higher order
Jensen-convexity as it appears in [2, Section 3].

3. Approximate convexity with respect to a subfield

Throughout this section, let F be a subfield of R, X be a vector space over
F and F, =F N0, +o0].

In [3] BorOs and PALES defined the notions of F-algebraically openness and
F-convexity:

Definition 8.1. A subset D of the space X is called F-algebraically open if,
for every x € D and u € X, there exists § > 0 such that x 4+ ru € D whenever
reFn]—4,4[

We say that D is F-convex if rx + (1 — r)y € D for every z,y € D and
re[0,1]NF.

Let D be an F-algebraically open and F-convex subset of X, ¢ > 0, and
p > 1. We use specific differences and difference ratios in order to reformulate
the assumption that a function f: D — R fulfils inequality (2) for every z,y € D
and A € [0,1] NF. Our first observation is that the inequality (2) is obviously
satisfied if A = 0, A = 1, or x = y. It is therefore sufficient to investigate functions
f: D — R that fulfil inequality (2) for every z,y € D and XA € FNJ0, 1] such that
T # .

For our convenience, let us substitute z in the place of z in (2). Clearly, if
y,2 € D,y # 2z, and A € FN|0, 1, z = Az + (1 = Ny, u =y — 2z, s = A, and
qg=1—X\ then s, e Fy, u € X, z =x — qu, and y = = 4 su. Conversely, if
re€D,ue X,and q,s € F; such that z =2 —qu € X and y = x4+ su € X, then
A=5 € FN]0,1[ and = = Az 4+ (1 — A)y. Applying these substitutions, we can

+s
formulate the following proposition:

Proposition 3.2. Let D C X be an F-algebraically open and F-convex set,
¢>0,p>1. A function f: D — R fulfils inequality (2) for every z,y € D and
A €10,1] NT if and only if f satisfies the inequality

fla) < =

p
< Sfema s st 2w @)

qg+s

for every x € D, s,q € F;, and u € X such that x — qu, x + su € D.
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The proof of the following lemma is simple calculation, so it is left to the
reader. We assume that D, ¢, p and f satisfy the assumptions of the previous
proposition.

Lemma 3.3. Suppose thatx € D, s,q € F;, andu € X such that x—qu, x+
su € D. Then the following two inequalities are equivalent to inequality (5):

f(@) = fx—qu) _ f(x+su) — f(x) gs 1”70

q = s +CL}+S] et ©
f(z) = fx—qu) _ flz+su) — flz — qu) s 1 0w

p < P +c[q+s:|q lulP. (7)

If we substitute a in the place of z — qu in (7), we get

fla+qu) — f(a) <f(a+(Q+8)U)—f(a)+c[ 5

p
Py P 8
e et ®

We can therefore formulate the following statement.

Lemma 3.4. Inequality (5) holds for all x € D, s,q € Fy and v € X with
x—qu, x, x+su € D if and only if inequality (8) holds for alla € D, u € X, q, s €
Fy with a+ (¢ + s)u € D.

With the aid of the above lemmas, we can establish the main result of this
section.

Theorem 3.5. Let D C X be an F-algebraically open and F-convex set,
¢>0,p>1and f: D — R such that f satisfies (2) for every z,y € D and
A €]0,1]NTF. Then f satisfies (2) with ¢ =0 as well, thus f is F-convex.

PROOF. Let x € D and u € X. We define the set Spf(z,u) as

[z +su) = f(z)

S

Srf(x,u) :z{ :s € Fy such thatm+su€D}

and we show that Spf(z,u) is bounded from below. Let s,q € F4 such that
4+ su, x — qu € D. From inequality (6) we get that

flo+su)— fla)
S - q

f@) ~ fla—qu)
q

ﬂ@fumn_CLfJ“4mp

v

- quil ‘u|p7
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which verifies the boundedness of Sgf(z,u) from below. Denote by dr f(z,u) the
infimum of Sy f(x,u), i.e., dpf(z,u) :=inf Spf(z,u) € R and let £ > 0. Since

lim cluPd?~! =0,
d—0+

there exists § > 0 such that

€
cluPoP~t < =,

|ul 5
Moreover, there exists » € Fy such that x +ru € D and

[z +ru) = f(z)

<dpf(z,u)+ g

Let 0 := min{d,r} > 0. If for t € F we have that 0 < ¢ < J, then 0 < t < r
and writing t in the place of ¢, 7 — ¢ in the place of s and x in the place of a in
inequality (8), we get

flattu) = f(@) _ flatru) = f() +c[r;t]pt”1|u|p

t r

< f(x+T1:) —f(fE) +C|U|ptp71
<de(x,u)+§+%:de(m,u)+€.

Hence, we have

def(ru) = lim @ @)

s—0,s€F 4 S

Applying inequality (6) for q,s € F, fulfilling = + su,  — qu € D, we get
f+a(—w) = f@) _ @) — f@ - qu)

q q
Sets—i@) { as } ul?,
S q-—+s
consequently
g SEraCw) @) ) @)
q—0,9€F ¢ q S

which yields

—dpf(z,—u) < lim flatsu) - @)

+ csP 7 ulP
s—0,s€F S
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and thus

—dpf(z,—u) < dpf(z,u). (9)

From inequality (9), for every ¢,s € Fy, u € X and z € D, where x —qu, x+

su € D we get the following :

fl@) = flx—qu) _ flz+q(-u) - f(@)

q q
—dpf(z,—u) < dpf(z,u)

fla -+ su) ~ f(z)

S

IN

We have thus proved that f satisfies the inequality (5) with ¢ = 0 (i.e., without
error term) as well. Applying Proposition 3.2 also with ¢ = 0, we obtain that f

satisfies the inequality (2) with ¢ = 0, as stated. O

Remark 3.6. JENSEN [7] proved (see also [8]) that every Jensen-convex func-

tion is Q-convex. Hence, considering the case F = Q, our last theorem says that
approximately Jensen-convex functions in the sense of (2), with A € Q, are, in

fact, Jensen-convex.
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