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Approximately Jensen-convex functions

By NOÉMI NAGY (Miskolc)

Abstract. In this paper we show that if a function satisfies the Jensen-inequality

(or the inequality describing Q-convexity) with an appropriate error term, then the

function is Jensen-convex (without error) as well.

First we consider a function f , which is defined on an open interval I of R. We

prove that if f : I → R satisfies the inequality

f
(x+ y

2

)
≤ f(x) + f(y)

2
+ ψ(|x− y|)

for every x, y ∈ I, where lim
t→0+

ψ(t)

t2
= 0, then f is Jensen-convex.

We also prove that if a real function f , which is defined on an F-algebraically open

and F-convex subset D of a vector space X over F (where F is a subfield of R), satisfies

the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + c [λ(1− λ) |x− y|]p

for every x, y ∈ D and λ ∈ [0, 1]∩F, with a fixed non-negative real number c and a fixed

exponent p > 1, then it has to be F-convex, i.e., f satisfies the above inequality with

c = 0 as well. Considering F = Q, we obtain another characterization of Jensen-convex

functions.
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1. Introduction

The first paper devoted to approximately convex functions is due to

Hyers and Ulam [6]. Their result motivated further investigations of approxi-

mate convexity (see, for instance, [5], [8], [9], [11], [12], [13], [17] and the references

therein).

Rolewicz [14], [15], [16] investigated continuous real functions f satisfying

the functional inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Ct(1− t)α(|x− y|) (1)

for every x, y ∈ R, t ∈ [0, 1], with a non-negative constant C and a non-decreasing

function α : [0,+∞[→ [0,+∞[ fulfilling lim
t→0+

α(t)/t = 0. In particular, he proved

that under the additional assumption

lim
t→0+

α(t)

t2
= 0,

every continuous solution f of inequality (1) is convex. Motivated by this result

we deal with an analogue of (1) for Jensen-convexity (i.e., when t = 1/2) on an

open interval without any regularity assumption.

In [1], Boros and the present author considered the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + c [λ(1− λ) |x− y|]p . (2)

It was supposed that the function f was defined on a convex, open subset D of a

linear normed space, c was a fixed non-negative real number, p > 1 was a fixed

exponent, and the inequality (2) was satisfied by every x, y ∈ D and λ ∈ [0, 1].

The properties of F-differentiability and F-convexity and their connection were

described by Boros and Páles in [3]. Based on these results we can show for

any function f , which satisfies (2) under the additional restriction λ ∈ F, that

f is F-convex.

2. Rolewicz theorem for approximate Jensen-convexity

For the proof of our first theorem we also have to define the difference op-

erator ∆2
h by the following recursion. If I is an open interval and f : I → R,
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let

∆1
hf(x) = f(x+ h)− f(x) (x ∈ I, h ∈ R : x+ h ∈ I),

∆2
hf(x) = ∆1

h∆1
hf(x)

= f(x+ 2h)− 2f(x+ h) + f(x) (x ∈ I, h ∈ R : x+ 2h ∈ I),

and we define the second order lower Dinghas interval derivative of f : I → R at

ξ ∈ I as

D2f(ξ) := lim inf
(x,h)→(ξ,0), x≤ξ≤x+2h

∆2
hf(x)

h2
.

The following statement is a particular case of a result proved by Gilányi

and Páles [4, Corollary 1] (see also the details in the paragraphs preceding

Proposition 2 in [2]):

Proposition 2.1. A function f : I → R is Jensen-convex if and only if

D2f(ξ) ≥ 0 for every ξ ∈ I.

The following result claims that approximate Jensen-convexity implies Jen-

sen-convexity if the error function ψ is sufficiently small in the vicinity of zero.

Theorem 2.2. Let I ⊂ R be an open interval, dI be the length of the

interval I, and JI = [0, dI [. Let the function ψ : JI → [0,+∞[ satisfy

lim
t→0+

ψ(t)

t2
= 0.

If a function f : I → R satisfies

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ψ(|x− y|)

for all x, y ∈ I, then f is Jensen-convex.

Proof. Let us consider x ∈ I and a positive real number h such that y =

x+ 2h ∈ I. Then x+y
2 = x+ h, |x− y| = 2h, and we have

f(x+ 2h)− 2f(x+ h) + f(x) ≥ −2ψ(2h). (3)

Dividing by h2, inequality (3) can be rewritten as

∆2
hf(x)

h2
≥ −2

ψ(2h)

h2
. (4)

Now let ξ ∈ I be arbitrary and let us take the lim inf on both sides of (4) as h

tends to 0 and x tends to ξ such that x ≤ ξ ≤ x+ 2h. We obtain that

D2f(ξ) ≥ 0.

Applying Proposition 2.1, we get that the function f is Jensen-convex. �
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A similar result was established in [10, Theorem 5 and Corollary 6]. In fact,

[10, Theorem 5] seems to be more general. However, its proof is more complicated

as well. The short proof of our theorem allows generalizations for higher order

Jensen-convexity as it appears in [2, Section 3].

3. Approximate convexity with respect to a subfield

Throughout this section, let F be a subfield of R, X be a vector space over

F and F+ = F ∩ ]0,+∞[.

In [3] Boros and Páles defined the notions of F-algebraically openness and

F-convexity:

Definition 3.1. A subset D of the space X is called F-algebraically open if,

for every x ∈ D and u ∈ X, there exists δ > 0 such that x + ru ∈ D whenever

r ∈ F∩]− δ, δ[.
We say that D is F-convex if rx + (1 − r)y ∈ D for every x, y ∈ D and

r ∈ [0, 1] ∩ F.

Let D be an F-algebraically open and F-convex subset of X, c ≥ 0, and

p > 1. We use specific differences and difference ratios in order to reformulate

the assumption that a function f : D → R fulfils inequality (2) for every x, y ∈ D
and λ ∈ [0, 1] ∩ F. Our first observation is that the inequality (2) is obviously

satisfied if λ = 0, λ = 1, or x = y. It is therefore sufficient to investigate functions

f : D → R that fulfil inequality (2) for every x, y ∈ D and λ ∈ F∩]0, 1[ such that

x 6= y.

For our convenience, let us substitute z in the place of x in (2). Clearly, if

y, z ∈ D, y 6= z, and λ ∈ F∩]0, 1[, x = λz + (1 − λ)y, u = y − z, s = λ, and

q = 1 − λ, then s, q ∈ F+, u ∈ X, z = x − qu, and y = x + su. Conversely, if

x ∈ D, u ∈ X, and q, s ∈ F+ such that z = x− qu ∈ X and y = x+ su ∈ X, then

λ = s
q+s ∈ F∩]0, 1[ and x = λz + (1− λ)y. Applying these substitutions, we can

formulate the following proposition:

Proposition 3.2. Let D ⊂ X be an F-algebraically open and F-convex set,

c ≥ 0, p > 1. A function f : D → R fulfils inequality (2) for every x, y ∈ D and

λ ∈ [0, 1] ∩ F if and only if f satisfies the inequality

f(x) ≤ s

q + s
f(x− qu) +

q

q + s
f(x+ su) + c

[
qs

q + s

]p
|u|p (5)

for every x ∈ D, s, q ∈ F+, and u ∈ X such that x− qu, x+ su ∈ D.
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The proof of the following lemma is simple calculation, so it is left to the

reader. We assume that D, c, p and f satisfy the assumptions of the previous

proposition.

Lemma 3.3. Suppose that x ∈ D, s, q ∈ F+, and u ∈ X such that x−qu, x+

su ∈ D. Then the following two inequalities are equivalent to inequality (5):

f(x)− f(x− qu)

q
≤ f(x+ su)− f(x)

s
+ c

[
qs

q + s

]p−1
|u|p, (6)

f(x)− f(x− qu)

q
≤ f(x+ su)− f(x− qu)

q + s
+ c

[
s

q + s

]p
qp−1|u|p. (7)

If we substitute a in the place of x− qu in (7), we get

f(a+ qu)− f(a)

q
≤ f(a+ (q + s)u)− f(a)

q + s
+ c

[
s

q + s

]p
qp−1|u|p. (8)

We can therefore formulate the following statement.

Lemma 3.4. Inequality (5) holds for all x ∈ D, s, q ∈ F+ and u ∈ X with

x−qu, x, x+su ∈ D if and only if inequality (8) holds for all a ∈ D, u ∈ X, q, s ∈
F+ with a+ (q + s)u ∈ D.

With the aid of the above lemmas, we can establish the main result of this

section.

Theorem 3.5. Let D ⊂ X be an F-algebraically open and F-convex set,

c ≥ 0, p > 1 and f : D → R such that f satisfies (2) for every x, y ∈ D and

λ ∈ [0, 1] ∩ F. Then f satisfies (2) with c = 0 as well, thus f is F-convex.

Proof. Let x ∈ D and u ∈ X. We define the set SFf(x, u) as

SFf(x, u) :=

{
f(x+ su)− f(x)

s
: s ∈ F+ such that x+ su ∈ D

}
and we show that SFf(x, u) is bounded from below. Let s, q ∈ F+ such that

x+ su, x− qu ∈ D. From inequality (6) we get that

f(x+ su)− f(x)

s
≥ f(x)− f(x− qu)

q
− c

[
qs

q + s

]p−1
|u|p

≥ f(x)− f(x− qu)

q
− cqp−1|u|p,
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which verifies the boundedness of SFf(x, u) from below. Denote by dFf(x, u) the

infimum of SFf(x, u), i.e., dFf(x, u) := inf SFf(x, u) ∈ R and let ε > 0. Since

lim
d→0+

c|u|pdp−1 = 0,

there exists δ > 0 such that

c|u|pδp−1 < ε

2
.

Moreover, there exists r ∈ F+ such that x+ ru ∈ D and

f(x+ ru)− f(x)

r
< dFf(x, u) +

ε

2
.

Let δ := min{δ, r} > 0. If for t ∈ F we have that 0 < t < δ, then 0 < t < r

and writing t in the place of q, r − t in the place of s and x in the place of a in

inequality (8), we get

f(x+ tu)− f(x)

t
≤ f(x+ ru)− f(x)

r
+ c

[
r − t
r

]p
tp−1|u|p

≤ f(x+ ru)− f(x)

r
+ c|u|ptp−1

< dFf(x, u) +
ε

2
+
ε

2
= dFf(x, u) + ε.

Hence, we have

dFf(x, u) = lim
s→0,s∈F+

f(x+ su)− f(x)

s
.

Applying inequality (6) for q, s ∈ F+ fulfilling x+ su, x− qu ∈ D, we get

−f(x+ q(−u))− f(x)

q
=
f(x)− f(x− qu)

q

≤ f(x+ su)− f(x)

s
+ c

[
qs

q + s

]p−1
|u|p,

consequently

− lim
q→0,q∈F+

f(x+ q(−u))− f(x)

q
≤ f(x+ su)− f(x)

s
+ csp−1|u|p,

which yields

−dFf(x,−u) ≤ lim
s→0,s∈F+

[
f(x+ su)− f(x)

s
+ csp−1|u|p

]
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and thus

−dFf(x,−u) ≤ dFf(x, u). (9)

From inequality (9), for every q, s ∈ F+, u ∈ X and x ∈ D, where x−qu, x+

su ∈ D we get the following :

f(x)− f(x− qu)

q
= −f(x+ q(−u))− f(x)

q

≤ −dFf(x,−u) ≤ dFf(x, u)

≤ f(x+ su)− f(x)

s
.

We have thus proved that f satisfies the inequality (5) with c = 0 (i.e., without

error term) as well. Applying Proposition 3.2 also with c = 0, we obtain that f

satisfies the inequality (2) with c = 0, as stated. �

Remark 3.6. Jensen [7] proved (see also [8]) that every Jensen-convex func-

tion is Q-convex. Hence, considering the case F = Q, our last theorem says that

approximately Jensen-convex functions in the sense of (2), with λ ∈ Q, are, in

fact, Jensen-convex.
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NOÉMI NAGY

DEPARTMENT OF APPLIED MATHEMATICS

UNIVERSITY OF MISKOLC

H-3515 MISKOLC, EGYETEMVÁROS U. 1.
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