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GK-dimension of 2 × 2 generic Lie matrices

By VESSELIN DRENSKY (Sofia), PLAMEN KOSHLUKOV (Campinas)
and GUSTAVO GRINGS MACHADO (Santa Maria)

Abstract. Recently Machado and Koshlukov have computed the Gelfand–Kirillov

dimension of the relatively free algebra Fm = Fm(var(sl2(K))) of rank m in the variety

of algebras generated by the three-dimensional simple Lie algebra sl2(K) over an infinite

field K of characteristic different from 2. They have shown that GKdim(Fm) = 3(m−1).

The algebra Fm is isomorphic to the Lie algebra generated by m generic 2× 2 matrices.

Now we give a new proof for GKdim(Fm) using classical results of Procesi and Razmyslov

combined with the observation that the commutator ideal of Fm is a module of the center

of the associative algebra generated by m generic traceless 2 × 2 matrices.

1. Introduction

Let R be a (not necessarily associative) algebra generated by m elements

r1, . . . , rm over a field K and let Vn be the vector subspace of R spanned by all

products ri1 . . . rik , k ≤ n. The growth function of R with respect to the given

system of generators is

gR(n) = dim(Vn), n ≥ 0.

The Gelfand–Kirillov dimension of R is defined as

GKdim(R) = lim sup
n→∞

logn(gR(n)).
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It does not depend on the choice of the generators of R. See the book [9] for a

background on GKdim. If the algebra R is graded,

R =
⊕
n≥0

R(n),

where R(n) is the homogeneous component of degree n of R, then the Hilbert

series of R is the formal power series

H(R, t) =
∑
n≥0

dim(R(n))tn.

If R is generated by its homogeneous elements of first degree, then its growth

function is

gR(n) =

n∑
l=0

dim(R(l)).

In the general case, if R is a graded algebra generated by a finite system of

(homogeneous) elements of arbitrary degree, its Gelfand–Kirillov dimension can

be expressed using again its Hilbert series as

GKdim(R) = lim sup
n→∞

logn

(
n∑
l=0

dim(R(l))

)
.

When studying varieties of K-algebras V, all information for the m-generated

algebras in V is carried by the relatively free algebra Fm(V) of rankm in V. When

the base field K is of characteristic 0, a lot is known for the Gelfand–Kirillov

dimension of relatively free associative algebras, see the book [9], the survey

article [4], or the paper [11]. In particular, GKdim(Fm(V)) is an integer for all

proper varieties of associative algebras. Almost nothing is known for relatively

free Lie algebras. Using the bases of free nilpotent-by-abelian Lie algebras given

by Shmelkin [17], it is easy to see that

GKdim(Fm(NcA)) = GKdim(Lm/(L
′
m)c+1) = mc,

where m > 1 and Lm is the free m-generated Lie algebra. Together with free

nilpotent Lie algebras where the Gelfand–Kirillov dimension is equal to 0, these

are the only free polynilpotent Lie algebras of finite Gelfand–Kirillov dimension,

see Petrogradsky [12].

Recently Machado and Koshlukov [11] have computed the Gelfand–

Kirillov dimension of the relatively free algebra Fm = Fm(var(sl2(K))) of rank
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m > 2 in the variety of algebras generated by the three-dimensional simple Lie

algebra sl2(K) over an infinite field K of characteristic different from 2. They

have shown that GKdim(Fm) = 3(m − 1). Their proof is based on a careful

analysis of the explicit expression of the Hilbert series of Fm obtained by Dren-

sky [3]. The case m = 2 was handled before by Bahturin [2] who showed that

GKdim(F2) = 3. The algebra Fm is isomorphic to the Lie algebra generated by

m generic traceless 2 × 2 matrices. The purpose of our paper is to give a new

proof for GKdim(Fm) using classical results of Procesi [13], [14] on Gelfand–

Kirillov dimension of the algebra of generic matrices and Razmyslov [16] on the

weak polynomial identities of matrices, combined with the observation that the

commutator ideal of Fm is a module over the center of the associative algebra

generated by m generic traceless 2 × 2 matrices. We believe that the present

approach is more adequate for generalizations for other finite dimensional simple

Lie algebras than the approach in [11].

2. The proof

The following statement and its corollary are folklorely known. We include

the proof for self-completeness of the exposition and also because we were not

able to find an explicit reference.

Lemma 1. Let R be a finitely generated graded algebra with Hilbert series

of the form

H(R, t) = h(t)

s∏
i=1

1

(1− tdi)
,

where h(t) ∈ C[t] is a polynomial and the di’s are positive integers. Then the

Gelfand–Kirillov dimension of R is equal to the multiplicity of 1 as a pole of

H(R, t).

Proof. It is sufficient to consider the case when R is not finite dimensional

and hence its Hilbert series has a nontrivial denominator. Let d be the least

common multiple of the degrees di. Then

H(R, t) =
∑
n≥0

ant
n = f(t) +

k∑
p=1

d−1∑
q=0

αpq
(1− ωqt)p

= f(t) +
∑
n≥0

(
k∑
p=1

(
n+ p− 1

p− 1

) d−1∑
q=0

αpqω
n
q

)
tn,



128 Vesselin Drensky, Plamen Koshlukov and Gustavo Grings Machado

where f(t) ∈ C[t], αpq ∈ C, ω0 = 1, ω1, . . . , ωd−1 are the d-th roots of 1, and at

least one of the coefficients αkq is different from zero. Since ωdq = 1, the sequences

βpn =

d−1∑
q=0

αpqω
n
q , p = 1, . . . , k,

are periodic with period d and for n large enough the coefficients an of the Hilbert

series H(R, t) are bounded by polynomials of degree k−1 in n. Hence the sequence

n∑
l=0

al =

n∑
l=0

dim(R(l))

needed for the definition of the Gelfand–Kirillov dimension of R is bounded by a

polynomial of degree k in n and

GKdim(R) ≤ k.

The asymptotics of the coefficients an of

H(R, t) = f(t) +
∑
n≥0

(
k∑
p=1

(
n+ p− 1

p− 1

)
βpn

)
tn,

is determined by βkn. Since an are positive integers, we derive that the periodic

sequence βkn, n = 0, 1, 2, . . ., consists of nonnegative reals and at least one of

them is positive. Since ωdq = 1, if ωq 6= 1, then 1 + ωq + ω2
q + · · · + ωd−1q = 0.

Hence

0 <

d−1∑
l=0

βk,dn+l =

d−1∑
l=0

d−1∑
q=0

αkqω
dn+l
q =

d−1∑
q=0

αkq

d−1∑
l=0

ωlq = dαk0.

Therefore αk0 > 0. We consider the partial sum pdn = a0 + a1 + · · ·+ adn of the

coefficients of the Hilbert series H(R, t). Its asymptotics is determined by

p̃dn =

dn∑
c=0

(
c+ k − 1

k − 1

)
βkc ≈

1

(k − 1)!

dn∑
c=0

ck−1βkc

≈ 1

(k − 1)!

n∑
e=0

(ed)k−1
d−1∑
l=0

βk,ed+l =
dαk0

(k − 1)!

n∑
e=0

(ed)k−1
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and this is a polynomial of degree k in n. Hence

GKdim(R) = lim sup
n→∞

logn

(
n∑
l=0

al

)
≥ lim sup

n→∞
logn

(
dn∑
c=0

ac

)
= lim sup

n→∞
logdn(pdn) = lim sup

n→∞
logdn(p̃dn) = k

which, together with the opposite inequality GKdim(R) ≤ k, completes the proof.

�

Corollary 2. Let R be a finitely generated graded algebra and let C be a

finitely generated graded subalgebra of the center of R such that R is a finitely

generated C-module. Then the Gelfand–Kirillov dimension of R is equal to the

multiplicity of 1 as a pole of H(R, t).

Proof. By the Hilbert–Serre theorem (see e.g., [1]), the Hilbert series of any

finitely generated graded module M over a finitely generated graded commutative

algebra C is of the form

H(M, t) = h(t)

k∏
i=1

1

(1− tdi)
, h(t) ∈ C[t], di > 0.

Hence the proof follows immediately from Lemma 1. �

In the sequel we assume that the base field K is of characteristic 0. Let

Ωkm = K[Ykm] = K[y(i)pq | p, q = 1, . . . , k, i = 1, . . . ,m]

be the algebra of polynomials in k2m commuting variables and let

yi = (y(i)pq ), i = 1, . . . ,m,

be m generic k × k matrices. We consider the following algebras:

Rkm – the generic matrix algebra. This is the subalgebra generated by y1, . . . , ym
of the associative k × k matrix algebra Mk(Ωkm) with entries from Ωkm.

Ckm – the pure trace algebra. This is the subalgebra of Ωkm generated by the

traces of the products, tr(yi1 · · · yil). We embed Ckm in Mk(Ωkm) by f(Ykm) →
f(Ykm)Ik, where Ik is the identity matrix.

Tkm – the mixed trace algebra. This is the subalgebra of Mk(Ωkm) generated by

Rkm and Ckm.

For a background on generic matrices see e.g., [14] or [7]. Below we summarize

the results we need.
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Proposition 3. Let k,m ≥ 2. Then:

(i) The mixed trace algebra Tkm has no zero divisors;

(ii) The pure trace algebra Ckm coincides with the center of Tkm. It is finitely

generated and Tkm is a finitely generated Ckm-module;

(iii) (Kirillov [8], Procesi [13])

GKdim(Tkm) = GKdim(Ckm) = GKdim(Rkm) = k2(m− 1) + 1.

Further, we consider the generic traceless k × k matrices

zi = (z(i)pq ) = yi −
1

k
tr(yi)Ik, i = 1, . . . ,m,

and the subalgebra Wkm of Tkm generated by z1, . . . , zm, the subalgebra C
(0)
km of

Ckm generated by the traces of the products, tr(zi1 · · · zil), and the subalgebra

T
(0)
km of Tkm generated by Wkm and C

(0)
km. Finally, let Lkm be the Lie subalgebra

of Wkm generated by z1, . . . , zm.

Proposition 4. Let k,m ≥ 2. Then

(i) (Procesi [15])

Tkm ∼= K[tr(y1), . . . , tr(ym)]⊗K T
(0)
km,

Ckm ∼= K[tr(y1), . . . , tr(ym)]⊗K C
(0)
km;

(ii) (Razmyslov [16])

Wkm
∼= K〈x1, . . . , xm〉/Id(Mk(K), slk(K))

where Id(Mk(K), slk(K)) is the ideal of all weak polynomial identities in

m variables for the pair (Mk(K), slk(K)), i.e., the polynomials in the free

associative algebra K〈x1, . . . , xm〉 which vanish when evaluated on slk(K)

considered as a subspace in Mk(K).

(iii) (Razmyslov [16]) The Lie algebra Lkm is isomorphic to the relatively free

algebra Fm(var(slk)(K)) in the variety of Lie algebras generated by slk(K).

Corollary 5. For k,m ≥ 2

GKdim(T
(0)
km) = GKdim(C

(0)
km) = (k2 − 1)(m− 1).

Proof. The algebras Tkm and Ckm satisfy the conditions of Corollary 2.

Hence the multiplicity of 1 as a pole of the Hilbert series of Tkm and Ckm is
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equal to their Gelfand–Kirillov dimension k2(m− 1) + 1 (see Proposition 3 (iii)).

Proposition 4 (i) gives that

H(Tkm, t) = H(K[tr(y1), . . . , tr(ym)], t)H(T
(0)
km, t) =

1

(1− t)m
H(T

(0)
km, t),

H(Ckm, t) =
1

(1− t)m
H(C

(0)
km, t).

Hence the multiplicity of 1 as a pole of H(T
(0)
km, t) and H(C

(0)
km, t) is equal to

(k2(m− 1) + 1)−m = (k2 − 1)(m− 1). Both algebras T
(0)
km and C

(0)
km are finitely

generated and graded. Hence the proof follows from Corollary 2. �

Now we shall summarize the information for 2× 2 generic matrices.

Proposition 6. Let k = 2 and m ≥ 2. Then:

(i) (Sibirskii [18]) The trace polynomials

tr(yi), i = 1, . . . ,m, tr(yiyj), 1 ≤ i ≤ j ≤ m,
tr(yi1yi2yi3), 1 ≤ i1 < i2 < i3 ≤ m,

form a minimal system of generators of C2m.

(ii) (Procesi [15]) The algebras T
(0)
2m and W2m coincide. The algebra C

(0)
2m is

generated by

tr(zizj), 1 ≤ i ≤ j ≤ m, tr(zi1zi2zi3), 1 ≤ i1 < i2 < i3 ≤ m,

which belong to W2m.

(iii) (Drensky [5]) The algebra C
(0)
2m is generated by

z2i , i = 1, . . . ,m, zizj + zjzi, 1 ≤ i ≤ j ≤ m,

s3(zi1 , zi2 , zi3), 1 ≤ i1 < i2 < i3 ≤ m,

where

s3(x1, x2, x3) =
∑
σ∈S3

sign(σ)xσ(1)xσ(2)xσ(3)

is the standard polynomial of degree 3.

Proof. We shall present the proof of (ii) and (iii) as a consequence of (i).

Clearly C
(0)
2m is generated by tr(zizj), 1 ≤ i ≤ j ≤ m, and tr(zi1zi2zi3), 1 ≤

i1 < i2 < i3 ≤ m. Now the proof of (ii) and (iii) follows immediately from the

equalities in T
(0)
2m

tr(z21) = 2z21 , tr(z1z2) = z1z2 + z2z1, tr(z1z2z3) =
1

3
s3(z1, z2, z3)

which may be checked by direct verification. �
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Lemma 7. The commutator ideal L′2m is a C
(0)
2m-module.

Proof. The following equalities which can be verified directly hold in W2m:

[z1, z2]z23 =
1

4
([z1, z2, z3, z3]− [[z1, z3], [z2, z3]]),

[z1, z2](z3z4 + z4z3) =
1

4
([z1, z2, z3, z4] + [z1, z2, z4, z3]

− [[z1, z3], [z2, z4]]− [[z1, z4], [z2, z3]]),

z4s3(z1, z2, z3) =
3

8

∑
σ∈S3

sign(σ)[z4, zσ(1), zσ(2), zσ(3)].

The elements of the commutator ideal are linear combinations of (left normed)

commutators ui = [zi1 , zi2 , . . . , zin ]. If v is a generator of C
(0)
2m, then

uiv = [zi1 , zi2 , . . . , zin ]v = [[zi1 , zi2 ]v, . . . , zin ]

and the above equalities guarantee that uiv is a linear combination of commuta-

tors, i.e., belongs to L′2m again. Hence L′2mC
(0)
2m ⊂ L′2m. �

Remark 8. It is known that W2m is a C
(0)
2m-module generated by 1, zi, i =

1, . . . ,m, and [zi, zj ], 1 ≤ i < j ≤ m. Using the equality

[z1, z2, z3] = 2(z1(z2z3 + z3z2)− z2(z1z3 + z3z1)),

as in the proof of Lemma 7 we can show that L′2m is a C
(0)
2m-module generated by

all commutators [zi, zj ] and [zi1 , zi2 , zi3 ]. For m = 2, the commutator ideal L′22 is

a free C
(0)
22 -module generated by [z1, z2], [z1, z2, z1], [z1, z2, z2], see [6].

The proof of the following theorem established in [11] is the main result of

our paper.

Theorem 9. Let K be a field of characteristic 0 and let L2m be the Lie

algebra generated by m generic traceless 2× 2 matrices, m ≥ 2. Then

GKdim(L2m) = GKdim(Fm(var(sl2(K))) = 3(m− 1).

Proof. Let

H(C
(0)
2m, t) =

∑
n≥0

cnt
n, H(L2m, t) =

∑
n≥1

lnt
n, H(W2m, t) =

∑
n≥1

wnt
n
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be the Hilbert series of C
(0)
2m, L2m, and W2m, respectively. Since the algebra L2m

is finitely generated, its Gelfand–Kirillov dimension is

GKdim(L2m) = lim sup
n→∞

logn

(
n∑
k=1

lk

)
.

The algebra W2m has no zero divisors and hence [z1, z2]C
(0)
2m ⊂ L′2m ⊂ L2m is a

free C
(0)
2m-module. Therefore

n−2∑
k=0

ck ≤
n∑
k=1

lk ≤
n∑
k=0

wk,

which implies that

3(m− 1) = GKdim(C
(0)
2m) ≤ GKdim(L2m) ≤ GKdim(W2m) = 3(m− 1). �

Remark 10. As in [11], the formula for the Gelfand–Kirillov dimension of

Fm(var(sl2(K))) obtained in characteristic 0 holds also for any infinite field K of

characteristic different from 2.

Remark 11. In characteristic 2, the algebra sl2(K) is nilpotent of class 2 and

hence Fm(var(sl2(K))) is isomorphic to the free nilpotent of class 2 Lie algebra

Fm(N2) which is finite dimensional. Therefore GKdim(Fm(var(sl2(K)))) = 0.

When K is an infinite field of characteristic 2, a much more interesting object

is the relatively free algebra Fm(var(M2(K)(−))) of the variety generated by the

2 × 2 matrix algebra M2(K) considered as a Lie algebra. Vaughan-Lee [19]

showed that the algebra M2(K)(−) does not have a finite basis of its polynomial

identities. (It is easy to see that the four-dimensional Lie algebra constructed

in [19] is isomorphic to M2(K)(−).) The algebra M2(K)(−) satisfies the center-

by-metabelian polynomial identity

[[[x1, x2], [x3, x4]], x5] = 0.

It is well known that the free center-by-metabelian Lie algebra Fm([A2,E]) over

any field K is spanned by

[xi1 , xi2 , xi3 , . . . , xin ], [[xi1 , xi2 , xi3 , . . . , xin ], [xin+1
, xin+2

]],

where i1 > i2 ≤ i3 ≤ · · · ≤ in and the commutators are left normed, e.g.,

[x1, x2, x3] = [[x1, x2], x3]. (A basis of Fm([A2,E]) is given by Kuzmin [10].) Since
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the commutators [xi1 , xi2 , xi3 , . . . , xin ] form a basis of the free metabelian Lie

algebra Fm(A2) and are linearly independent in Fm(var(M2(K)(−))), we obtain

immediately that

GKdim(Fm(var(M2(K)(−)))) = m, m > 1.

In characteristic 2 there is another three-dimensional simple Lie algebra which

is an analogue of the Lie algebra of the three-dimensional real vector space with

the vector multiplication. It is interesting to see whether this algebra has a finite

basis of its polynomial identities (probably not) and, when the field is infinite,

to compute the Gelfand–Kirillov dimension of the corresponding relatively free

algebras.
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