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Geodesics in a Finsler surface with one-parameter
group of motions

By NOBUHIRO INNAMI (Niigata), TETSUYA NAGANO (Nagasaki)

and KATSUHIRO SHIOHAMA (Fukuoka)

Abstract. The surfaces with one-parameter groups of motions are classified to

define the Finsler surfaces of revolution. We generalize Clairaut’s relation between a

geodesic and parallel circles in a Finsler surface of revolution and its consequences,

stating the global behavior of geodesics in a Finsler 2-torus of revolution with non-

symmetric distance. As for the local behavior of geodesics in a Finsler manifold, we

recall the reversibility of geodesics, using the symmetric part of the Finsler metric.

1. Introduction

Let (M,F ) be a Finsler n-manifold which is by definition a smooth n-

manifold equipped with fundamental function F : TM → R such that F is

smooth on TM ∖ {0}, F (x, tẋ) = tF (x, ẋ) for all t > 0 and ẋ ∈ TxM , and F is

strictly convex on all tangent spaces TxM . Here TM denotes the tangent bundle

of M . We define, as usual, the length LF (c) of a piecewise smooth curve c in M

with respect to F and an intrinsic distance d on M induced by F . The distance d

is not symmetric, in general.

We call a curve σ : [a, b] → M a (forward) geodesic if it satisfies the Euler–

Lagrange equation EL(F, σ) = 0. Namely, a geodesic is an extremal of the

variation problem of lengths of curves c. A geodesic is locally minimizing in

(M,d). Moreover, if (M,d) is complete, then, for any two points p, q ∈M , there
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exists a minimizing geodesic σ from p to q, i.e., d(p, q) = LF (σ). We say that a

geodesic γ : (−∞,∞) → M is a straight line if LF (γ|[s,t]) = d(γ(s), γ(t)) for all

s, t ∈ (−∞,∞) with s < t.

Busemann and Pedersen [7] have determined how the straight lines behave

in the universal covering planes of 2-tori with one-parameter groups of motions.

Their method is for G-spaces defined by Busemann [6] but can be applied to our

case of non-symmetric distance. Their method was influenced by and is influential

to related topics.

The geodesics satisfy Clairaut’s relation (cf. [25]) in a Riemannian surface of

revolution, from which we can evaluate the behavior of geodesics on it. However,

we need to study more for the complete description of geodesics, such as conjugate

points, rays and straight lines, etc.. The geodesics on tori of revolution embedded

in the Euclid space E3 is studied by Bliss [5] and Kimball [17]. Gravesen–

Markvorsen–Sinclair–Tanaka [10] has studied the cut locus in a torus of

revolution.

Morse [20] and Hedlund [12] studied the geodesics on arbitrary Riemann-

ian tori whose lifts into the universal covering space are straight lines. Their

methods are unified by Bangert [2] with those of Mather [19] and Aubry–

Le Daeron [1] to study a monotone twist map of the annulus and the discrete

Frenkel–Kontrova model. In this way, the method of finding straight lines by

displacement functions can be applied in more general situations. Indeed, in [2],

we can see the complete classification of straight lines in the universal covering

plane of an arbitrary 2-torus, as an application. The classification is described in

terms of rotation numbers.

A complete Finsler manifold (Rn, F ) is without conjugate points if and only

if all geodesics are straight in (Rn, F ). Any Riemannian metric on an n-torus

without conjugate points is flat. This theorem is proved by Hopf [11] for n = 2

and Burago–Ivanov [4] for n ≥ 3. However, this theorem is not true for Finsler

manifolds. Zinoviev [26] gives examples of symmetric Finsler metrics on n-tori

without conjugate points by showing some condition that generalized metrics on

n-tori of revolution has no conjugate points.

A surface with one-parameter group of motions φt is one of Lagrangian sys-

tems which are invariant under the action of Lie groups. In studying those sys-

tems, a geodesic is said to be a relative equilibrium if it coincides with an integral

curve of a fundamental vector field of the action of φt. The problem of finding rel-

ative equilibrium points for the Euler–Lagrange field of an invariant Lagrangian

has been studied by many researchers (cf. [9], [18], [22]).
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Though the study of geodesics in Finsler tori of revolution has been devel-

oped, it still remains to determine the behavior of geodesics whose lifts into its

universal covering plane are not straight lines. The main purpose of this pa-

per is to generalize Clairaut’s theorem and determine the global behavior of all

geodesics in a Finsler surface of revolution. We devise certain methods for show-

ing the global behavior of those geodesics, although it is obvious from Clairout’s

relation in the Riemannian case.

In §2 we classify the Finsler surfaces with one-parameter groups of motions,

observing the number of fixed points. From this we can define a Finsler surface

of revolution. Roughly speaking, a surface of revolution is a surface with one-

parameter group of motions such that its period is finite and the number of its

fixed points is zero, one or two. However, in case its one-parameter group of

motions is not like a rotation, we do not consider it to be a surface of revolution.

In this manner we can regard the one-parameter group of motions as a rotation

and its orbits as parallel circles.

In §3 we define a local Riemannian metric g in a neighborhood Uγ around a

curve γ inM such that it is a geodesic in (Uγ , g) if and only if so in (Uγ , F ). Such

a Riemannian metric g has been used to study the implication of the Chern con-

nection (cf. [24]). When (M,F ) is a surface of revolution, we can introduce a local

Riemannian surface (Uγ , g) of revolution and prove some properties of geodesics,

using Clairaut’s relation for geodesics in Riemannian surfaces of revolution.

In §4 we generalize Clairaut’s relation for geodesics in a Riemannian surface

of revolution. In fact, we find not only Clairaut’s constant, but also the global

behavior of geodesics in a strip between two parallel circles.

In §5 we state the main theorem which shows the global behavior of all

geodesics in a Finsler torus of revolution. The behavior of the straight lines are

mentioned in the theorem for the complete description, although they are direct

consequences from [7] and [2].

In §6 we discuss the reversibility of geodesics in (M,F ) by using the symmet-

ric part A and the skew-symmetric part B of F . The Euler–Lagrange equations

of geodesics for F and A are compared. In order to evaluate the reversibility of

geodesics in our examples of §7, we especially treat the case where B arises from

a 1-form on M . Namely, we study some conditions implying that EL(B, γ) = 0

for a curve γ in M . Crampin [8] and Nagano [21] have studied some conditions

for the reversibility of geodesics in (M,F ) by comparing the equation of geodesics

for F with those for its reversed metric F̄ (x, ẋ) := F (x,−ẋ).
In §7 we discuss Example 7.1 in which all types of geodesics stated in the

main theorem appear. Their fundamental functions are Randers metrics on a
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plane R2. One of our examples shows a fact which does not take place in the

Riemannian and reversible Finslerian cases, i.e., there exists a Finsler 2-torus of

revolution having no pole.

In §8 we show that any strip S bounded by two parallel circles in a Finsler

surface of revolution can be embedded in a Finsler torus of revolutionM . Thanks

to existing straight lines in the universal covering surface M̃ , we can get some

information on the behavior of geodesics in S via its lift into M̃ . Indeed, we use

the embedding strip to generalize Clairaut’s theorem (see Theorem 4.5).

In §9 we discuss the relations between some distances induced by F and

clarify the difference between symmetric and non-symmetric distances. The sym-

metrization of the distance d is used in [23] to find a minimal geodesic loop. The

symmetrization of the Finsler metric F is used to evaluate the reversibility of

geodesics in (M,F ) (see §6).

2. Surfaces with one-parameter groups of motions

Let (M,F ) be a complete oriented Finsler surface with one-parameter group

of motions φt on (M,F ). Namely, φt satisfies F (φt(x), φt∗(ẋ)) = F (x, ẋ) for all

x ∈ M , ẋ ∈ TxM and t ∈ (−∞,∞). Here a motion on (M,F ) is by definition

an isometry which preserves the orientation of M . The distance d is invariant

under φt. Let H be the vector field on M generating φt, i.e., H(x) is the tangent

vector of the curve e(t) = φt(x) at t = 0. Let Sing(H) := {x ∈ M |H(x) = 0}
and let #Sing(H) denote the number of points in Sing(H). The set of all fixed

points of φt is Sing(H).

Lemma 2.1. Let (M,F ) be a complete oriented Finsler surface and φt a

one-parameter group of motions on (M,F ). If φt is not the identity map for

all t ∈ (−∞,∞) ∖ {0}, then the interior Sing(H)0 of Sing(H) is empty and the

number of elements of Sing(H) is at most two.

Proof. We first claim that if the interior Sing(H)0 of Sing(H) is not empty,

then φt is the identity map for all t ∈ (−∞,∞), because any geodesic segment is

determined by two points which are sufficiently close on it. Therefore, from the

assumption, we have Sing(H)0 = ∅.
Let a point p ∈ Sing(H) exist and let Np be the normal neighborhood

around p. We next prove that Sing(H) ∩ Np ∖ {p} = ∅. Suppose for indirect

proof that there exists a point q ∈ Sing(H) ∩ Np ∖ {p}. Then we can have a

unique minimizing geodesic segment T (p, q) from p to q. From this, φt(x) = x
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for all x ∈ T (p, q) and t ∈ (−∞,∞). Take a point q1 ∈ Np such that a minimiz-

ing geodesic T1 from q1 to T (p, q) is contained in Np and p1 := T1 ∩ T (p, q) ∈
T (p, q) ∖ {p, q}. We show that both cases H(q1) = 0 and H(q1) ̸= 0 do not

happen.

Assume that H(q1) = 0. We then have T (q1, p1) ⊂ Sing(H) and furthermore,

∪x∈T (q1,p1)T (x, p2) ⊂ Sing(H) for a point p2 ∈ T (p, q) sufficiently close to p1,

since q1, p1, p2 and x ∈ T (q1, p1) are fixed points of all φt. This implies that

Sing(H)0 ̸= ∅, a contradiction.

Assume that H(q1) ̸= 0. Choose a parameter t0 sufficiently close to 0 such

that T (φt0(q1), p1) passes through the side of T (q1, p1) which is different from

the side of T (q1, p1) containing T (p1, q). This is possible, because p1 is a fixed

point of φt and, hence, d(φt0(q1), p1) = d(q1, p1). Then we can choose a point p2 ∈
T (p1, q) close to p1 such that T (φt0(q1), p2) intersects T (q1, p1) at T (φt0(q1), p2)∩
T (q1, p1) =: z.

p

q1

p1

φt0(q1)

p2

z

q

Figure 1. p, q, p1, p2 and z

Since p1 and p2 are fixed points of all φt, we have

d(q1, p1) + d(q1, p2) = d(φt0(q1), p1) + d(q1, p2)

< d(φt0(q1), z) + d(z, p1) + d(q1, z) + d(z, p2)

= d(φt0(q1), z) + d(z, p2) + d(q1, z) + d(z, p1)

= d(φt0(q1), p2) + d(q1, p1)

= d(q1, p1) + d(q1, p2),

a contradiction, proving Sing(H) ∩Np ∖ {p} = ∅.
As was seen in the above, the set Sing(H) is discrete in M . Moreover, if p ∈

Sing(H), then Sing(H)∩Np = {p}. Assume that there exists another fixed point

q of φt. We then have φt(T (p, q)∖ {q}) ⊂ Np. This implies that M ∖ {q} = Np,
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meaning that any points other than q are not fixed by φt. Therefore, Sing(H)

consists of at most two points. □

Lemma 2.2. Let (M,F ) be a complete oriented Finsler surface with one-

parameter group of motions φt on (M,F ). Then the following are true.

(1) If #Sing(H) ≥ 3, then H = 0 identically in M .

(2) If #Sing(H) = 2, then M is homeomorphic to a sphere.

(3) If #Sing(H) = 1, then M is homeomorphic to a plane.

(4) If #Sing(H) = 0, then M is homeomorphic to a plane, a cylinder or a torus.

Proof. If p is a fixed point of φt, then the trajectories of φt(q), t ∈ (−∞,∞),

are the circles with center p and radii d(p, q) (or d(q, p)). Hence, (1), (2) and (3)

follow from the proof of Lemma 2.1. (4) follows from the Poincaré–Hopf index

theorem for the vector field H. □

Let Orb(x) denote the orbit of x ∈ M by φt: Orb(x) := {φt(x) | t ∈
(−∞,∞)}. Let x ̸∈ Sing(H). We define the period τ(x) of x ∈ M for φt by

τ(x) := min{s > 0 |φs(x) = x} if {s > 0 |φs(x) = x} ̸= ∅, and, otherwise, ∞.

Lemma 2.3. Let (M,F ) be a complete oriented Finsler surface with one-

parameter group of motions φt on (M,F ). The period τ(x) is constant for x ∈
M ∖ Sing(H).

Proof. Let x, y ∈ M ∖ Sing(H), x ̸= y. If y ∈ Orb(x), then τ(y) = τ(x).

In fact, if y = φs(x), then

y = φs(x) = φs(φτ(x)(x)) = φτ(x)(φs(x)) = φτ(x)(y).

Assume that y ̸∈ Orb(x). We then have Orb(x) ∩ Orb(y) = ∅. Let x1 ∈
Orb(x) be a foot of y on Orb(x), i.e., x1 ∈ Orb(x) and d(y, x1) = d(y,Orb(x)).

Recall that x1 is the unique foot of any point y1 ∈ T (y, x1)∖ {y} on Orb(x). We

claim that there exists only one foot of y on Orb(x). If there exists another foot

x2 of y on Orb(x), then there exists a parameter s ̸= 0 such that |s| is sufficiently

small, φs(x2) ̸= x1 and T (y, x1) ∩ φs(T (y, x2)) ̸= ∅. Then the intersection point

has two feet on Orb(x), x1 and φs(x2), a contradiction. By the same argument

above, there is the unique minimizing geodesic segment T (y, x1). From this fact,

for any point y1 = φs(y) ∈ Orb(y), if x2 is the foot of y1 on Orb(x), we then

have T (y1, x2) = φs(T (y, x1)) and φs(x1) = x2, because φs is a motion on M . In

particular, since φτ(x)(x1)=x1, we have φτ(x)(y)=y. This shows τ(x)=τ(y). □
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Set τ(φt) := τ(p) for a point p ̸∈ Sing(H). From Lemma 2.3, τ(φt) is in-

dependent of the choice of the point p ∈ M ∖ Sing(H). We say that Orb(x) is

a parallel circle through x if τ(φt) < ∞. If p ∈ Sing(H), then a parallel circle

through q is the (forward) circle S+(p, d(p, q)) := {x ∈ M | d(p, x) = d(p, q)}
with center p and radius d(p, q) and, at the same time, the backward circle

S−(p, d(q, p)) := {x ∈M | d(x, p) = d(q, p)} with center p and radius d(q, p). Note

that when a point p ∈ M is a fixed point of φt, S
+(p, d(p, q)) = S−(p, d(p, q))

even if d(p, q) ̸= d(q, p).

We say that (M,F ) is a Finsler surface of revolution if it is in the cases of

(2), (3) of Lemma 2.2 and the following cases appearing in (4):

(4-1) M is topologically a torus S1×S1 and S1×{y} = {φt(x, y) | t ∈ (−∞,∞)}
for all (x, y) ∈ S1 × S1.

(4-2) M is topologically a cylinder S1×R and S1×{y} = {φt(x, y) | t ∈ (−∞,∞)}
for all (x, y) ∈ S1 × R.

When M is a Finsler surface of revolution with one-parameter group of mo-

tions φt, we call φt a rotation of M .

A Finsler surface of revolution is topologically a sphere, a torus, a cylinder or

a plane. Any strip bounded by two parallel circles in those surfaces is isometrically

embedded into a certain torus of revolution (see §8). Hence, it is important to

determine the behavior of geodesics in a torus of revolution.

3. Local Riemannian metrics and geodesics

In order to study the behavior of geodesics in (M,F ), we define a Riemannian

metric g in some neighborhood U around the geodesics under consideration, in

such a way that they become geodesics in (U, g). Applying the geometry of

geodesics for a Riemannian manifold in (U, g), we obtain certain informations on

the original geodesics in (M,F ) (cf. [3], [14], [15], [16], [23]).

We begin with a general discussion on Finsler n-manifolds. Let g(x, ẋ), ẋ ∈
TxM , denote a Riemannian metric in TxM ∖ {0} defined by

gij(x, ẋ) =
1

2

∂2F 2

∂ẋi∂ẋj
(x, ẋ).

The following lemma is a well-known elementary fact and its proof is omitted

here.

Lemma 3.1 (cf. [3]). Let (M,F ) be a Finsler manifold. Let y, z, w ∈ TxM

with y ̸= 0. The following are true.
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(1) g(x, y)(z, w) =
∂2f

∂t∂s
(0, 0) where f(s, t) = F (x, y + sz + tw)2/2.

(2) g(x, y)(y, y) = F (x, y)2.

(3) gij(x, ty) = gij(x, y) for t > 0.

Let X be a vector field in an open set U such that X(x) ̸= 0 for all x ∈ U

and ax(t) the integral curve of X with ax(0) = x. Assume that there exists a

hypersurface S with coordinate system y : V ⊂ Rn−1 → S in U such that the

map (y, t) → ay(t) ∈ U from {(y, t) | y ∈ V, ay(t) ∈ U} is a coordinate system of U .

We define a Riemannian metric g on U associated withX by gij(x) = gij(x,X(x))

for x = (y, t) ∈ U . Some relations of the Levi–Civita connection of (U, g) and the

Chern connection of (U,F ) are described in [23], [24]. In this article, we only use

it in the form of the following lemma.

Lemma 3.2. Let (M,F ) be a Finsler manifold. In the notation above, let

x0 ∈ S. Then ax0(t) is a constant speed geodesic in (U, g) if and only if so is it in

(U,F ).

Proof. Let en = (0, · · · , 0, 1) ∈ Rn. Since (x,X(x)) = (x, en) by the coor-

dinate system given as above, we have

∂gij
∂xk

(x) =
∂gij
∂xk

(x,X(x)) +

n∑
h=1

∂gij
∂ẋh

(x,X(x))
∂Xh

∂xk
(x) =

∂gij
∂xk

(x,X(x)),

and, hence, gΓi
k
j(x) = FΓi

k
j(x,X(x)) for x ∈ U where gΓi

k
j and FΓi

k
j are

the Christoffel symbols with respect to g and F , respectively. Therefore, ax(t)

is a constant speed geodesic in (U, g) if and only if so is it in (M,F ) (see p. 125

in [3]). □

From now on, we assume that M is a surface of revolution with rotation φt.

Let γ : (0, a) → M be the unit speed geodesic in (M,F ) such that γ̇(s) is not

parallel to H(γ(s)) for all s ∈ (0, a). Set

Uγ := {φt(γ(s)) | t ∈ (−∞,∞), s ∈ (0, a)}.

Let Ũγ denote the universal covering surface of Uγ . As to be shown in Lemma 3.3,

it is homeomorphic to a strip (−∞,∞)× (0, a) in a plane. Let γ̃ and φ̃t be lifts

of γ and φt into Ũγ , respectively.

Lemma 3.3. Let (M,F ) be a Finsler surface of revolution with rotation φt.

Let γ : (0, a) →M be a unit speed geodesic in (M,F ) such that H(γ(s)) ̸= 0 and

γ̇(s) is not parallel to H(γ(s)) for all s ∈ (0, a). The following are true.
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(1) Uγ is homeomorphic to a cylinder S1 × (0, a).

(2) If ψ : (−∞,∞) × (0, a) → Ũγ is a map given by ψ(t, s) = φ̃t(γ̃(s)), then

it makes a coordinate system for Ũγ . Under the identification through ψ

with this coordinate system, if x = (t, s) and y = (u, v) ∈ TxŨγ , then

φ̃r(t, s) = (t+ r, s) and φ̃r∗(u, v) = (u, v) ∈ Tφ̃r(x)Ũγ .

(3) Let γt(s) = φt(γ(s)) for all t ∈ (−∞,∞) and s ∈ (0, a). We then have a

foliation of geodesics γt for Uγ , i.e., for any point x ∈ Uγ , there exists the

unique number t0, −τ(φt)/2 ≤ t0 < τ(φt)/2, such that γt0 passes through x.

Proof. From the definition of a surface of revolution, Uγ is homeomorphic

to a cylinder S1 × (0, a), proving (1).

Notice that the set of orbits Orb(γ(s)), s ∈ (0, a), makes a foliation of Uγ .

Since γ̇(s) and H(γ(s)) are not parallel, the different two points in γ((0, a)) do

not belong to the same orbit. This shows that ψ is a coordinate system for Ũγ .

The other part of (2) follows from the construction of ψ.

(3) follows from Lemma 2.3. □

Using the coordinate system obtained in Lemma 3.3, we make a Riemannian

metric g(t,s) = g(φt(γ(s)), φt∗(γ̇(s))) on Uγ of γ. Let F̃ and g̃ denote the lifts of

F and g into Ũγ , respectively.

Lemma 3.4. Let (M,F ) be a Finsler surface of revolution with rotation φt.

Let γ : (0, a) → M be a unit speed geodesic in (M,F ) such that γ̇(s) is not

parallel to H(γ(s)) for all s ∈ (0, a). The following are true.

(1) φt is also a one-parameter group of motions on (Uγ , g).

(2) γ : (0, a) → Uγ is also a unit speed geodesic in (Uγ , g).

(3) If γ̇(0) = cH(γ(0)) (resp., γ̇(a) = cH(γ(a))) for some number c > 0, then

γ̈(0) (resp., γ̈(a)) points to the interior of Uγ .

Proof. From (2) of Lemma 3.3, in the suitable coordinate system, we

have F̃ (t, s, u, v) = F̃ (t + r, s, u, v) for x = (t, s) and y = (u, v) ∈ TxM and

r ∈ (−∞,∞). Therefore, we have g̃ij(t, s, u, v) = g̃ij(t + r, s, u, v), meaning

that g(x, y)(z, w) = g(φr(x), φr∗(y))(φr∗(z), φr∗(w)) for x ∈ Uγ , y ∈ TxM and

r ∈ (−∞,∞). Hence, φt is a one-parameter group of motions in (Uγ , g). This

proves (1).

(2) follows from Lemma 3.2, i.e., the fact that the differential equations of

a constant speed geodesic γ(s) = (0, s) in (Uγ , F ) and in (Uγ , g) equal along γ,

since g̃(t,s) = g̃(t, s, 0, 1) for (t, s) ∈ (−∞,∞)× (0, a).
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(3) follows from (1) and (2). Namely, in a Riemannian surface Uγ of revolu-

tion, we see that γ̈(0) = lims→+0 γ̈(s) (resp., γ̈(a) = lims→a−0 γ̈(s)) points to the

interior of Uγ . □

4. Clairaut’s theorem

Let (M,F ) be a Finsler surface of revolution with rotation φt. Let h(x) :=

F (x,H(x)) and h−(x) = F (x,−H(x)) for x ∈ M . Obviously, h and h− are

constant on each orbit Orb(x).

The function h and h− defined above are called the locked Lagrangian in the

literature on relative equilibria (cf. [18]). Although the statement of the following

proposition is known (cf. [9], [18]), we give the proof as an application of Clairaut’s

theorem for Riemannian case.

Proposition 4.1. Let (M,F ) be a Finsler surface of revolution with rota-

tion φt. Assume that there exists a point p ∈M such that h(p) ̸= 0 and dhp = 0.

Then, e(t) = φt(p), t ∈ (−∞.∞), is a geodesic in (M,F ).

Proof. Let γ : (−ε, ε) → M be a unit speed geodesic such that γ(0) = p

and γ̇(s) is not parallel to H(γ(s)) for all s ∈ (−ε, ε). As before, let Uγ denote

the φt-invariant neighborhood around Orb(p). We introduce a coordinate system

(t, s) = φt(γ(s)) on Uγ . This time, we define a Riemannian metric g on Uγ by

gx = g(x,H(x)). Then, φt is a one-parameter group of motions and h(x) is the

length of H(x) in (Uγ , g). In other words, it is considered to be a subset of a

Riemannian surface of revolution and Orb(x) is a parallel circle. Therefore, the

orbit Orb(p) is a geodesic in (Uγ , g) because of h(p) ̸= 0 and dhp = 0 (cf. p. 13

in [25]). Lemma 3.2 proves this proposition. □

We say that a geodesic γ : [0,∞) → M is a ray if L(γ|[s,t]) = d(γ(s), γ(t))

for all s, t ∈ [0,∞) with s < t. We say that a ray α : [0,∞) → M is a co-ray

to a ray γ if there exist a sequence of points pn and a sequence of numbers tn
such that pn → α(0), tn → ∞ and T (pn, γ(tn)) → α as n → ∞. A straight line

α : (−∞,∞) → M is called an asymptote to a ray γ if α|[s,∞) is a co-ray from

α(s) to γ for any s ∈ (−∞,∞).

A motion ψ : M →M is said to be axial if there exist a straight line γ with

unit speed and a constant a > 0 such that ψ(γ(t)) = γ(t+a) for all t ∈ (−∞,∞).

Such a straight line γ is called an axis of ψ. We define the displacement function

dψ : M → R of a motion ψ by dψ(x) = d(x, ψ(x)), x ∈M .
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The following Lemmas 4.2 and 4.3 have been proved in [7] for a G-space

defined by Busemann [6]. We emphasize that the Lemmas are valid for complete

Finsler planes with non-symmetric distances.

Let D[ψ, φ̃τ ] be the group of motions generated by ψ and φ̃τ on M .

Lemma 4.2 ([7, (2.6) Theorem]). Let (M,F ) be a complete Finsler plane

and ψ a motion of (M,F ). If there exists a point p ∈ M such that dψ(p) =

inf{dψ(x) |x ∈M} > 0, then ψ is an axial motion with axis through p and ψ(p).

All axes of ψ are asymptotes to each other. In particular, if dψ is constant on

M , then the axes of ψ simply cover M . If M is the universal covering plane of a

torus T 2 =M/D[ψ, φ̃τ ] of revolution, then M is simply covered with the axes of

ψn ◦ φ̃t for every integer n ̸= 0 and a number t.

Lemma 4.3. [7, (2.7) Corollary] Let (M,F ) be a complete Finsler plane

and φt a one-parameter group of motions on M . If a number t0 and p ∈M exist

such that 0 < d(p, φt0(p)) = inf{dφt0
(x) |x ∈ M}, then the curve e(t) = φt(p),

t ∈ (−∞,∞), is a straight line.

Lemma 4.4. Let (M,F ) be a complete Finsler plane and φt a one-parameter

group of motions on (M,F ). If there exists a point p ∈ M such that h(p) =

inf{h(x) |x ∈ M} > 0 (resp., h−(p) = inf{h−(x) |x ∈ M}), then e(t) = φt(p)

(resp., e(t) = φ−t(p)) is a straight line. The straight lines through the minimum

points of h (and h−) are asymptotes to each other (see Figure 2).

minh

minh−

minh

minh−

Figure 2. Axes of φt, φ−t, co-rays and asymptotes

Proof. We first assume that there exist a point q ∈M and a number t0 such

that 0 < d(q, φt0(q)) = inf{dφt0
(x) |x ∈M}. We prove h(q) = inf{h(x) |x ∈M}.
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We then have h(q) = h(p). In fact, from Lemma 4.3, eq(t) = φt(q), t ∈ (−∞,∞),

is a straight line in M . Hence, we have, for s > 0,

sh(q) =

∫ s

0

F (φt(q),H(φt(q)) dt = d(q, φs(q))

≤ d(q, p) + d(p, φs(p)) + d(φs(p), φs(q))

≤ d(q, p) +

∫ s

0

F (φt(p),H(φt(p)) dt+ d(p, q)

= d(q, p) + sh(p) + d(p, q).

Divide both sides by s and then s→ ∞, and we have h(q) ≤ h(p), meaning that

h(q) = inf{h(x) |x ∈M}.
Using the point q as in the above argument, we can prove that e(t) = φt(p) is

a straight line as follows. Since eq(t) is a straight line, we have 0 < d(q, φs(q)) =

inf{dφs(x) |x ∈ M} for all s > 0 (see [7]). From Proposition 4.1, we know

that e(t) is a geodesic. Hence, there exists a sufficiently small s0 > 0 such that

d(p, φs0(p)) = s0h(p). From

s0h(p) = s0h(q) = inf{dφs0
(x) |x ∈M},

we have dφs0
(p) = inf{dφs0

(x) |x ∈M}. It follows from Lemma 4.3 that e(t) is a

straight line.

We have to prove that there exist a point q ∈ M and a number t0 such

that 0 < d(q, φt0(q)) = inf{dφt0
(x) |x ∈ M}, which we assumed in the above

arguments, and then complete the proof. Let X be any strip bounded by two

parallel circles Orb(x) and Orb(y) such that p ∈ X. We make, from Lemma 8.1

in Appendix 1, a Finsler plane (M̃, F̃ ) ⊃ (X,F ) with one-parameter group φ̃t of

motions and a motion ψ on M̃ with φ̃t ◦ ψ = ψ ◦ φ̃t and ψi(X̃) ∩ ψj(X̃) = ∅ for

all i ̸= j ∈ Z. We may assume that h(p) = inf{h(x) |x ∈ M̃}. All motions dφ̃s ,

s > 0, attain their minima in (M̃, F̃ ), because T 2 = M̃/D[φ̃1, ψ] is compact where

D[φ̃1, ψ] is a group of motions generated by φ̃1 and ψ, meaning the existence of

q and t0. From the above argument, we know that e(t) = φt(p) is a straight line

in M̃ . Since X is an arbitrary strip containing p, the straightness of e(t) is valid

in M . □

We prove Clairaut’s theorem for Finsler surfaces of revolution. To write the

statement, we set

C(γ(s)) =
1

2

∂2F (γ(s), γ̇(s) + uγ̇(s) + vH(γ(s)))2

∂u∂v

∣∣∣∣
u=0,v=0

.
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Theorem 4.5. Let (M,F ) be a Finsler surface of revolution with rotation φt.

Let γ : (0, a) → M be a unit speed geodesic in (M,F ) such that γ̇(s) is linearly

independent of H(γ(s)) for all s ∈ (0, a). Then C(γ(s)) is constant for s ∈ (0, a).

Moreover, if γ̇(0) = cH(γ(0)) and γ̇(a) = c′H(γ(a)) for some numbers c > 0 and

c′ > 0, then h(γ(0)) = h(γ(a)) and h(γ(s)) > h(γ(0)) for all s ∈ (0, a). The same

is true if h and H are replaced by h− and −H. (See Figure 3.)

h = c

h = c

h > cγ

γ(0)

γ(a)

Figure 3. Geodesics between parallel circles

Proof. From Lemma 3.4 and Clairaut’s relation for a geodesic in a Rie-

mannian surface of revolution, it follows that gγ(s)(γ̇(s), H(γ(s))) is constant for s

in (Uγ , g). Hence, (1) of Lemma 3.1 shows the theorem.

We prove the second part. Suppose γ̇(0) = cH(γ(0)) and γ̇(a) = c′H(γ(a))

for some numbers c > 0 and c′ > 0, respectively. Then the first part of the proof

shows h(γ(0)) = h(γ(a)).

We suppose for indirect proof that there exists a number s0 ∈ (0, a) such that

h(γ(s0)) ≤ h(γ(0)). Let X be the strip bounded by parallel circles through γ(0)

and γ(a). We assume without loss of generality that h(γ(s0)) is the minimum of h

in X, i.e., h(γ(s0)) = inf{h(x) |x ∈ X} ≤ h(γ(0)). We make, as was mentioned in

Appendix 1, the universal covering surface X̃ of X and a Finsler plane (M̃, F̃ ) ⊃
(X̃, F̃ ) with one-parameter group of motions φ̃t and a motion ψ on M̃ with

φ̃t ◦ψ = ψ ◦ φ̃t and ψi(X̃)∩ψj(X̃) = ∅ for all i ̸= j ∈ Z. Let α(s) be the axis of ψ
through γ(s0) such that α(0) = γ(s0). Note that the axes of ψ simply cover M̃ .
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We introduce a coordinate system (t, s) ∈ R2 on M̃ such that (t, s) = φt(α(s)).

Then, a t-coordinate function fγ(s) = t(γ(s)), s ∈ (0, a), is monotone increasing

for s, because the axes of ψ simply cover M̃ and γ̇(0) = cH(γ(0)) for some number

c > 0. From Lemmas 4.4 and 4.2, we see that Orb(γ(s0)), Orb(ψ(γ(s0))) and

Orb(ψ−1(γ(s0))) are asymptotes to one another. Hence, from the last part of

Lemma 4.2, all geodesics β(s) through γ(s0) = β(0) such that fβ(s) is monotone

increasing for s are straight lines in M̃ . In particular, it is impossible for γ to

be tangent to Orb(γ(a)) because (3) of Lemma 3.4, a contradiction. Thus we

conclude that h(γ(s)) > h(γ(0)) for all s ∈ (0, a).

The same is true if h and H are replaced by h− and −H. □

5. Geodesics in a Finsler torus of revolution

The following theorem is a direct consequence of Lemmas 4.2, 4.3, 4.4, Propo-

sition 4.1 and Theorem 4.5. It extends the results for a torus of G-space in [7]

to a Finsler torus with non-symmetric distance other than (3). Since we do not

assume the symmetric property of F , there is a certain behavior of geodesics

different from those in [7].

We say that a curve σ : [a, b] → M is a backward geodesic if its reversed

curve σ−1 : [a, b] →M defined by σ−1(t) := σ(a+ b− t), t ∈ [a, b], is a geodesic.

A geodesic is said to be reversible if it is also a backward geodesic.

Theorem 5.1 (Main theorem). Let (M,F ) be a complete Finsler plane with

one-parameter group of motions φt such that it is the universal covering plane

of a torus T 2 = M/D[φ1, ψ] of revolution. Namely, φt is the lift of the rotation

of T 2. The following are true.

(1) If p ∈ M is a point such that dhp = 0 (resp., dh−p = 0), then γ(t) =

φt(p) (resp., γ(t) = φ−t(p)) is a geodesic in (M,F ). If h(p)= inf{h(x) |x ∈
M} (resp., h−(p) = inf{h−(x) |x ∈ M}), then γ(t) = φt(p) (resp., γ(t) =

φ−t(p)) is a straight line. In particular, if p ∈ M is a point such that

h(p) = inf{h(x) |x ∈M} and h−(p) = inf{h−(x) |x ∈M}, then γ(t) = φt(p)

is a reversible straight line.

(2) Let p ∈ M be a point such that h(p) ̸= inf{h(x) |x ∈ M}. Let X ∋ p be

a domain bounded by two straight lines γi(t) = φt(qi), i = 1, 2, where qi
are points such that h(qi) = inf{h(x) |x ∈ M} and there is no minimum

point of h in the interior of X. Then there exist exactly two asymptotes αi
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through p = αi(0) to the straight lines γi which are contained entirely in X.

The same result is true if h and φt are replaced by h− and φ−t.

(3) Using the same notation as in (2), we define the sector Y ⊂ X bounded

by α1([0,∞)) and α2([0,∞)). If a unit vector v ∈ TpM is tangent to the

interior of Y , then γv(t), t ≥ 0, lies in Y where γv is a unit speed geodesic

with γ̇v(0) = v. Moreover, there exist two parallel orbits ei(t) = φt(ri), i =

1, 2, such that γv(t), t ∈ (−∞,∞), is alternately tangent to them and lies

in the strip between e1 and e2. Here h(ri) are Clairaut’s constant C(γv(t))

along γv. The same result is true if h and φt are replaced by h− and φ−t.

(4) The displacement function dψ◦φt is constant on M for every t ∈ (−∞,∞).

The axes of each ψ ◦ φt cover M simply. Its axis is a straight line passing

through p which is obtained as the extension of a minimizing geodesic seg-

ment from p to ψ ◦ φt(p). Similarly, we have the simple cover of M by the

axes of ψ−1 ◦ φ−t. The axes of ψ ◦ φt and ψ−1 ◦ φ−t through a point p pass

through the points (ψ ◦ φt)k(p) for all integer k but, in general, they do not

have the same images.

(5) If there exists a point p ∈ M such that h(p) = inf{h(x) |x ∈ M} and

h−(p) = inf{h−(x) |x ∈M}, then all geodesics through p are straight lines.

We define a map expp : TpM → M by expp(v) = γv(1) and a map exp− p :

TpM → M by exp− p(v) = γ−v(−1) at p ∈ M where γv is a constant speed

geodesic such that γv(0) = p and γ̇v(0) = v. We say that p ∈ M is a (forward)

pole (resp., backward pole) if the differential map of expp (resp., exp− p) is non-

singular on TpM .

Corollary 5.2. Let (T 2, F ) be a Finsler torus of revolution with rotation φt.

Then the following are equivalent.

(1) There exists a point p ∈ T 2 such that h(p) = inf{h(x) |x ∈M} and h−(p) =

inf{h−(x) |x ∈M}.
(2) There exists a pole in T 2.

(3) There exists a backward pole in T 2.

Theorem 5.1 directly shows this corollary.

Remark 5.3. By the method used in [13], we can prove that, without existence

of one-parameter group of motions, if there exists a pole p in a Finsler torus

(T 2, F ), then any homotopy class of closed curves in T 2 has a minimal closed

geodesic passing through the point p in it. This property implies that a pole is

also a backward pole in T 2.
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Corollary 5.4. Let (M,F ) be a complete Finsler plane with one-parameter

group of motions φt and let h and h− assume their minima at p ∈M . Then, the

point p is a pole in (M,F ).

Proof. From Lemma 2.2, if Sing(H) ̸= ∅, then p is the unique point where h
attains its minimum 0. Therefore, p is a forward and backward pole. The orbits

of φt are the parallel circles centered at p.

We first treat the case that there exists a motion ψ of (M,F ) such that

M/D[φ1, ψ] is topologically a torus. For every δ = φt ◦ψ with t ∈ R, there exists

the unique axis of δ through p. Further, Orb(p) is the axes of both φ1 and φ1
−1

through p, since h(p) = min{h(x) |x ∈ M} and h−(p) = min{h−(x) |x ∈ M}.
This implies that all geodesics through p are straight lines in M . Therefore, the

sub-rays from p of those straight lines are rays from p, meaning that p is a forward

and backward pole in M .

We next treat the case where there is no such a motion ψ of M . Let K

be any compact set containing p in M and let U be a φt-invariant subset of M

containing K. We construct a Finsler torus T 2 of revolution such that

(1) U/[φ1] ⊂ T 2, isometrically,

(2) φt is extended to a motion of T 2,

(3) h(p) = min{h(x) |x ∈ T 2} and h−(p) = min{h−(x) |x ∈ T 2}.

From the above argument, the point p is a pole in the universal covering plane

of T 2. Since K is an arbitrary compact set, the point p is a pole in M . □

6. Reversibility of geodesics

Let (M,F ) be a Finsler manifold. A (forward) geodesic σ : [a, b] → M

satisfies the Euler–Lagrange equation:

ELi(F, σ) := Fxi(σ, σ̇)− d

dt
Fẋi(σ, σ̇) = 0, i = 1, 2, · · · , n.

We briefly write this equation EL(F, σ) = 0. Since F is positively homogeneous

in TM , all curves α(s) = σ(t(s)) with t′(s) > 0 are also geodesics if σ is a

geodesic. However, if t′(s) < 0, then α(s) may not be a geodesic. All geodesics

are reversible if F is absolutely homogeneous. If F is the sum of an absolutely

homogeneous fundamental function and a closed 1-form, then all geodesics in

(M,F ) are reversible but the distance d is not symmetric.
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We decompose F into the symmetric part A and the skew-symmetric part B

by setting

F (x, ẋ) = A(x, ẋ) +B(x, ẋ), ẋ ∈ TxM ∖ {0}

where

A(x, ẋ) :=
F (x, ẋ) + F (x,−ẋ)

2
, B(x, ẋ) :=

F (x, ẋ)− F (x,−ẋ)
2

.

Note that all geodesics in (M,A) are reversible.

Lemma 6.1. Let (M,F ) be a Finsler manifold. The following are true for

ẋ ∈ TxM ∖ {0}.
(1) F (x, ẋ) = A(x, ẋ) +B(x, ẋ).

(2) A(x, tẋ) = |t|A(x, ẋ) and Aẋi(x, tẋ) = sgn(t)Aẋi(x, ẋ) for all t ∈ R. Here

sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0.

(3) B(x, tẋ) = tB(x, ẋ) for all t ∈ R. Hence, Bxi(x, tẋ) = tBxi(x, ẋ) and

Bẋi(x, tẋ) = Bẋi(x, ẋ) for all t ∈ R∖ {0}.
(4) If c(t) is a curve in M , t = t(s) is a change of parameter, i.e., t′(s) ̸= 0 and

c̄(s) = c(t(s)), then

EL(F, c̄(s)) = |t′(s)|EL(A, c(t)) + t′(s)EL(B, c(t)).

Proof. (1)–(3) are well known elementary facts and their proofs are omitted

here.

We prove (4). From (2) and (3), we have

Fxi(c̄(s), ˙̄c(s)) = |t′|Axi(c(t), ċ(t)) + t′Bxi(c(t), ċ(t)),

Fẋi(c̄(s), ˙̄c(s)) = sgn(t′)Aẋi(c(t), ċ(t)) +Bẋi(c(t), ċ(t)),

and
d

ds
Fẋi =

dt

ds

(
sgn(t′)

d

dt
Aẋi +

d

dt
Bẋi

)
= |t′| d

dt
Aẋi + t′

d

dt
Bẋi .

Therefore, we have the equation in (4). □

It is well known that B is a closed 1-form on M if and only if the Euler–

Lagrange equations of F and A equal. In order to see the behavior of all geodesics,

we state how to evaluate the reversibility of each geodesic.

Lemma 6.2. Let γ(t) be a geodesic in (M,F ) and t = t(s) a reversed change

of parameter for s ∈ R, i.e., t′(s) < 0. Set α(s) = γ(t(s)). Then α is a geodesic

in (M,F ) if and only if EL(B, γ) = 0. In other words, γ is reversible in (M,F )

if and only if it is a geodesic in (M,A).



154 Nobuhiro Innami, Tetsuya Nagano and Katsuhiro Shiohama

Proof. Since γ(t) is a geodesic in (M,F ), we have

EL(F, γ(t)) = EL(A, γ(t)) + EL(B, γ(t)) = 0.

Therefore, because of t′ < 0 and (4) of Lemma 6.1, we have

EL(F, α(s)) = 2t′EL(B, γ(t)) = 2|t′|EL(A, γ(t)).

From this equation, α(s) is a geodesic if and only if EL(B, γ(t)) = 0 if and only

if EL(A, γ(t)) = 0. Therefore, γ(t) is reversible in (M,F ) if and only if γ(t) is a

geodesic in (M,A). □

We restate a theorem in [8] from our point of view.

Lemma 6.3. Assume thatB is a 1-form inM . Then a geodesic γ is reversible

in (M,F ) if and only if iγ̇(t)dB = 0 where iv is the interior product for v ∈ TM .

Proof. When B is a 1-form, we have EL(B, γ) = −iγ̇dB. Therefore,

Lemma 6.2 shows that γ is reversible if and only if iγ̇(t)dB = 0. □

7. Examples

We can see the behavior of geodesics mentioned in Theorem 5.1.

Example 7.1. Let M = R2 = {(x, y) |x, y ∈ R}. Let 0 < ε < b < a. We

define Randers metrics F1 and F2 on M by

F1(x, y, ẋ, ẏ) :=
√
ẋ2 + ẏ2 − ε(ẋ cos 2πy + ẏ sin 2πy) (1)

F2(x, y, ẋ, ẏ) :=
√
(a+ b cos 2πy)2ẋ2 + b2ẏ2 − ε(ẋ cos 2πy + ẏ sin 2πy) (2)

for a sufficiently small ε > 0.

Obviously, φt(x, y) := (x+ t, y) and ψn(x, y) := (x, y + n) are motions in M

for all t ∈ R and n ∈ Z.
In both examples, we have, for all tangent vectors (ẋ, ẏ) ∈ T(x,y)M ,

B(x, y) := B(x, y, ẋ, ẏ) = −ε(cos 2πy dx+ sin 2πy dy).

Hence, we have ivdB = 2πε sin 2πy(ẏ dx − ẋ dy) for all v = (ẋ, ẏ) ∈ T(x,y)M .

It follows from Lemma 6.3 and Proposition 4.1 that a curve γ(t) = (x(t), y(t)) is

a reversible geodesic if and only if y(t) = n/2 for all t ∈ (−∞,∞) and an integer
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n ∈ Z. Let Ai be the symmetric part of Fi for 1 = 1, 2. A curve γ(t) = (x(t), y(t))

is a geodesic in both (M,Fi) and (M,Ai) if and only if y(t) = n/2 for all t ∈
(−∞,∞) and an integer n ∈ Z.

For integers n ̸= 0 and a number t, we have (ψn◦φt)m(x, y) = (x+mt, y+mn)

for all (x, y) ∈M and integersm. There exists a unique straight line through those

points (x+mt, y+mn) in the order of increasing m such that it is not reversible,

because the displacement function dψn◦φt is constant on M and iγ̇dB ̸= 0 along

an axis γ of ψn ◦ φt. Hence, there exists another straight line through the same

points in the reversed order.

This is interpreted as existence of the shortest closed geodesics. Let T 2 =

M/D[ψ,φt0 ] for a number t0. Each homotopy class of close curves contains a

shortest closed curve in T 2 such that those lifts to its universal covering plane are

straight lines which are axes of certain motions. Let [c] be a homotopy class of

closed curves containing c. The above argument shows that the shortest closed

curves in [c] and [c−1] are different with only one exception (π ◦ γ)(t) = π((x ±
t, 1/2)) in the example (7.2) where π : M → T 2 is a natural projection.

We find geodesics invariant under φt. Let h(x, y) := F (x, y,H(x, y)) and

h−(x, y) = F (x, y,−H(x, y)) for (x, y) ∈ M . Since H(x, y) = (1, 0) ∈ T(x,y)M ,

we have, in the example (7.1),

h(x, y) = 1− ε cos 2πy, h−(x, y) = 1 + ε cos 2πy,

and, in the example (7.2),

h(x, y) = a+ (b− ε) cos 2πy, h−(x, y) = a+ (b+ ε) cos 2πy.

From Proposition 4.1 and Lemma 4.4, for the example (7.1) we conclude the

following.

(1) If n is even, γ+(t) := (x+ t, n/2) is a straight line, and γ−(t) := (x− t, n/2)

is a geodesic but not a straight line.

(2) If n is odd, γ−(t) := (x− t, n/2) is a straight line, and γ+(t) := (x+ t, n/2)

is a geodesic but not a straight line.

For the example (7.2), we conclude the following.

(1) If n is even, γ(t) := (x± t, n/2) is a geodesic but not a straight line.

(2) If n is odd, γ(t) := (x± t, n/2) is a reversible straight line.

Therefore, there exists a pole in (M,F2) but not in (M,F1).

We show the behavior of geodesics γ(t) such that γ(0) ̸= (0, n/2) and γ̇(0) is

parallel to H. From Theorem 4.5 or (3) of Theorem 5.1, there exist two parallel
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circles ei(t) = φt(ri), i = 1, 2, such that γ(t) is alternately tangent to them and

lies in the strip between them. For the example (7.1) we conclude the following.

(1) If n is even and v = H(0, r) for r ∈ (n/2, (n+1)/2), then the geodesic γv(t),

t ∈ (−∞,∞), lies in the strip between Orb((0, r)) and Orb((0, n/2+ 1− r)).

(2) If n is odd and v = H(0, r) for r ∈ (n/2, (n+1)/2), then the geodesic γ−v(t),

t ∈ (−∞,∞), lies in the strip between Orb((0, r)) and Orb((0, n/2+ 1− r)).

For the example (7.2), we conclude that if n is odd and v = H(0, r) for

r ∈ (n/2, (n + 1)/2), then the geodesic γ±v(t), t ∈ (−∞,∞), lies in the strip

between Orb((0, r)) and Orb((0, n/2 + 1− r)).

8. Appendix 1: A strip bounded by parallel circles

A Finsler surface of revolution has a one-parameter group of motions φt with

period τ(φt) <∞. If a geodesic γ : [0, 1] →M in a Finsler surface of revolution

does not pass through the fixed points of φt, we then find a strip X bounded

by two parallel circles containing γ. No matter what the topological structure of

M is, X is homeomorphic to a cylinder S1×T where T is a closed interval and its

universal covering surface X̃ is homeomorphic to R×T . Let π : (X̃, F̃ ) → (X,F )

be the natural projection. Then there exists a one-parameter group of motions

φ̃t in (X̃, F̃ ) such that φt = π ◦ φ̃t.

Lemma 8.1. Under the notation above, there exists a complete Finsler plane

(M̃, F̃ ) with one-parameter group of motions φ̃t such that (X̃, F̃ ) is a subspace

embedded in (M̃, F̃ ) and there exists a motion ψ on (M̃, F̃ ) with φ̃t ◦ψ = ψ ◦ φ̃t
and ψi(X̃) ∩ ψj(X̃) = ∅ for all i ̸= j ∈ Z.

Proof. For a sufficiently small ε > 0 we have a Finsler surface (X̃ε, F̃ε) ⊂
(X̃, F̃ ) with one-parameter group of motions φ̃t where Xε is the ε-neighborhood

ofX. We assume that X̃ε is homeomorphic to R×[0, b] and φ̃t(x, y) = (x+t, y) for

all (x, y) ∈ R× [0, b]. We define a fundamental function F̃0 on a plane M̃ = R2 by

F̃0(x, y, ẋ, ẏ) = F̃ε(x, y0, ẋ, ẏ) where (ẋ, ẏ) ∈ T(x,y)M̃ and y0 satisfies y = nb+ y0,

0 ≤ y0 < b, for some integer n. Then F̃0 may not be continuous at y = nb for

all integers n ∈ Z. We have to make it smooth. Let k(t), t ∈ R, be a smooth

function such that 0 ≤ k(t) ≤ 1 for all t ∈ R and

k(t) =

{
1 if t ∈ [nb+ ε, (n+ 1)b− ε],

0 if t ∈ [nb, nb+ ε/2] ∪ [(n+ 1)b− ε/2, (n+ 1)b].
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Let g(x, y) denote a Riemannian metric on M̃ such that g(x, y) = g(x+ t, y+nb)

for all t ∈ R and n ∈ Z. We define a fundamental function F̃ : TM̃ → R by

F̃ (x, y, ẋ, ẏ) = k(y)F̃0(x, y, ẋ, ẏ) + (1− k(y))∥(ẋ, ẏ)∥g

where ∥·∥g denotes the norm with respect to g. Then the fundamental function F̃

has a motion ψ(x, y) = (x, y + b) satisfying the condition. □

Thanks to existing straight lines in M̃ , we can get some information on the

behavior of γ via γ̃ where γ̃ is a lift of γ into M̃ constructed in Lemma 8.1.

From this reason, it is very important to study geodesics in a Finsler plane

(M,F ) with one-parameter group of motions φt and a motion ψ on (M,F ) such

that φt ◦ ψ = ψ ◦ φt for all t ∈ R and the quotient surface T 2 =M/D[φt0 , ψ] is a

2-torus of revolution.

9. Appendix 2: Distances induced by F

Let (M,F ) be a complete Finsler manifold. Let Ω(p, q) denote the set of all

piecewise smooth curves from p to q. We recall the distance d induced by F ,

d(p, q) := inf{LF (c) ∈ R | c ∈ Ω(p, q)}, where LF (c) is the length of a curve

c : [0, 1] →M given by

LF (c) :=

∫ 1

0

F (c(t), ċ(t)) dt.

We define a symmetric distance m on M by

m(p, q) := d(p, q) + d(q, p), p, q ∈M,

and a symmetric fundamental function G by

G(x, ẋ) := F (x, ẋ) + F (x,−ẋ), ẋ ∈ TxM.

Note that G = 2A, where A is the symmetric part of F .

Let T (p, q) denote a minimizing geodesic segment from p to q in (M,d). We

then have LF (T (p, q)) = d(p, q) and LF (T (q, p)) = d(q, p). Obviously, T (p, q) ∪
T (q, p) is the shortest round path from p through q in (M,d). Its length is

m(p, q). In general, (M,m) is not an intrinsic metric space. As usual, we define

the length of a curve in (M,m) and, then, an intrinsic distance mL in M , i.e.,

mL(p, q) := infc∈Ω(p,q) Lm(c). Thus we have an intrinsic metric space (M,mL).
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When we need to measure the length with respect to G, it is denoted by

LG(c) for a piecewise smooth curve c : [0, 1] → M . Set as usual dG(p, q) :=

inf{LG(c) ∈ R | c ∈ Ω(p, q)}. We discuss the relations between F , G, d, dG, m

and mL.

Let p, q ∈ M . For curves c1, c2 : [0, 1] → M such that c1(0) = p, c1(1) = q,

c2(0) = q and c2(1) = p, the curve c1 ∪ c2 : [0, 1] →M is defined by

c1 ∪ c2(t) :=

{
c1(2t) if 0 ≤ t ≤ 1/2,

c2(2− 2t) if 1/2 < t ≤ 1.

We define three families of piecewise smooth curves for p, q ∈M .

(1) Ω(p, q) := {c : [0, 1] →M | c(0) = p, c(1) = q},
(2) Γ(p, q) := {c : [0; 1] →M | c(0) = c(1) = p, c(1/2) = q},
(3) Γ0(p, q) := {c ∪ c−1 : [0, 1] →M | c ∈ Ω(p, q)}.

Lemma 9.1. Let (M,F ) be a complete Finsler manifold and p, q ∈M such

that p ̸= q. Let TG(p, q) be a minimizing geodesic segment from p to q in (M,G).

The following are true.

(1) T (p, q) is the shortest curve in Ω(p, q) with length d(p, q).

(2) T (p, q) ∪ T (q, p) is the shortest curve in Γ(p, q) with length m(p, q).

(3) TG(q, p) = TG(p, q)
−1. Moreover, TG(p, q) ∪ TG(q, p) is the shortest curve in

Γ0(p, q) with length dG(p, q) ≥ m(p, q).

Proof. (1) and (2) are well known. We prove (3). Let c0 ∈ Γ0(p, q). Then

there exists a curve c : [0, 1] → M in Ω(p, q) such that c0 = c ∪ c−1. From the

definition of lengths, LF (c0) = LG(c). Hence we have dG(p, q) = inf{LG(c) | c ∈
Ω(p, q)} = inf{LF (c0) | c0 ∈ Γ0(p, q)} ≥ m(p, q). □

A geodesic in (M,G) is an extremal of the variation problem of lengths of

curves c∪c−1 for c ∈ Ω(p, q) in (M,F ). A minimizing geodesic TG(p, q) connecting

p and q is the shortest in Ω(p, q) under the condition that we go along a curve c

and return along the reversed curve c−1.

Lemma 9.2. Let (M,mL) denote the length space made from m. Then mL

equals the distance induced by G, i.e., mL = dG.

Proof. Let ∆ : 0 = t0 < t1 < · · · < tn = 1 be a partition of [0, 1]. We then

have LG(c) = LF (c) + LF (c
−1) because of the definition of length with respect

to F and G. From the definition of Lm, we have Lm(c) = sup∆
∑n
i=1m(c(ti−1),

c(ti)) = sup∆
∑n
i=1(d(c(ti−1), c(ti)) + d(c(ti), c(ti−1))) = LF (c) + LF (c

−1) =

LG(c). This implies that mL is the distance induced by G. □
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We say that a metric space (X, d) is Menger convex if, for any points p, q ∈ X

with p ̸= q, there exists a point r ∈ X such that r ̸= p, r ̸= q and d(p, r)+d(r, q) =

d(p, q) (see [6]).

Lemma 9.3. Let (M,F ) be a complete Finsler manifold. Then, (M,m) is

Menger convex if and only if m = dG.

Proof. If (M,m) is Menger convex, we then havem = mL because there ex-

ists a minimizing geodesic connecting any two points in (M,m). From Lemma 9.2,

we have m = dG.

Assume that m = dG. Then, (M,m) is Menger convex, because dG is an

intrinsic distance. □
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