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The ordering of idempotents in a finite ring

By DAVID DOLŽAN (Ljubljana)

Abstract. In this paper we study the ordering of idempotents in a finite ring. We

prove that the relation, defined by e ≤ f if and only if ef = fe = e, is well behaved

whilst moving to the factor ring modulo the Jacobson radical. We then proceed to

explicitly find all idempotents of a semisimple ring that are in a relation with each other

and observe some special cases when the infimum of two idempotents is equal to zero.

1. Introduction

Idempotents in a ring play a very important role in determining its structure.

In a commutative ring, one can define operations ∪ and ∩ with e∪ f = e+ f − ef
and e∩f = ef , and then the set E(R) of all idempotents in a ring R together with

those two operations becomes a Boolean algebra. The same can be done if all

idempotents in a non-commutative ring are central. There exist many conditions

that guarantee that E(R) lies in the centre of R. For example, it is well known

(see [5]) that if all the idempotents commute with one another, then all the

idempotents are central.

However, in a general non-commutative case, the product of two idempotents

is not necessarily idempotent. See, for example [2], [3], for some results on the

conditions of multiplicativity of the set of idempotents.

Lately, there has been a lot of research on ordering of idempotents in non-

commutative rings. For e, f ∈ E(R), we define e ≤ f if and only if ef = fe = e.

Clearly, e ≤ f if and only if e ∈ fRf . Define e < f if e ≤ f and e 6= f . Now,
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let e ∩ f and e ∪ f denote the infimum and supremum of e and f (if they exist).

Then (E(R),≤) forms a partially ordered set.

Following [1], we say that idempotents e, f are generalized commuting if

there exists a positive integer n such that (ef)n = (fe)n or (ef)ne = (fe)nf .

Let 〈e, f〉 denote the subsemigroup of the multiplicative monoid of R, generated

by e and f . In [1], the author proves that for e, f ∈ E(R) both e ∩ f and e ∪ f
exist and e ∩ f ∈ 〈e, f〉 if and only if the idempotents e and f are generalized

commuting.

In [4], the authors prove that for an algebra R over a field K, for any e, f ∈
E(R) such that there exists a polynomial q(λ) ∈ K[λ] with zero constant term,

q(1) 6= 0 and q(ef) = 0, we have e ∩ f = 0 and e ∪ f = 1 − q(1)−1(1 − e)

(1− f)q((1− e)(1− f)).

However, there exist examples of idempotents which are not generalized com-

muting, but e∩ f and e∪ f exist nevertheless (see, for example [4, Example 1.2]).

This can only happen if e ∩ f /∈ 〈e, f〉.
In this paper, we examine the ordering defined above in the set of idempotents

of a finite ring. The organization of the paper is as follows: in the next section,

we first look at the connection between the idempotents in a ring and those in

the factor ring modulo the Jacobson radical. The main result is the following

theorem. Here, x denotes the image of x under the canonical projection onto the

factor ring modulo the Jacobson radical.

Theorem. (1) If e ≤ f in E(R), then e ≤ f in E(R/J).

(2) Let f ∈ E(R). Suppose that there exists g ∈ E(R/J) such that g ≤ f . Then

there exists an idempotent e ∈ E(R) such that e ≤ f and e = g.

We further investigate the connection between e∩f and e∩f . We prove that

e∩ f = 0 implies e∩ f = 0 and give an example that in general the converse does

not hold. However, in the special case of generalized commuting idempotents we

prove that e ∩ f = e ∩ f .

Thus, the ordering of idempotents in a finite ring is in a strong relationship

with their corresponding images modulo the Jacobson radical. In the third sec-

tion, we therefore examine the idempotents in a semisimple ring and prove that we

can study the ordering of idempotents separately in each simple direct summand.

In the last section, we turn our attention to the case of idempotents in a

simple finite ring, and for an arbitrary idempotent e we explicitly find all idem-

potents that are in a relation with e. We also observe some special cases when

the infimum of two idempotents is equal to zero.

Throughout this paper, R will denote an arbitrary finite ring with identity.
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2. Idempotents modulo Jacobson radical

Let J denote the Jacobson radical of R and let π : R −→ R/J be the

canonical projection. For x ∈ R, we shall write x for π(x).

Let us examine the connection between E(R) and E(R/J). We know that

idempotents in a finite ring can be lifted modulo the Jacobson radical (the explicit

algorithm for this can be found in [6]). However, we shall need more than this, we

have to lift idempotents in such a way that the partial ordering is also preserved.

The first lemma is a technical one.

Lemma 2.1. Let x, y ∈ R such that xy = yx = x. Then the following

statements hold.

(1) If j = y2 − y and y′ = y + j − 2yj, then xy′ = y′x = x.

(2) If j = x2 − x and x′ = x+ j − 2xj, then x′y = y′x′ = x′.

Proof. In case (1), we can easily see that jx = xj = 0. In case (2), we have

jy = yj = j. The rest is a straightforward calculation. �

The next theorem is crucial in describing the procedure of lifting idempotents

in a way that preserves the partial ordering.

Theorem 2.2. Let R be a finite ring.

(1) If e ≤ f in E(R), then e ≤ f in E(R/J).

(2) Let f ∈ E(R). Suppose that there exists g ∈ E(R/J) such that g ≤ f . Then

there exists an idempotent e ∈ E(R) such that e ≤ f and e = g.

Proof. The first part is straightforward. Let’s prove the second part. There

exists t ∈ R (not necessarily idempotent) such that t = g. Then tf = t + j for

some j ∈ J . Multiplying this with f from the right, we get tf = tf + jf , so

jf = 0 and thus (t+ j)f = tf = t+ j. Now,

f(t+ j) = t+ j + k (1)

for some k ∈ J . Multiplying (1) with f from the left, we get fk = 0. This implies

f(t + j + k) = f(t + j) = t + j + k. However, multiplying (1) with f from the

right, we get f(t + j)f = f(t + j) = t + j + k = (t + j)f + kf = t + j + kf , so

kf = k. Therefore, (t+ j + k)f = t+ j + kf = t+ j + k.

Denote x1 = t + j + k and observe that x1 = g and also x1f = fx1 = x1.

If x1 is not an idempotent, then let j1 = x21 − x1 ∈ J and x2 = x1 + j1 − 2x1j1.

Observe that x2 = g and x22 − x2 = 4x61 − 12x51 + 9x41 + 2x31 − 3x21 = j21(4j1 − 3).

If x2 is not an idempotent, we can repeat this step with j2 = x22 − x2 ∈ J2 and
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x3 = x2 + j2 − 2x2j2, arriving at x23 − x3 = j22(4j2 − 3) ∈ J4 with x3 = g, etc.

Since J is nilpotent, by successively applying the above, we eventually arrive at

an idempotent xn in finitely many steps. By Lemma 2.1, this procedure preserves

products, so xif = fxi = xi for i = 1, 2, . . . , n, thus xnf = fxn = xn and xn = g.

Therefore, e = xn is the desired idempotent. �

Immediately, we have a corollary.

Corollary 2.3. Let e, f ∈ E(R). If e ∩ f = 0, then e ∩ f = 0.

Proof. If e ∩ f = 0, then we have to prove that there exists no idempotent

h ∈ R such that 0 6= h ≤ e, f . We can assume that e, f 6= 0, because e = 0

implies e = 0 (since J is nilpotent) and the statement clearly follows if either

e = 0 or f = 0. Now, suppose such an h exists. Then by Theorem 2.2, h ≤ e, f .

This implies that h = 0, h = e or h = f . But J is a nilpotent ideal and h is an

idempotent, so h 6= 0. Say, h = e. Then h ≤ f implies h ≤ f by Theorem 2.2,

which yields e = e ∩ f , a contradiction. We treat the case h = f similarly. �

The next example shows that the converse does not generally hold.

Example 2.4. Let R be a ring of upper triangular 2× 2 matrices over a field

F and let e =

[
1 0

0 0

]
, f =

[
1 1

0 0

]
∈ E(R). One can easily check that e ∩ f = 0.

However, R/J ' F × F and e = f = (1, 0), so e ∩ f 6= 0.

We can, however, say something more about the connection between idem-

potents and their images modulo the Jacobson radical when the idempotents in

question are generalized commuting.

Corollary 2.5. Let e, f ∈ E(R) be generalized commuting idempotents.

Then e ∩ f ∈ E(R), e ∩ f ∈ E(R/J) and e ∩ f = e ∩ f .

Proof. By [1, Proposition 6], we know that e ∩ f ∈ E(R) exists and either

e ∩ f = (ef)n or e ∩ f = (ef)ne for some integer n. Obviously, e and f are also

generalized commuting idempotents in R/J , so e ∩ f exists again by [1, Propo-

sition 6]. Denote g = e ∩ f and h = e ∩ f . We know that g and h are both

elements of 〈e, f〉. By Theorem 2.2, g ≤ e, f and by definition, h ≤ e, f . We can

therefore conclude that g = gh = h. �
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3. Semisimple and simple rings

By the previous section, to understand the partial ordering of idempotents,

we can examine the factor ring modulo the Jacobson radical. However, since our

ring in question is finite, the factor ring is a semisimple ring. In this section, we

therefore first examine the set of idempotents of a finite direct sum of (simple)

rings.

Proposition 3.1. Let R = R1 ⊕R2 ⊕ · · · ⊕Rn and e = (e1, e2, . . . , en), f =

(f1, f2, . . . , fn) ∈ E(R). Then e ≤ f if and only if ei ≤ fi for all i = 1, 2, . . . , n.

Proof. The proposition is clear, since ef = e if and only if eifi = ei for

all i. �

Proposition 3.1 together with Theorem 2.2 now implies that in order to study

the ordering of idempotents in a finite ring, it pays to examine the idempotents

in a simple ring in more detail.

Suppose R is a simple finite ring. So, since R is finite, we can assume that

R = Mn(F ) for an integer n and a field F . We can always assume that n ≥ 2

since a field contains no non-trivial idempotents.

First, we need the following technical lemma.

Lemma 3.2. Let x, y, z, w ∈ Fn be nonzero (column) vectors such that

xyT = zwT . Then there exist α, β ∈ F such that x = αz and y = βw.

Proof. We have xiyj = ziwj for all i and j. Since x is nonzero, there exists

some 1 ≤ i ≤ n such that xi 6= 0. But F is a field, so we have yj = zi
xi
wj for all

j, thus β = zi
xi

. Similarly, we see that α =
wj

yj
for some nonzero yj ∈ F . �

Next, we shall examine the ordering of matrix idempotents. Let e ∈ E(R).

We say that e is a minimal idempotent if 0 ≤ f ≤ e for an idempotent f implies

that either f = 0 or f = e. We say that e decomposes as an orthogonal sum

of minimal idempotents if e = e1 + e2 + . . . + en for some minimal idempotents

ei ∈ E(R) with eiej = ejei = 0 for all i 6= j. It follows from [6, Theorem

VII.13] that every idempotent in Mn(F ) decomposes (not necessarily uniquely)

as an orthogonal sum of minimal idempotents and that all minimal idempotents

in Mn(F ) are rank one matrices.

Lemma 3.3. Let n ≥ 2 and F a field. Choose e ∈ E(Mn(F )) and let

e = e1 + e2 + . . . + ek be an orthogonal decomposition of e into the sum of
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minimal idempotents with ei = aib
T
i , ai, bi ∈ Fn for all i = 1, 2, . . . , k. Sup-

pose h is an idempotent matrix of rank one. Then h ≤ e if and only if h =(
k∑

i=1

αiai

)(
k∑

j=1

βjb
T
j

)
for some αi, βj ∈ F (i, j = 1, . . . , k) with

k∑
i=1

αiβi = 1.

Proof. One implication is a straightforward calculation: if

h =

(
k∑

i=1

αiai

) k∑
j=1

βjb
T
j


then h is an idempotent since

k∑
i=1

αiβi = 1 and bTj ai = δij .

Furthermore,

he =

(
k∑

i=1

αiai

) k∑
j=1

βjb
T
j

( k∑
`=1

a`b
T
`

)
=

(
k∑

i=1

αiai

)(
k∑

`=1

β`b
T
`

)
= h

and similarly we check that eh = h.

Let us now prove the other implication. Suppose h = xyT is an arbitrary

idempotent of rank one with h ≤ e. Now, xyT = h = he = x

(
k∑

i=1

(yTai)b
T
i

)
and

by Lemma 3.2 we have y =
k∑

j=1

βjbj for some β1, . . . , βk ∈ F . Similarly, h = eh

gives us x =
k∑

i=1

αiai for some α1, . . . , αk ∈ F . The condition h2 = h now also

yields
k∑

i=1

αiβi = 1. �

As a consequence, we now have the following theorem.

Theorem 3.4. Let n ≥ 2 and F a field. Choose e ∈ E(Mn(F )) and let

e = e1 + e2 + · · · + ek be an orthogonal decomposition of e into the sum of

minimal idempotents with ei = aib
T
i , ai, bi ∈ Fn for all i = 1, 2, . . . , k. Suppose

h is an idempotent matrix. Then h ≤ e if and only if h =
k∑

i,j=1

γi,jaib
T
j for some

γi,j ∈ F (i, j = 1, . . . , k) satisfying the equations
k∑̀
=1

γi,`γ`,j = γi,j for all i and j.

Proof. Suppose h =
k∑

i,j=1

γi,jaib
T
j for some γi,j ∈ F with

k∑̀
=1

γi,`γ`,j = γi,j

for all i and j. Observe that he = eh = h. Also, h2 =
k∑

i,j=1

(
k∑̀
=1

γi,`γ`,j

)
aib

T
j = h.
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Conversely, let h ≤ e and suppose h = h1 + h2 + . . . + hr is an orthogonal

sum of minimal idempotents. Then ht ≤ h ≤ e for each t, so by Lemma 3.3,

ht =

(
k∑

i=1

αt,iai

)(
k∑

j=1

βt,jb
T
j

)
for some αt,i, βt,j ∈ F (i, j = 1, . . . , k), which

implies ht =
k∑

i,j=1

γt,i,jaib
T
j for some γt,i,j ∈ F . Thus, h =

k∑
i,j=1

γi,jaib
T
j for some

γi,j ∈ F (i, j = 1, . . . , k). Since h2 = h, we also have
k∑

i,j=1

(
k∑̀
=1

γi,`γ`,j

)
aib

T
j =

k∑
i,j=1

γi,jaib
T
j and by multiplying this with ajb

T
i we get

k∑̀
=1

γi,`γ`,j = γi,j for

all i and j. �

In some special cases, we can now immediately conclude that the infimum of

two idempotents is equal to zero.

Corollary 3.5. Let n ≥ 2 and F a field. Let e = e1 + e2 + · · · + ek, f =

f1 + f2 + · · ·+ fl ∈ E(Mn(F )) be the orthogonal decompositions of idempotents

e and f into the sum of minimal idempotents with ei = aib
T
i , ai, bi ∈ Fn for

i = 1, 2, . . . , k and fj = cjd
T
j , cj , dj ∈ Fn for j = 1, 2, . . . , l. Denote the following

linear spans in Fn: A = L{a1, . . . , ak}, B = L{b1, . . . , bk}, C = L{c1, . . . , cl} and

D = L{d1, . . . , dl}. If A ∩ C = {0} or B ∩ D = {0} then e ∩ f = 0.

Proof. Suppose we have an idempotent h such that h ≤ e, f . Decompose

h = h1 + h2 + · · · + hr as an orthogonal sum of minimal idempotents. Then

ht ≤ h ≤ e, f for each t, so by Lemma 3.3, ht =

(
k∑

i=1

αt,iai

)(
k∑

j=1

βt,jb
T
j

)
=(

k∑
i=1

γt,ici

)(
k∑

j=1

δt,jd
T
j

)
for some αt,i, βt,j , γt,i, δt,j ∈ F . Lemma 3.2 now implies

that ht = 0. �

Example 3.6. Let R be a ring of 4× 4 matrices over a field F and let

e =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , f =


0 0 0 0

−1 1 0 0

−1 1 0 0

−1 −1 1 1

 ∈ E(R).

One can easily check that for a1 = b1 = (1, 0, 0, 0)T , a2 = b2 = (0, 0, 1, 0)T ,

c1 = (0, 1, 1, 0)T , d1 = (0, 1,−1, 0)T , c2 = (0,−1,−1, 1)T and d2 = (1,−1, 1, 1)T

we have orthogonal decompositions to the sum of minimal idempotents, e =
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a1b
T
1 + a2b

T
2 and f = c1d

T
1 + c2d

T
2 . By Corollary 3.5, we have e ∩ f = 0. Note

that in this case e and f are generalized commuting, so e ∩ f ∈ 〈e, f〉.
Now, let also

g =


0 1 −1 0

0 1 0 1

0 0 1 1

0 0 0 0

 ∈ E(R).

We have g = c′1d
′T
1 +c′2d

′T
2 for c′1 = (0, 1, 1, 0)T , d′1 = (0, 1,−1, 0)T , c′2 = (0, 1, 1, 0)T

and d′2 = (0, 0, 1, 1)T . Again, by Corollary 3.5, we have e ∩ g = 0. In this case,

however, e and g are not generalized commuting, so e ∩ g /∈ 〈e, g〉.
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