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Some geometrical properties of four-dimensional
Lorentzian Damek–Ricci spaces

By JU TAN (Tianjin) and SHAOQIANG DENG (Tianjin)

Abstract. In this paper, we investigate some geometrical properties of four-dimen-

sional Lorentzian Damek–Ricci spaces, including some problems related to Ricci soli-

tons, harmonicity of invariant vector fields and curvature properties. We show that

these spaces does not even admit a left-invariant Ricci soliton, although all Riemannian

Damek–Ricci spaces are Einstein manifolds. Besides, we determine all the vector fields

which are critical points for the energy functional restricted to vector fields of the same

length. We also prove that there does not exist any invariant harmonic vector field

or invariant vector field which defines a harmonic map. Finally, we determine all the

invariant unit time-like vector fields which are spatially harmonic.

1. Introduction

The notion of Damek–Ricci spaces is the one-dimensional extension of gener-

alized Heisenberg groups. These spaces were studied systematically in [4], where

they are endowed with a left-invariant Riemannian metric. They are closely re-

lated to many special Riemannian manifolds such as symmetric spaces, naturally

reductive spaces, Riemannian g.o. spaces, weakly symmetric spaces, harmonic

spaces and commutative spaces (see [4]). Recently, the authors in [15] introduced

the notion of 4-dimensional Lorentzian Damek–Ricci spaces. These spaces are

endowed with left-invariant Lorentzian metrics. In this paper, we shall show that
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a four-dimensional Lorentzian Damek–Ricci space does not even admit any left-

invariant Ricci soliton. In particular, it can not be an Einstein manifold. By

contrast, every Damek–Ricci space is an Einstein manifold in the Riemannian

case (see [4, p. 85]).

The notion of Ricci solitons is introduced by Hamilton in [18], which is a

natural generalization of Einstein metrics. A Ricci soliton is a pseudo-Riemannian

metric g on a smooth manifold M such that there exists a smooth vector field X

on M satisfying the following equation:

LXg + ρ = λg, (1.1)

where LX is the Lie derivative in the direction of X, ρ is the Ricci tensor and

λ is a real number. A Ricci soliton is said to be shrinking, steady or expanding,

according as λ > 0, λ = 0, or λ < 0, respectively.

In the special case that M is a Lie group and g is a left-invariant metric, we

say that g is a left-invariant Ricci soliton on M if the above equation (1.1) holds

with respect to a left-invariant vector field X.

A homogeneous Ricci soliton on a homogeneous space M = G/H is a G-

invariant metric g for which the above equation (1.1) holds [12]. Although there

exist three-dimensional Riemannian homogeneous Ricci solitons [2], [21], there are

no left-invariant Ricci solitons on three-dimensional Riemannian Lie groups [16]

(see also [19], [23]). Left-invariant Ricci solitons on three-dimensional Lorentzian

Lie groups were classified in [5], and four-dimensional Ricci solitons on non-

reductive homogeneous pseudo-Riemannian manifolds were classified [13] (see

also [14]). Recently, the authors in [12] classified homogeneous Ricci solitons

on four-dimensional homogeneous pseudo-Riemannian manifolds with non-trivial

isotropy.

On the other hand, parallel vector fields are the only ones which define har-

monic maps from a compact Riemannian manifold (M, g) to (TM, gs), where gs

denotes the Sasaki metric on the tangent bundle TM (see [20], [22]). In [17], Gil-

Medrano showed that critical points of the restricted energy functional E|X(M)

are again parallel vector fields. However, if g is Lorentzian, then vector fields

satisfying some harmonicity properties need not be parallel (see [9], [10]). Since

a Riemannian manifold admitting a parallel vector field is locally reducible, and

it is also true for a pseudo-Riemannian manifold admitting a parallel vector field

which is either space-like or time-like, it is worthwhile to consider non-parallel

vector fields which satisfy some harmonicity properties.

In this paper, we investigate some properties of four-dimensional Lorentzian

Damek–Ricci spaces. The paper is organized as follows: in Section 2, we present
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some preliminaries. In Section 3, we consider left-invariant Ricci solitons on four-

dimensional Lorentzian Damek–Ricci spaces. We show that no four-dimensional

Lorentzian Damek–Ricci space admits a left-invariant Ricci soliton. In particular,

such a space cannot be an Einstein manifold. In Section 4, we study some cur-

vature properties of four-dimensional Lorentzian Damek–Ricci spaces. We prove

that these spaces are not conformally flat and these Ricci tensors are not Codazzi

tensors but Killing tensors. In Section 5, we investigate the harmonicity of invari-

ant vector fields on four-dimensional Lorentzian Damek–Ricci spaces. We show

that there does not exist any invariant harmonic vector fields and invariant vector

fields defining harmonic maps. We also determine all the invariant unit time-like

vector fields which are spatially harmonic.

2. Preliminaries

Let (M, g) be a compact connected and oriented n-dimensional pseudo-

Riemannian manifold. The tangent bundle TM of M can be equipped with

the Sasaki metric gs (see [10]). Given a smooth vector field V on M , the energy

of a smooth vector field V : (M, g)→ (TM, gs) on M is defined by:

E(V ) =
n

2
vol(M, g) +

1

2

∫
M

‖∇V ‖2dv. (2.1)

(In the non-compact case, one works over relatively compact domains, see [9]).

V is said to define a harmonic map if V : (M, g)→ (TM, gs) is a critical point for

the above energy functional. The Euler–Lagrange equations characterize vector

fields V defining harmonic maps as the ones whose tension field τ(V ) = tr(∇2V )

vanishes. Consequently, V defines a harmonic map from (M, g) to (TM, gs) if

and only if {
∇∗∇V = 0,

tr[R(∇.V, V ).)] = 0,
(2.2)

where with respect to a pseudo-orthonormal local frame {e1, . . . , en} on (M, g),

with εi = g(ei, ei) = ±1 for all indices i, one has

∇∗∇V =
∑
i

εi(∇ei∇eiV −∇∇eieiV ).

A smooth vector field V is said to be a harmonic section if it is a critical point

of the vertical energy Ev, here Ev(V ) = 1
2

∫
M
‖∇V ‖2dv. The corresponding

Euler–Lagrange equations are given by

∇∗∇V = 0. (2.3)
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In the non-compact case, equation (2.3) (respectively, (2.2)) is used as the def-

inition of harmonic vector fields (respectively, of vector fields defining harmonic

maps).

Let ρ be a non-zero real number, and denote Xρ(M)={V ∈ X(M) :‖V ‖2 =ρ}.
We consider the vector fields V ∈ Xρ(M) which are critical points for the energy

functional E|Xρ(M), restricted to vector fields of the same length. The Euler–

Lagrange equations of this variational condition show that V is a harmonic vector

field if and only if

∇∗∇V is collinear to V. (2.4)

This characterization is well known in the Riemannian case [1], [24], [25]. If V is

not light-like, the same argument applies to the pseudo-Riemannian settings [10].

Even if V is a light-like vector field, (2.4) is still a sufficient condition for V to be

a critical point for the energy functional E|X0(M), restricted to light-like vector

fields (see [10, Theorem 26]). Usually, condition (2.4) is used as a definition of

critical points for the energy functional E|Xρ(M) in the non-compact case.

Let V be a unit time-like vector field on a Lorentzian manifold (M, g). The

space-like energy of V is defined to be the integral of the square norm of the

restriction of ∇V to the distribution V ⊥. We say that V is spatially harmonic if

it is a critical point of the space-like energy. The Euler–Lagrange equations then

imply that V is spatially harmonic if and only if

X̂v := −∇∗∇V −∇V∇V V −div(V )∇V V +(∇V )t(∇V V ) is collinear to V. (2.5)

It is easy to see that conditions (2.4) and (2.5) coincide for geodesic vector fields.

Next, we recall the structures of the Lorentzian Damek–Ricci spaces from [15].

A generalized Riemannian Heisenberg algebra is a two-step nilpotent Lie

algebra n with an positive inner product 〈, 〉 such that if z is the center of n and

p = z⊥, then the map JZ : p→ p given by

〈JZX,Y 〉 = 〈[X,Y ], Z〉

for X,Y ∈ p and Z ∈ z, satisfies the identity J2
Z = −|Z|2I for every Z ∈ z. The

associated simple connected Lie group, endowed with the induced left-invariant

Riemannian metric, is called a generalized Riemannian Heisenberg group.

A generalized Lorentzian Heisenberg algebra is introduced in [15]. It is a

two-step nilpotent Lie algebra n with a Lorentzian inner product 〈, 〉 which is

Lorentzian restricted to the center z of n, and positive definite restricted to p = z⊥.

Moreover, the map JZ : p→ p given by

〈JZX,Y 〉 = 〈[X,Y ], Z〉
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for X,Y ∈ p and Z ∈ z, satisfies the condition{
J2
Z = −|Z|2I, if Z is space-like,

J2
Z = |Z|2I, if Z is time-like.

The associated simple connected Lie group with the induced left-invariant

Lorentzian metric, is called a generalized Lorentzian Heisenberg group.

From [15], we know that there exist two kinds of Lorentzian Damek–Ricci

spaces. A Lie algebra s of the first kind of (n+1)-dimensional Lorentzian Damek–

Ricci spaces is a direct sum of an n-dimensional generalized Riemannian Heisen-

berg algebra n and a one-dimensional vector space a. Each vector in s can be

uniquely written as U +X + sA, where U ∈ p, X ∈ z, s ∈ R and A is a non-zero

vector in a. We will always use the symbols U, V for vectors in p, X,Y for vectors

in z and r, s for real numbers. In [15], the inner product 〈., .〉 and Lie brackets

[., .] on s are defined by

〈U +X + rA, V + Y + sA〉 = 〈U +X,V + Y 〉n − rs,

and

[U +X + rA, V + Y + sA] = [U, V ]n +
1

2
rV − 1

2
sU + rY − sX.

With respect to these brackets, s becomes a Lie algebra with a Lorentzian metric.

The corresponding connected simply connected Lie group attached to s, endowed

with the induced left-invariant Lorentzian metric, is called a Lorentzian Damek–

Ricci space of the first kind, denoted as S1n+1. The Levi–Civita connection ∇ of

S1n+1 is given by

∇V+Y+sA(U +X + rA)

= −1

2
{JY U + JXV + rV + [U, V ] + 2rY + 〈U, V 〉A+ 2〈X,Y 〉A}.

On the other hand, from [15], we know that a Lie algebra s
′

of the second kind

of (n + 1)-dimensional Lorentzian Damek–Ricci spaces is a direct sum of an

n-dimensional generalized Lorentzian Heisenberg algebra n and a one-dimensional

vector space a. The vector decomposition and the Lie brackets in s
′

are given in

the same way as above, but the metric is given by

〈U +X + rA, V + Y + sA〉 = 〈U +X,V + Y 〉n + rs.
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The corresponding connected simply connected Lie group attached to s
′
, endowed

with the induced left-invariant Lorentzian metric, is called a Lorentzian Damek–

Ricci space of the second kind, denoted as Snn+1. The Levi–Civita connection ∇ of

Snn+1 is given by

∇V+Y+sA(U +X + rA)

= −1

2
{JY U + JXV + rV + [U, V ] + 2rY − 〈U, V 〉A− 2〈X,Y 〉A}.

3. Left-invariant Ricci solitons on 4-dimensional

Lorentzian Damek–Ricci spaces

In this section, we study left-invariant Ricci solitons on 4-dimensional Lorentz-

ian Damek–Ricci spaces. This will be completed through a case by case consid-

eration.

3.1. The S14 case. In [15], the left-invariant Lorentzian metric g on the 4-dimen-

sional space S14 is given by

g = e−tdx2 + e−tdy2 + e−2t
(
dz +

c

2
ydx− c

2
xdy

)2
− dt2,

where c ∈ R. The Lie algebra s4 of S14 has an orthonormal basis

e1 = e
t
2

(
∂

∂x
− cy

2

∂

∂z

)
, e2 = e

t
2

(
∂

∂y
+
cx

2

∂

∂z

)
, e3 = et

∂

∂z
, e4 =

∂

∂t
,

where e1, e2, e3 are space-like and e4 is time-like. The Lie brackets are given by

[e1, e2] = ce3, [e1, e3] = 0, [e1, e4] = − 1
2e1,

[e2, e3] = 0, [e2, e4] = − 1
2e2, [e3, e4] = −e3.

(3.1)

By the definition of the map JZ , we have c2 = 1. The well-known Koszul formula

can be used to determine the Levi–Civita connection ∇ of g. Set Λi = ∇ei . Then,

with respect to the pseudo-orthonormal basis {e1, e2, e3, e4}, where e4 is time-like,

we have

Λe1 =


0 0 0 − 1

2

0 0 − c
2 0

0 c
2 0 0

− 1
2 0 0 0

 , Λe2 =


0 0 c

2 0

0 0 0 − 1
2

− c
2 0 0 0

0 − 1
2 0 0

 ,
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Λe3 =


0 c

2 0 0

− c
2 0 0 0

0 0 0 −1

0 0 −1 0

 , Λe4 = O4×4. (3.2)

Using the identities R(ei, ej) = ∇[ei,ej ]−ΛiΛj + ΛjΛi, we can determine the

curvature as follows

R(e1, e2)e1 = − 1
2e2, R(e1, e2)e2 = − 1

2e1, R(e1, e2)e3 = − c
2e4,

R(e1, e2)e4 = − c
2e3, R(e1, e3)e1 = 3

4e3, R(e1, e3)e2 = − c
4e4,

R(e1, e3)e3 = − 3
4e1, R(e1, e3)e4 = − c

4e2, R(e1, e4)e1 = 1
4e4,

R(e1, e4)e2 = − c
4e3, R(e1, e4)e3 = c

4e2, R(e1, e4)e4 = 1
4e1,

R(e2, e3)e1 = c
4e4, R(e2, e3)e2 = 3

4e3, R(e2, e3)e3 = − 3
4e2,

R(e2, e3)e4 = c
4e1, R(e2, e4)e1 = c

4e3, R(e2, e4)e2 = 1
4e4,

R(e2, e4)e3 = − c
4e1, R(e2, e4)e4 = 1

4e2, R(e3, e4)e1 = c
2e2,

R(e3, e4)e2 = − c
2e1, R(e3, e4)e3 = e4, R(e3, e4)e4 = e3.

(3.3)

Applying the Ricci tensor formula ρ(X,Y ) =
4∑
i=1

εig(R(X, ei)Y, ei), we get

(ρ)ij =


1
2 0 0 0

0 1
2 0 0

0 0 5
2 0

0 0 0 − 3
2


On the other hand, for an arbitrary left-invariant vector field X =

4∑
i=1

Kiei on S14,

we have

∇e1X = −1

2
K1e4 +

c

2
K2e3 −

c

2
K3e2 −

1

2
K4e1,

∇e2X = − c
2
K1e3 −

1

2
K2e4 +

c

2
K3e1 −

1

2
K4e2,

∇e3X = − c
2
K1e2 +

c

2
K2e1 −K3e4 −K4e3,

∇e4X = 0. (3.4)

By the identity (LXg)(Y, Z) = g(∇YX,Z) + g(Y,∇ZX), we have

LXg =


−K4 0 cK2

1
2K1

0 −K4 −cK1
1
2K2

cK2 −cK1 −2K4 K3
1
2K1

1
2K2 K3 0

 (3.5)
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3.2. The S34 case. In [15], the left-invariant Lorentzian metric g on the 4-dimen-

sional space S34 is given by:

g = e−tdx2 + e−tdy2 − e−2t
(
dz +

c

2
ydx− c

2
xdy

)2
+ dt2,

where c ∈ R. The Lie algebra s
′

4 of S34 has an orthonormal basis

e1 = e
t
2

(
∂

∂x
− cy

2

∂

∂z

)
, e2 = e

t
2

(
∂

∂y
+
cx

2

∂

∂z

)
, e3 = et

∂

∂z
, e4 =

∂

∂t
,

where e1, e2, e4 are space-like and e3 is time-like. The Lie brackets are given by

[e1, e2] = ce3, [e1, e3] = 0, [e1, e4] = − 1
2e1,

[e2, e3] = 0, [e2, e4] = − 1
2e2, [e3, e4] = −e3.

(3.6)

One can also prove that c2 = 1 by the definition of the map JZ . The well-known

Koszul formula can be used to determine the Levi–Civita connection ∇ of g. Set

Λi = ∇ei . Then, with respect to the pseudo-orthonormal basis {e1, e2, e3, e4},
where e3 is time-like, we have:

Λe1 =


0 0 0 − 1

2

0 0 c
2 0

0 c
2 0 0

1
2 0 0 0

 , Λe2 =


0 0 − c

2 0

0 0 0 − 1
2

− c
2 0 0 0

0 1
2 0 0

 ,

Λe3 =


0 − c

2 0 0
c
2 0 0 0

0 0 0 −1

0 0 −1 0

 , Λe4 = O4×4. (3.7)

where O4×4 denotes the 4× 4 matrix whose entries are all zero.

Using the identities R(ei, ej) = ∇[ei,ej ]−ΛiΛj + ΛjΛi, we can determine the

curvature as the following:

R(e1, e2)e1 = 1
2e2, R(e1, e2)e2 = − 1

2e1, R(e1, e2)e3 = − c
2e4,

R(e1, e2)e4 = − c
2e3, R(e1, e3)e1 = − 3

4e3, R(e1, e3)e2 = − c
4e4,

R(e1, e3)e3 = − 3
4e1, R(e1, e3)e4 = c

4e2, R(e1, e4)e1 = − 1
4e4,

R(e1, e4)e2 = − c
4e3, R(e1, e4)e3 = − c

4e2, R(e1, e4)e4 = 1
4e1,

R(e2, e3)e1 = c
4e4, R(e2, e3)e2 = − 3

4e3, R(e2, e3)e3 = − 3
4e2,

R(e2, e3)e4 = − c
4e1, R(e2, e4)e1 = c

4e3, R(e2, e4)e2 = − 1
4e4,

R(e2, e4)e3 = c
4e1, R(e2, e4)e4 = 1

4e2, R(e3, e4)e1 = − c
2e2,

R(e3, e4)e2 = c
2e1, R(e3, e4)e3 = e4, R(e3, e4)e4 = e3.

(3.8)
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Applying the Ricci tensor formula ρ(X,Y ) =
4∑
i=1

εig(R(X, ei)Y, ei), we get

(ρ)ij =


− 1

2 0 0 0

0 − 1
2 0 0

0 0 5
2 0

0 0 0 − 3
2

 .

Now, for an arbitrary left-invariant vector field X =
4∑
i=1

Kiei on S34, we have

∇e1X =
1

2
K1e4 +

c

2
K2e3 +

c

2
K3e2 −

1

2
K4e1,

∇e2X = − c
2
K1e3 +

1

2
K2e4 −

c

2
K3e1 −

1

2
K4e2,

∇e3X =
c

2
K1e2 −

c

2
K2e1 −K3e4 −K4e3,

∇e4X = 0. (3.9)

By the left invariance, we have (LXg)(Y,Z) = g(∇YX,Z) + g(Y,∇ZX). This

implies that

LXg =


−K4 0 −cK2

1
2K1

0 −K4 cK1
1
2K2

−cK2 cK1 2K4 −K3
1
2K1

1
2K2 −K3 0

 . (3.10)

Now we can prove

Proposition 3.1. A 4-dimensional Lorentzian Damek–Ricci space does not

admit any left-invariant Ricci soliton.

Proof. We first consider the S14 case. If it admits a left-invariant Ricci

soliton, then by the Ricci soliton formula (1.1), we get the following system of

equations: 
λ = 3

2 ,

K1 = K2 = K3 = 0,

−K4 + 1
2 = λ,

−2K4 + 5
2 = λ.

From this, we get K4 = 0. So −c2 = 1, which is a contradiction. The proof for

the S34 case is similar. �
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4. Curvature of 4-dimensional Lorentzian Damek–Ricci spaces

The properties of curvature of 4-dimensional generalized symmetric spaces

were investigated in [11]. In this section, we mainly study the curvature properties

of 4-dimensional Lorentzian Damek–Ricci spaces.

A pseudo-Riemannian manifold (M, g) is said to be in class A if the Ricci

tensor is cyclic-parallel, i.e., ∇Xρ(Y, Z) +∇Y ρ(Z,X) +∇Zρ(X,Y ) = 0, or equiv-

alently, it is a Killing tensor, i.e., ∇Xρ(X,X) = 0. It is said to be in class B if its

Ricci tensor is a Codazzi tensor, i.e., ∇Xρ(Y,Z) = ∇Y ρ(X,Z), where

∇iρjk = −
∑
t

(εjBijtρtk + εkBiktρtj), (4.1)

here the Bijk components are determined by ∇eiej =
∑
k

εjBijkek, and ρtk are the

tensor Ricci components. Note that Bikj = −Bijk, for all i, j, k. In particular,

Bijj = 0 for all indices i, j. For more detail, see [7], [8].

Proposition 4.1. Every 4-dimensional Lorentzian Damek–Ricci space be-

longs to class A but not to class B.

Proof. In the S14 case, from (4.1), it is easily seen that ∇iρii = 0, i =

1, 2, 3, 4. So it belongs to class A. On the other hand, by (3.2), we have

B123 =
c

2
, B132 = − c

2
, B213 = − c

2
, B231 =

c

2
.

∇1ρ23 = −B123ρ33 −B132ρ22 = −c,
∇2ρ13 = −B213ρ33 −B231ρ11 = c.

Notice that c 6= 0. Thus it does not belong to class B. The proof for the S34 case

is similar. �

Now we recall the following theorem from [3].

Theorem 4.2. A pseudo-Riemannian manifold (Mn, g) of dimension n ≥ 4,

is conformally flat if and only if its Weyl curvature tensor vanishes, that is,

R(X,Y, Z,W ) =
1

n− 2
(g(X,Z)ρ(Y,W ) + g(Y,W )ρ(X,Z)

− g(X,W )ρ(Y,Z)− g(Y,Z)ρ(X,W ))

− τ

(n− 1)(n− 2)
(g(X,Z)g(Y,W )− g(Y,Z)g(X,W )), (4.2)

where X,Y, Z,W are vector fields and τ is the scalar curvature.
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Now we can prove

Proposition 4.3. Every 4-dimensional Lorentzian Damek–Ricci space is not

conformally flat.

Proof. We first consider the S14 case. SinceR(X,Y, Z,W )=g(R(X,Y )Z,W ),

it follows form (3.3) that R1234 = c
2 . By (4.2), we have R1234 = 0. So S14 is not

conformally flat. Now, we consider S34. By (3.8) we have R1234 = − c
2 . On the

other hand, by (4.2), we also have R1234 = 0. Hence S34 is also not conformally

flat. �

A vector field V is called a geodesic vector field if ∇V V = 0, and it is called

a Killing vector field if LV g = 0, where L denotes the Lie derivative. It is easily

seen that X is Killing vector field if and only if g(∇YX,Z) + g(Y,∇ZX) = 0 for

all Y, Z ∈ X(M). A vector field V is called a parallel vector field if ∇XV = 0 for

all X ∈ X(M). It is obvious that parallel vector fields are both geodesic vector

fields and Killing vector fields. From (3.4), (3.5) and (3.9), (3.10), we have:

Proposition 4.4. On a 4-dimensional Lorentzian Damek–Ricci space, a left-

invariant vector field is neither a parallel vector field, nor a Killing vector field.

By (3.4) and (3.9) and some direct calculations, we get the following result.

Proposition 4.5. Let V be a left-invariant vector field on a 4-dimensional

Lorentzian Damek–Ricci space, then V is geodesic if and only if V = ae4, a ∈ R.

A r-dimensional distribution D on a manifold is said to be parallel if ∇XD ⊂
D, i.e., if ∇XY ∈ D for all Y ∈ D and any X ∈ X(M). A Walker manifold

is a pseudo-Riemannian manifold (M, g) which admits a parallel null distribu-

tion D. Such structures possess many interesting properties with no Riemannian

counterpart. For more detail, see [6]. Now we prove

Proposition 4.6. A 4-dimensional Lorentzian Damek–Ricci space does not

admit any 1-dimensional parallel null distribution.

Proof. We first consider the S14 case. Set X = K1e1 +K2e2 +K3e3 +K4e4,

and suppose D = span(X) is an invariant null parallel line field. Then there exist

parameters w1, w2, w3, w4 satisfying the following equations:

∇e1X = w1X, ∇e2X = w2X, ∇e3X = w3X, ∇e4X = w4X,
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From the first equation, we have
− 1

2K4 = w1K1,

− c
2K3 = w1K2,
c
2K2 = w1K3,

− 1
2K1 = w1K4.

Hence K2 = K3 = 0. Since ∇e2X = w2X, we have K1 = K4 = 0. So a non-trivial

solution can not occur. The proof for the S34 case is similar. �

5. Harmonicity of invariant vector fields

In this section, we investigate the harmonicity of invariant vector fields on

the 4-dimensional Lorentzian Damek–Ricci spaces. As in the previous sections,

we will study the problem case by case.

5.1. The S14 case. A left-invariant vector field V on the Lorentzian Damek–

Ricci space S14 is uniquely determined by its components with respect to the

pseudo-orthonormal basis {ei} for which (3.1) holds. Thus it can be written as

V = K1e1 +K2e2 +K3e3 +K4e4, for some real constants K1,K2,K3,K4. Notice

that the constant norm of V is given by ‖V ‖2 = K2
1 +K2

2 +K2
3 −K2

4 .

Applying the equations (3.2) and (3.4) to the calculation of ∇ei∇eiV and

∇∇eieiV for i = 1, 2, 3, 4, we get

∇e1∇e1V =
1

4
K1e1 −

1

4
K2e2 −

1

4
K3e3 +

1

4
K4e4,

∇e2∇e2V = −1

4
K1e1 +

1

4
K2e2 −

1

4
K3e3 +

1

4
K4e4,

∇e3∇e3V = −1

4
K1e1 −

1

4
K2e2 +K3e3 +K4e4.

Note that ∇e4∇e4V = 0 and ∇∇eieiV = 0 for i = 1, 2, 3, 4. By the equation

∇∗∇V =
4∑
i=1

εi(∇ei∇eiV −∇∇eieiV ), we have

∇∗∇V = −1

4
K1e1 −

1

4
K2e2 +

1

2
K3e3 +

3K4

2
e4. (5.1)

Thus, we have the following
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Theorem 5.1. There does not exist left-invariant harmonic vector fields on

the Lorentzian Damek–Ricci space S14. Moreover, none of the left-invariant vector

fields on the Lorentzian Damek–Ricci space S14 defines a harmonic map from S14
to (TS14, gs).

From (5.1), we obtain:

∇∗∇V = −1

4
V +

3

4
K3e3 +

7

4
K4e4,

∇∗∇V =
1

2
V +K4e4 −

3

4
K1e1 −

3

4
K2e2,

∇∗∇V =
3

2
V − 7

4
K1e1 −

7

4
K2e2 −K3e3.

So we have the following

Theorem 5.2. Let V be a left-invariant vector field on S14. Then V is

a critical point for the energy functional restricted to vector fields of the same

length if and only if V = K1e1 +K2e2, or V = K3e3, or V = K4e4.

We now determine spatially harmonic vector fields on S14. Let V = K1e1 +

K2e2 +K3e3 +K4e4 be a unit time-like vector field. Then we have

div(V ) =

4∑
i=1

εig(∇eiV, ei) = −2K4,

∇V V =

(
cK2K3 −

1

2
K1K4

)
e1 −

(
cK1K3 +

1

2
K2K4

)
e2

−K3K4e3 −
(

1

2
K2

1 +
1

2
K2

2 +K2
3

)
e4,

∇V∇V V =

(
1

4
K3

1 +
1

4
K1K

2
2 −

3c

4
K2K3K4

)
e1

+

(
1

4
K3

2 +
1

4
K2

1K2 +
3c

4
K1K3K4

)
e2 +K3

3e3

+

(
K2

3K4 +
1

4
K2

1K4 +
1

4
K2

2K4

)
e4.

Since

(∇V )t∇V V =

4∑
i=1

εig(∇V V,∇eiV )ei,

We have

(∇V )t∇V V =

(
−3c

4
K2K3K4 +

1

4
K1K

2
4 −

1

4
K1K

2
2 −

1

4
K3

1

)
e1
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+

(
3c

4
K1K3K4 +

1

4
K2K

2
4 −

1

4
K2

1K2 −
1

4
K3

2

)
e2

+ (−K3
3 +K3K

2
4 )e3.

Therefore, we have

X̂V = −∇∗∇V −∇V∇V V − div(V )∇V V + (∇V )t(∇V V )

=

(
−3

4
K1K

2
4 −

1

2
K1K

2
2 −

1

2
K3

1 +
1

4
K1 + 2cK2K3K4

)
e1

+

(
−3

4
K2K

2
4 −

1

2
K2

1K2 −
1

2
K3

2 +
1

4
K2 − 2cK1K3K4

)
e2

+

(
−2K3

3 −K3K
2
4 −

1

2
K3

)
e3

−
(

3K2
3K4 +

5

4
K2

1K4 +
5

4
K2

2K4 +
3

2
K4

)
e4.

So, V satisfies (2.5) if and only if there exists a real constant λ such that
− 3

4K1K
2
4 − 1

2K1K
2
2 − 1

2K
3
1 + 1

4K1 + 2cK2K3K4 = λK1,

− 3
4K2K

2
4 − 1

2K
2
1K2 − 1

2K
3
2 + 1

4K2 − 2cK1K3K4 = λK2,

−2K3
3 −K3K

2
4 − 1

2K3 = λK3,

−3K2
3K4 − 5

4K
2
1K4 − 5

4K
2
2K4 − 3

2K4 = λK4.

(5.2)

The system of equations (5.2) completely characterizes spatially harmonic unit

time-like invariant vector fields (which must satisfy the additional condition ‖V ‖2
= K2

1 +K2
2 +K2

3 −K2
4 = −1). Now we can prove

Theorem 5.3. A time-like unit left-invariant vector field V on the Lorentzian

Damek–Ricci space S14 is a spatially harmonic vector field if and only if there exist

real numbers K3,K4 such that K2
4 = 1 +K2

3 and V = K3e3 +K4e4.

Proof. We first prove the “if” part. Suppose V = K3e3 + K4e4, where

K2
3 = 1 + K2

4 . Then by (5.2), we have λ = −3K2
3 − 3

2 . Thus V is a spatially

harmonic vector field.

Now we prove the “only if” part. For this, we need to prove the existence of

non-trivial solutions of (5.2). Since K4 6= 0, from the last equation of (5.2), we

have λ = − 3
2 −

5
4K

2
2 − 5

4K
2
1 − 3K2

3 . Then, from the first and second equations of

(5.2), we have (K2
1 +K2

2 )( 9
4K

2
3 + 1) = 0. Thus K1 = K2 = 0. Since K2

4 = 1 +K2
3 ,

the third equation also holds. Therefore, we have V = K3e3 + K4e4 and K2
4 =

1 +K2
3 . �
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Next we calculate the energy of a smooth vector field V : (M, g)→ (TM, gs)

on S14. Since S14 is not compact, we suppose that D is a relatively compact domain

and calculate the energy of V |D.

Proposition 5.4. Let V be a smooth left-invariant vector field on S14. Then

the energy of V |D is

ED(V ) =

(
2 +
‖V ‖2

8
− 3

8
K2

3 +
7

8
K2

4

)
vol(D),

where ED(V ) denotes the energy of V |D.

Proof. Notice that

‖∇V ‖2 =

4∑
i=1

εig(∇eiV,∇eiV )

=
1

4
K2

1 +
1

4
K2

2 −
1

2
K2

3 +
3

2
K2

4 .

Considering ‖V ‖2 = K2
1 +K2

2 +K2
3 −K2

4 in (2.1), we complete the proof. �

5.2. The S34 case. A left-invariant vector field V on the Lorentzian Damek–

Ricci space S34 is uniquely determined by its components with respect to the

pseudo-orthonormal basis {ei} for which (3.6) holds. Thus in this case one can

write V = K1e1 +K2e2 +K3e3 +K4e4, where K1,K2,K3,K4 are real constants.

Notice that the constant norm of V is given by ‖V ‖2 = K2
1 +K2

2 −K2
3 +K2

4 .

We now apply (3.7) and (3.9) to calculate ∇ei∇eiV and ∇∇eieiV for i =

1, 2, 3, 4. It is easily seen that

∇e1∇e1V = −1

4
K1e1 +

1

4
K2e2 +

1

4
K3e3 +

1

4
K4e4,

∇e2∇e2V =
1

4
K1e1 −

1

4
K2e2 +

1

4
K3e3 −

1

4
K4e4,

∇e3∇e3V = −1

4
K1e1 −

1

4
K2e2 +K3e3 +K4e4.

Since ∇e4∇e4V = 0 and ∇∇eieiV = 0 for i = 1, 2, 3, 4, taking into account

the fact that ∇∗∇V =
4∑
i=1

εi(∇ei∇eiV −∇∇eieiV ), we get

∇∗∇V =
1

4
K1e1 +

1

4
K2e2 −

1

2
K3e3 −

3K4

2
e4. (5.3)

This proves the following
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Theorem 5.5. There does not exist left-invariant harmonic vector fields on

the Lorentzian Damek–Ricci space S34. Moreover, there does not exist any left-

invariant vector field on the Lorentzian Damek–Ricci space S34 which defines a

harmonic map from S34 to (TS34, gs).

Combining theorem 5.1 with theorem 5.5, we get the following

Proposition 5.6. There does not exist any left-invariant harmonic vector

fields or invariant vector field which defines harmonic maps on 4-dimensional

Lorentzian Damek-Ricci space.

From (5.3), we obtain

∇∗∇V =
1

4
V − 3

4
K3e3 −

7

4
K4e4,

∇∗∇V = −1

2
V −K4e4 +

3

4
K1e1 +

3

4
K2e2,

∇∗∇V = −3

2
V +

7

4
K1e1 +

7

4
K2e2 +K3e3.

So we have the following

Theorem 5.7. Let V be a left-invariant vector field on S34. Then V is

a critical point for the energy functional restricted to vector fields of the same

length if only if V = K1e1 +K2e2, or V = K3e3, or V = K4e4.

Next we determine spatially harmonic vector fields on S34. Let V = K1e1 +

K2e2 +K3e3 +K4e4 be a unit time-like vector field. Then a direct computation

shows that

div(V ) =

4∑
i=1

εig(∇eiV, ei) = −2K4,

∇V V =

(
−cK2K3 −

1

2
K1K4

)
e1 +

(
cK1K3 −

1

2
K2K4

)
e2

−K3K4e3 +

(
1

2
K2

1 +
1

2
K2

2 −K2
3

)
e4,

∇V∇V V =

(
−1

4
K3

1 −
1

4
K1K

2
2 +K1K

2
3 +

3c

4
K2K3K4

)
e1

+

(
−1

4
K3

2 −
1

4
K2

1K2 +K2K
2
3 −

3c

4
K1K3K4

)
e2 +K3

3e3

+

(
K2

3K4 −
1

4
K2

1K4 −
1

4
K2

2K4

)
e4.
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Since

(∇V )t∇V V =

4∑
i=1

εig(∇V V,∇eiV )ei,

We have

(∇V )t∇V V =

(
3c

4
K2K3K4 +

1

4
K1K

2
4 +

1

4
K1K

2
2 +

1

4
K3

1

)
e1

+

(
−3c

4
K1K3K4 +

1

4
K2K

2
4 +

1

4
K2

1K2 +
1

4
K3

2

)
e2

+ (−K3
3 +K3K

2
4 )e3

Thus

X̂V = −∇∗∇V −∇V∇V V − div(V )∇V V + (∇V )t(∇V V )

=

(
−3

4
K1K

2
4 +

1

2
K1K

2
2 +

1

2
K3

1 −
1

4
K1 − 2cK2K3K4

)
e1

+

(
−3

4
K2K

2
4 +

1

2
K2

1K2 +
1

2
K3

2 −
1

4
K2 + 2cK1K3K4

)
e2

+

(
−2K3

3 −K3K
2
4 +

1

2
K3

)
e3

+

(
−3K2

3K4 +
5

4
K2

1K4 +
5

4
K2

2K4 +
3

2
K4

)
e4.

Therefore, V satisfies (2.5) if and only if there exists a real constant λ, such that
− 3

4K1K
2
4 + 1

2K1K
2
2 + 1

2K
3
1 − 1

4K1 − 2cK2K3K4 = λK1,

− 3
4K2K

2
4 + 1

2K
2
1K2 + 1

2K
3
2 − 1

4K2 + 2cK1K3K4 = λK2,

−2K3
3 −K3K

2
4 + 1

2K3 = λK3,

−3K2
3K4 + 5

4K
2
1K4 + 5

4K
2
2K4 + 3

2K4 = λK4.

(5.4)

Solutions of system (5.4) completely characterize spatially harmonic unit time-

like invariant vector fields (which must satisfy the additional condition ‖V ‖2 =

K2
1 +K2

2 −K2
3 +K2

4 = −1). Thus we have the following:

Theorem 5.8. A time-like unit left-invariant vector field V on the Lorentzian

Damek–Ricci space S34 is a spatially harmonic vector field if and only if V has the

form V = K3e3 +K4e4 with K2
3 = 1 +K2

4 .

Proof. We first prove the “if” part. If V = K3e3 + K4e4,K
2
3 = 1 + K2

4 ,

then by (5.4), we have λ = −3K2
4 − 3

2 . So V is a spatially harmonic vector field.
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Now we prove the “only if” part. We only need to find a non-trivial solution

of (5.4). Notice that K3 6= 0. If K4 = 0, then by (5.4), we get the following

system of equations: 
1
2K1K

2
2 + 1

2K
3
1 − 1

4K1 = λK1,

1
2K2K

2
1 + 1

2K
3
2 − 1

4K2 = λK2,

−2K3
3 + 1

2K3 = λK3.

If K2
1 +K2

2 6= 0, then it follows from the first and the second equations that

λ =
1

2
(K2

1 +K2
2 )− 1

4
.

Moreover, by the third equation, we also have

λ = −2K2
3 +

1

2
.

Since K2
1 +K2

2 = K2
3 − 1, from the above two equations, we obtain K2

3 = 1
2 , but

K2
3 = 1 +K2

1 +K2
2 ≥ 1, which is a contradiction. So K1 = K2 = 0.

If K4 6= 0, then it follows from the last equation of (5.4) that λ = 3
2 +

5
4K

2
1 + 5

4K
2
2 − 3K2

3 . Then, from the first and second equations of (5.4), we get

(K2
1 + K2

2 )( 9
4K

2
3 − 1) = 0. Notice also that K2

3 ≥ 1. Thus K1 = K2 = 0. Since

K2
3 = 1 +K2

4 , the third equation automatically holds. So V = K3e3 +K4e4. �

Finally, we calculate the energy of a smooth vector field V : (M, g) →
(TM, gs) on S34. Since S34 is not compact, we suppose that D is a relatively

compact domain in S34 and calculate the energy of V |D.

Proposition 5.9. Let V be a smooth left-invariant vector field on S34. Then

the energy of V |D is

ED(V ) =

(
2− ‖V ‖

2

8
− 3

8
K2

3 +
7

8
K2

4

)
volD

where ED(V ) denotes the energy of V |D.

Proof. Notice that

‖∇V ‖2 =

4∑
i=1

εig(∇eiV,∇eiV )

= −1

4
K2

1 −
1

4
K2

2 −
1

2
K2

3 +
3

2
K2

4 .

Considering ‖V ‖2 = K2
1 +K2

2 −K2
3 +K2

4 in (2.1), we complete the proof. �
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