Generalized power means for matrix functions

By B. MOND (Bundoora) and J. E. PEČARIĆ (Zagreb)

§1. Introduction

Generalized power means are defined by [1]

$$
\begin{align*}
M_{n, a}(x ; w)_{p} & =\left\{\frac{\sum_{i=1}^{n} w_{i} x_{i}^{a+p}}{\sum_{i=1}^{n} w_{i} x_{i}^{p}}\right\}^{1 / a}, \quad a \neq 0 \tag{1}\\
& =\exp \left\{\frac{\sum_{i=1}^{n} w_{i} x_{i}^{p} \log x_{i}}{\sum_{i=1}^{n} w_{i} x_{i}^{p}}\right\}, \quad a=0
\end{align*}
$$

where $a, p \in \mathbb{R}, x, w \in \mathbb{R}_{+}^{n}, n \in \mathbb{N}$. Concerning inequalities for these means see $[2-5]$. Further generalizations of these means are given in ($[6,7]$).

Let $\phi: I \rightarrow \mathbb{R}_{+}$be a strictly positive function, $F: I \rightarrow \mathbb{R}$ be a strictly monotone function, $x \in I^{n}, w>0\left(\in \mathbb{R}^{n}\right)$. Then define

$$
\begin{equation*}
F_{n}(x, \phi)=F^{-1}\left(\frac{\sum_{i=1}^{n} w_{i} \phi\left(x_{i}\right) F\left(x_{i}\right)}{\sum_{i=1}^{n} w_{i} \phi\left(x_{i}\right)}\right) . \tag{2}
\end{equation*}
$$

Remark. Note that in $[8,9]$ means are defined with $\phi_{i}\left(x_{i}\right)$ instead of $w_{i} \phi\left(x_{i}\right)$.

Concerning inequalities for these means see, for example, [8], [9] or the monograph [10, pp. 261-269].

In this paper, we give analogous means for matrix functions.

2. Preliminaries and definitions

Let $A \in C^{n \times n}$ be a normal matrix, i.e., $A^{*} A=A A^{*}$. Here A^{*} means \bar{A}^{t}, the transpose conjugate of A. There exists [11] a unitary matrix U such that

$$
\begin{equation*}
A=U^{*}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right] U \tag{3}
\end{equation*}
$$

where $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ is the diagonal matrix $\left(\lambda_{j} \delta_{i j}\right)$, and where $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n} are the eigenvalues of A, each appearing as often as its multiplicity. A is Hermitian if and only if $\lambda_{i}, i \in I_{n}=\{1,2, \ldots, n\}$ are real. If A is Hermitian and all λ_{i} are strictly positive, then A is said to be positive definite.

Assume now that $f\left(\lambda_{i}\right) \in C, i \in I_{n}$ is well-defined. Then $f(A)$ may be defined by (see e.g. [11, p.71] or [12, p.90])

$$
\begin{equation*}
f(A)=U^{*}\left[f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{n}\right)\right] U \tag{4}
\end{equation*}
$$

As before, if $f\left(\lambda_{i}\right), i \in I_{n}$ are real, then $f(A)$ is Hermitian. If, also, $f\left(\lambda_{i}\right)>0, i \in I_{n}$, then $f(A)$ is positive definite.

We note that for the inner product

$$
\begin{equation*}
(f(A) x, x)=\sum_{i=1}^{n}\left|y_{i}\right|^{2} f\left(\lambda_{i}\right) \tag{5}
\end{equation*}
$$

where $y \in C^{n}, y=U x$, and so $\sum_{i=1}^{n}\left|y_{i}\right|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}$. Thus if x is a unit
vector, then so is y.
If A is positive definite, so that $\lambda_{i}>0, i \in I_{n}$, and $f(t)=t^{r}$, where $t>0$ and $r \in \mathbb{R}$, we have $f(A)=A^{r}$. This representation is used in [13] and [14] to obtain matrix inequalities involving powers of A.

It is obvious that the above representations can also be used to obtain matrix versions of means (1) and (2).

Definition 1. Let A be an $n \times n$ positive definite Hermitian matrix, $0 \neq x \in C^{n} ; a, p \in \mathbb{R}$. Then the generalized power means of A is given by

$$
\begin{align*}
M_{a}^{p}(A ; x) & =\left[\frac{\left(A^{a+p} x, x\right)}{\left(A^{p} x, x\right)}\right]^{1 / a}, \quad a \neq 0 \tag{6}\\
& =\exp \left\{\frac{\left(\left(A^{p} \log A\right) x, x\right)}{\left(A^{p} x, x\right)}\right\}, \quad a=0
\end{align*}
$$

Definition 2. Let $\phi: I \rightarrow \mathbb{R}_{+}(I \subset \mathbb{R})$ be a positive function, F : $I \rightarrow \mathbb{R}$ a strictly monotone function, and let A be a Hermitian matrix with eigenvalues in I. The generalized quasi-arithmetic mean $F(A ; x)$ is defined by

$$
\begin{equation*}
\tilde{F}(A ; x ; \phi)=F^{-1}\left(\frac{((\phi \cdot F)(A) x, x)}{(\phi(A) x, x)}\right) \tag{7}
\end{equation*}
$$

where $x \in C^{n}, x \neq 0$.

3. Inequalities for generalized power means

Theorem 1. Let $a, b, p, q \in \mathbb{R}$ satisfy

$$
\begin{equation*}
||a|-|b||+a+2 p \leq b+2 q . \tag{8}
\end{equation*}
$$

Then for every positive definite Hermitian matrix A and every $x \in C^{n}$, $x \neq 0$,

$$
\begin{equation*}
M_{a}^{p}(A ; x) \leq M_{b}^{q}(A ; x) \tag{9}
\end{equation*}
$$

Proof. This is a simple consequence of (5) and of the following ([2]):
Lemma 1. Let $a, b, p, q \in \mathbb{R}$. Then

$$
M_{n, a}(x ; w)_{p} \leq M_{n, b}(x ; w)_{q}
$$

holds for every $x \in \mathbb{R}^{n}(x \neq 0)$, if and only if (8) holds.
Theorem 2. Let $a, b_{1}, \ldots, b_{k}, p, q_{1}, \ldots, q_{k} \in \mathbb{R}, k \geq 2$. Further, let

$$
\begin{aligned}
& Q_{0}=a^{-}-p, Q_{i}=b_{i}^{+}+q_{i} i=1, \ldots, k \\
& Q_{0}^{*}=a^{+}+p, Q_{i}^{*}=b_{i}^{-}-q_{i}, i=1, \ldots, k
\end{aligned}
$$

where $a^{+}=(|a|+a) / 2$ and $a^{-}=(|a|-a) / 2$ and for $i=0,1, \ldots, k$, let

$$
H_{i}= \begin{cases}\left(\sum_{\substack{j=0 \\ j \neq i}}^{k} Q_{j}^{-1}\right)^{-1}, & \text { when } \prod_{\substack{j=0 \\ j \neq i}}^{k} Q_{j} \neq 0 \\ 0, & \text { when } \prod_{\substack{j=0 \\ j \neq i}}^{k} Q_{j}=0 .\end{cases}
$$

Let A be a normal matrix with eigenvalues in $I(I \subset C) ; f_{j}: I \rightarrow \mathbb{R}_{+}$for $j=1, \ldots, k$. If

$$
\begin{equation*}
Q_{i} \geq 0 \text { and } H_{i} \geq Q_{i}^{*} \quad(i=0, \ldots, k) \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
M_{a}^{p}\left(\left(f_{1} \ldots f_{k}\right)(A) ; x\right) \leq M_{b_{1}}^{q_{1}}\left(f_{1}(A) ; x\right) \ldots M_{b_{k}}^{q_{k}}\left(f_{k}(A) ; x\right) \tag{11}
\end{equation*}
$$

Proof. This is again a simple consequence of the following ([3]):
Lemma 2. Let $a, b_{1}, \ldots, b_{k}, p, q_{1}, \ldots, q_{k} \in \mathbb{R}, k \geq 2$ and let Q_{i}, Q_{i}^{*}, H_{i} be defined as in Theorem 2. Then the inequality

$$
M_{n, a}\left(x_{1} \ldots x_{k} ; w\right)_{p} \leq M_{n, b_{1}}\left(x_{1} ; w\right)_{q_{1}} \ldots M_{n, b_{k}}\left(x_{k} ; w\right)_{q_{k}}
$$

holds for all $x_{1}, \ldots, x_{n} \in \mathbb{R}_{+}^{n}, n \in \mathbb{N}$, iff (10) holds.
Remark. If $x, y \in \mathbb{R}^{n}$ we use notation $x y \equiv\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$.
Theorem 3. Let $a, b_{1}, \ldots, b_{k}, p, q_{1}, \ldots, q_{k} \in \mathbb{R}, k \geq 2$. Let A be a normal matrix with eigenvalues in $I(I \subseteq C)$, and let $f_{i}: I \rightarrow \mathbb{R}_{+}$for $i=1, \ldots, k, x \in C^{n}, x \neq 0$. If

$$
\begin{equation*}
\max \left\{p+a^{+}, 1\right\} \leq q_{i}+b_{i}^{+} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{p-a^{-}, 0\right\} \leq \min \left\{q_{i}-b_{i}^{-}, 1\right\} \tag{13}
\end{equation*}
$$

hold for every $i=1, \ldots, k$, then
(14) $\quad M_{a}^{p}\left(\left(f_{1}+\cdots+f_{k}\right)(A) ; x\right) \leq M_{b_{1}}^{q_{1}}\left(f_{1}(A) ; x\right)+\cdots+M_{b_{k}}^{q_{k}}\left(f_{k}(A) ; x\right)$.

The reverse inequality holds in (14) if

$$
\begin{equation*}
\min \left\{p+a^{+}, 1\right\} \geq \max \left\{q_{i}+b_{i}^{+}, 0\right\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{p-a^{-}, 0\right\} \geq q_{i}-b_{i}^{-} \tag{16}
\end{equation*}
$$

hold for $i=1, \ldots k$.
Proof. This is a consequence of the following ([4]):
Lemma 3. Let $a, b_{1}, \ldots, b_{k}, p, q_{1}, \ldots, q_{k} \in \mathbb{R}, k \geq 2$. Then the inequality

$$
M_{n, a}\left(x_{1}+\cdots+x_{k} ; w\right)_{p} \leq M_{n, b_{1}}\left(x_{1} ; w\right)_{q_{1}}+\cdots+M_{n, b_{k}}\left(x_{k} ; w\right) q_{k}
$$

holds for every $n \in \mathbb{N}$, $x_{1}, \ldots, x_{k} \in \mathbb{R}_{+}^{n}$, iff (12) and (13) hold for every $i=1, \ldots, k$. The reverse inequality holds if (15) and (16) hold for $i=$ $1, \ldots, k$.

Theorem 4. Let A be a positive definite Hermitian matrix with eigenvalues λ_{i} such that

$$
0<m \leq \lambda_{i} \leq M \quad(i=1, \ldots, n)
$$

Then

$$
\begin{equation*}
M_{b}^{q}(A ; x) \leq C(m, M) M_{a}^{p}(A ; x) \tag{16}
\end{equation*}
$$

where a, b, p, q are fixed numbers such that (8) holds, where $C(m, M)$ is defined by

$$
\begin{equation*}
C(m, M)=\Gamma_{b, q}\left(t_{0}, \gamma\right) / \Gamma_{a, p}\left(t_{0}, \gamma\right) \tag{18}
\end{equation*}
$$

$\gamma=M / m$ and t_{0} is the unique positive root of the equation

$$
\lambda_{a, p}(\gamma)\left(\gamma^{q}+t\right)\left(\gamma^{b+q}+t\right)=\lambda_{b, q}(\gamma)\left(\gamma^{p}+t\right)\left(\gamma^{a+p}+t\right)
$$

where, for $t>0$,

$$
\lambda_{a, p}(t)= \begin{cases}t^{p} \frac{t^{a-1}}{a}, & a \neq 0 \\ t^{p} \log t, & a=0\end{cases}
$$

and

$$
\Gamma_{a, p}(t, \gamma)= \begin{cases}\left(\left(\gamma^{a+p}+t\right) /\left(\gamma^{p}+t\right)\right)^{1 / a}, & a \neq 0 \\ \exp \left(\left(\gamma^{p} \log \gamma\right) /\left(\gamma^{p}+t\right)\right), & a=0\end{cases}
$$

Proof. This is a simple consequence of the following ([5]):
Lemma 4. Let $0<m<M<\infty$, let

$$
C(m, M)=\sup _{x \in[m, M]^{n}} M_{n, b}(x ; w)_{q} / M_{n, a}(x ; w)_{p}
$$

where a, b, p, q are fixed numbers such that (8) holds. Further, let $\lambda_{a, p}$, $\Gamma_{a, p}, t_{0}, \gamma$ be defined as in Theorem 4. Then $C(m, M)$ is given by (18).

Remark. Note that results in $[3-5]$ are obtained in the non-weighted case, i.e., for $w=(1, \ldots, 1)$. However, the previous lemmas can easily be obtained from the non-weighted case.

4. Inequalities for quasi-arithmetic means

Theorem 5. Let K, L, M be three differentiable strictly monotone functions from the closed interval I to \mathbb{R}; and let ϕ, ψ, χ be three functions
from I to $\mathbb{R}_{+}, f: I^{2} \rightarrow I$ such that for all $u, v, s, t \in I$, the following inequality holds.

$$
\begin{gather*}
\left(\frac{M \circ f(u, v)-M \circ f(t, s)}{M^{\prime} \circ f(t, s)}\right) \frac{\chi \circ f(u, v)}{\chi \circ f(t, s)} \leq \tag{19}\\
\leq\left(\frac{K(u)-K(t)}{K^{\prime}(t)}\right) \frac{\phi(u)}{\phi(t)} f_{1}^{\prime}(t, s)+\left(\frac{L(v)-L(s)}{L^{\prime}(s)}\right) \frac{\psi(v)}{\psi(s)} f_{2}^{\prime}(t, s) .
\end{gather*}
$$

Let A be a normal matrix with eigenvalues in J and $g, h: J \rightarrow I$ are given functions. Then for $x \in C^{n},(x \neq 0)$

$$
\begin{equation*}
f(\tilde{K}(g(A) ; x, \phi), \tilde{L}(h(A) ; x, \psi)) \geq \tilde{M}(f(g(A), h(A)) ; x ; \chi) \tag{20}
\end{equation*}
$$

(Note that $f(g(A), h(A))$ is the matrix $U^{*}\left[f\left(g\left(\lambda_{1}\right), h\left(\lambda_{1}\right)\right), f\left(g\left(\lambda_{2}\right), h\left(\lambda_{2}\right)\right)\right.$, $\left.\left.\ldots, f\left(g\left(\lambda_{n}\right), h\left(\lambda_{n}\right)\right)\right] U\right)$.

Proof. This is a simple consequence of the following lemma $[10$, p.262].

Lemma 5. Let functions $K, L, M, \phi, \psi, \chi$ be defined as in Theorem 5 and let $a, b, \in I^{n}$ then

$$
f\left(K_{n}(a ; \phi), L_{n}(b ; \psi)\right) \geq M_{n}(f(a, b) ; \chi)
$$

holds if and only if, for all $u, v, s, t \in I$, (19) holds. Here $f(a, b)$ is the vector whose $j^{\text {th }}$ component is $f\left(a_{j}, b_{j}\right)$.

Remark. Note that in [8-10] a more general result than our Lemma 5 was proved. Of course, Lemma 5 follows from this result in the cases when $\phi_{i}=w_{i} \phi, \psi_{i}=w_{i} \psi$, and $\chi_{i}=w_{i} \chi(i=1, \ldots, n)$.

Theorem 6. With the notations of Theorem 5 with $\lambda_{i} \in I(i=$ $1, \cdots, n)\left(\lambda_{i}\right.$ are the eigenvalues of $\left.A\right)$,

$$
\begin{equation*}
\tilde{M}(A ; x ; \chi) \leq \tilde{K}(A ; x ; \phi) \tag{21}
\end{equation*}
$$

if, for all $u, t \in I$,

$$
\left(\frac{M(u)-M(t)}{M^{\prime}(t)}\right) \frac{\chi(u)}{\chi(t)} \leq\left(\frac{K(u)-K(t)}{K^{\prime}(t)}\right) \frac{\phi(u)}{\phi(t)} .
$$

Proof. Immediate from Theorem 5 taking $f(x, y)=x, g(x)=x$.
A very important particular case of Theorem 5 is when $f(x, y)=x+y$. Then, we get

$$
\tilde{K}(g(A) ; x ; \phi)+\tilde{L}(h(A) ; x ; \psi) \geq \tilde{M}(g(A)+h(A) ; x ; \chi)
$$

holds if, for all $u, v, s, t \in I$,

$$
\frac{M(u+v)-M(t+s)}{M^{\prime}(t+s)} \frac{\chi(u+v)}{\chi(t+s)} \leq \frac{K(u)-K(t)}{K^{\prime}(t)} \frac{\phi(u)}{\phi(t)}+\frac{L(v)-L(s)}{L^{\prime}(s)} \frac{\chi(v)}{\chi(s)} .
$$

References

[1] J. AcZÉl and Z. DARócZY, Über verallgemeinerte guasilineare Mittelwerte, die mit Gewichts functionen gebildet sind, Publ. Math. Debrecen 10 (1963), 171-190.
[2] Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Ibid. 17 (1970), 289-297.
[3] Z. PÁles, On Hölder-type inequalities, J. Math. Anal. Appl. 95 (1983), 457-466.
[4] Z. PÁles, A generalization of the Minkowski inequality, Ibid. 90 (1982), 456-462.
[5] Z. Páles, On complementary inequalities, Publ. math. Debrecen 30 (1983), 75-88.
[6] M. Bajraktarević, Sur une généralisation des moyennes quasilineare, Publ. Inst. Math. Beograd 3 (17) (1963), 69-76.
[7] M. Bajraktarević, Über die Vergleichbarkeit der mit Gerwichtsfunktionen gebildeten Mittelwerte, Stud. Sci. Math. Hungar. 4 (1969), 3-8.
[8] L. Losonczi, Über eine neue klasse von Mittelwerte, Acta Sci. Math. (Szeged) 32 (1971), 71-81.
[9] P. S. Bullen, On a Theorem of L. Losonczi, Univ. Beograd Publ. Elektrotehn Fak. Ser. Mat. Fiz. 412-460 (1973), 105-108.
[10] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities, D. Reidel Publ. Comp., Dordrecht, Boston, Lancaster, Tokyo, 1988.
[11] M. Marcus and H. Minc, A survey of Matrix theory and inequalities, Allyn and Bacon, Boston, 1964.
[12] R. Bellman, Introduction to matrix Analysis, McGraw-Hill, New York, 1960.
[13] B. Mond, A matrix inequality including that of Kantorovich, J. Math. Anal. Appl. 13 (1966), 49-52.
[14] J. E. Pec̆arić and B. Mond, A matrix inequality including that of KantorovichHermite II, Ibid. 168 (1992), 381-384.

```
B. MOND
DEPARTMENT OF MATHEMATICS
LA TROBE UNIVERSITY
BUNDOORA, VICTORIA 3083, AUSTRALIA
J. E. PEČARIĆ
FACULTY OF TEXTILE TECHNOLOGY
UNIVERSITY OF ZAGREB
ZAGREB, CROATIA
```

