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On p-hypercyclically embedded subgroups of finite groups

By YUEMEI MAO (Hefei), XIAOYU CHEN (Nanjing) and WENBIN GUO (Hefei)

Abstract. Let G be a finite group and p a prime. A normal subgroup E of G

is said to be p-hypercyclically embedded in G if every p-chief factor of G below E is

cyclic. We say that a subgroup H of G is generalized SΦ-supplemented in G if G has a

subnormal subgroup T such that G = HT and (H ∩ T )HsG/HsG ≤ Φ(H/HsG), where

HsG is the subgroup of H generated by all those subgroups of H which are s-permutable

in G. In this paper, some new characterizations of p-hypercyclically embeddability of

normal subgroups of a finite group are obtained based on the assumption that some

primary subgroups are generalized SΦ-supplemented in G.

1. Introduction

Throughout this paper, all groups considered are finite. G always denotes a

group, p denotes a prime, and |G|p denotes the order of a Sylow p-subgroup of G.

A normal subgroup E of G is said to be hypercyclically embedded (resp.

p-hypercyclically embedded) in G if every chief factor (resp. p-chief factor) of G

below E is cyclic. The hypercyclically embedded subgroups have a great influ-

ence on the structure of a group, and some important classes of groups can be

characterized in terms of hypercyclically embedded subgroups. For example, if

all subgroups of G of prime order or order 4 are hypercyclically embedded in G,
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then G is supersoluble (Huppert [12], Doerk [5], see also [23]). A group G is

quasisupersoluble (i.e. for every non-cyclic chief factor H/K of G, every auto-

morphism of H/K induced by an element of G is inner) if and only if it has a

normal hypercyclically embedded subgroup E such that G/E is semisimple (see

[10, Theorem C]). Some recent results in this topic can be found in, for example,

[2], [9], [11], [22], [23], [24], [25].

Recall that a subgroup H of G is said to be s-permutable in G if H per-

mutes with every Sylow subgroup of G. A subgroup H of G is said to be weakly

s-permutable in G [21] if G has a subnormal subgroup T such that G = HT and

H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups

of H which are s-permutable in G. A subgroup H of a group G is called SΦ-

supplemented [17] (or Φ-s-supplemented [16]) in G if there exists a subnormal

subgroup T of G such that G = HT and H ∩ T ≤ Φ(H), where Φ(H) is the

Frattini subgroup of H. Note that HsG is normal in H. We now introduce the

following concept which is closely related to the above two concepts.

Definition 1.1. A subgroup H of G is said to be generalized SΦ-supplemented

in G if there exists a subnormal subgroup T of G such that G = HT and

(H ∩ T )HsG/HsG ≤ Φ(H/HsG).

It is easy to see that weakly s-permutable subgroups and SΦ-supplemented

subgroups of G are all generalized SΦ-supplemented in G. But the following

examples show that the converse does not hold in general.

Example 1.2. Let G = Q8 = 〈a, b | a4 =1, a2 =b2, b−1ab=a−1〉 and H=〈b2〉.
Then, clearly, H is s-permutable in G and H has the unique supplement G in G.

Hence H is generalized SΦ-supplemented in G. But H is not SΦ-supplemented

in G because Φ(H) = 1.

Example 1.3. Let G=S5 be the symmetric group of degree 5 and H=〈(1234)〉.
Then HsG = HG = 1. Since G = HA5 and H ∩ A5 = Φ(H) = 〈(13)(24)〉, H is

generalized SΦ-supplemented in G, but H is not weakly s-permutable in G.

A class of groups F is called a formation if it is closed under taking homo-

morphic images and subdirect products. The F-residual of G, denoted by GF, is

the smallest normal subgroup of G with quotient in F. Let ZF(G) (resp. ZpF(G))

denote the F-hypercentre (resp. pF-hypercentre) of G, that is, the product of all

normal subgroups H of G such that all chief factors (resp. p-chief factors) L/K

of G below H is F-hypercentral (i.e. L/K oG/CG(L/K) ∈ F (see [8, Chap. 1])).

Let U denote the classes of all supersoluble groups. Then ZU(G) (resp. ZpU(G))

is the product of all normal hypercyclically embedded (resp. p-hypercyclically
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embedded) subgroups of G. Moreover, the generalized Fitting subgroup F ∗(G)

(resp. the generalized p-Fitting subgroup F ∗p (G)) of G is the maximal quasinilpo-

tent subgroup (resp. the maximal p-quasinilpotent subgroup) of G (for details,

see [14, Chap. X] and [15]).

In the present paper, we will give a new characterization of p-hypercyclically

embedded subgroups of G by using the generalized SΦ-supplemented subgroups.

Our main result is the following.

Theorem 1.4. Let E and X be normal subgroups of G such that F ∗p (E) ≤
X ≤ E and P a Sylow p-subgroup of X. If P has a subgroup D such that

1 < |D| < |P |, and all subgroups H of P with |H| = |D| and all cyclic subgroups

of P of order 4 (when P is a non-abelian 2-group and |D| = 2) are generalized

SΦ-supplemented in G, then E ≤ ZpU(G).

The following example illustrates that the converse of Theorem 1.4 does not

hold.

Example 1.5. Let G = 〈a, b | a5 = 1, b4 = 1, b−1ab = a2〉 and H = 〈b2〉.
Then clearly, G is 2-supersoluble, HsG = 1 and Φ(H) = 1. If H is generalized

SΦ-supplemented in G, then there exists a subnormal subgroup T of G such that

G = HT and H ∩T = 1. This implies that 〈b〉 = H(〈b〉∩T ), and so H ≤ 〈b〉 ≤ T .

This contradiction shows that H is not generalized SΦ-supplemented in G.

The proof of Theorem 1.4 consists of a large number of steps. The following

propositions are the main stages of it.

Proposition 1.6. Let P be a normal p-subgroup ofG. If P has a subgroupD

such that 1 < |D| < |P | and all subgroups H of P with |H| = |D| and all cyclic

subgroups of P of order 4 (when P is a non-abelian 2-group and |D| = 2) are

generalized SΦ-supplemented in G, then P ≤ ZU(G).

Proposition 1.7. Let E be a normal subgroup of G and P a Sylow

p-subgroup of E. If every cyclic subgroup of P of order p or 4 (when P is a

non-abelian 2-group) is generalized SΦ-supplemented in G, then E ≤ ZpU(G).

Proposition 1.8. Let E be a normal subgroup of G and P a Sylow

p-subgroup of E. If every maximal subgroup of P is generalized SΦ-supplemented

in G, then either E ≤ ZpU(G) or |E|p = p.

Note that Propositions 1.6–1.8 are independently interesting since they cover

main results of many papers among which one can find recent publications (for

example, [17], [16], [19]). We prove Theorem 1.4 and Propositions 1.6–1.8 in

Section 3. Some applications of these results will be discussed in Section 4.

All unexplained notation and terminology are standard, as in [6], [7], [8].
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2. Preliminaries

Lemma 2.1 (see [8, Chap. 1, Lemma 5.34]). Let H ≤ G, K ≤ G and NEG.

(1) If H is s-permutable in G, then H is subnormal in G.

(2) If H is s-permutable in G, then HN/N is s-permutable in G/N .

(3) IfH is a p-group, thenH is s-permutable in G if and only if Op(G) ≤ NG(H).

(4) If H is s-permutable in G, then H ∩K is s-permutable in K.

Lemma 2.2 (see [21, Lemma 2.8] or [8, Chap. 3, Lemma 3.6]). Let H ≤
K ≤ G. Then:

(1) HsG is an s-permutable subgroup of G;

(2) HsG ≤ HsK ;

(3) If H EG, then (K/H)s(G/H) = KsG/H.

Lemma 2.3. Let H ≤ K ≤ G and N E G. Suppose that H is generalized

SΦ-supplemented in G. Then:

(1) H is generalized SΦ-supplemented in K.

(2) If either N ≤ H or (|H|, |N |) = 1, then HN/N is generalized SΦ-supple-

mented in G/N .

Proof. By the hypothesis, G has a subnormal subgroup T such that G =

HT and(H ∩ T )HsG/HsG ≤ Φ(H/HsG). Let V/HsG = Φ(H/HsG).

(1) By Dedekind’s identity, K = H(T ∩K). Then by Lemma 2.2(2), HsG ≤
HsK , and so (H ∩ T )HsK/HsK ≤ V HsK/HsK ≤ Φ(H/HsK). Hence H is gener-

alized SΦ-supplemented in K.

(2) Clearly, G/N = (HN/N)(TN/N) and HsGN/N ≤ (HN/N)sG =

(HN)sG/N by Lemma 2.2(3). Also, by Lemma 2.1(4), (HN)sG = ((HN)sG ∩
H)N ≤ HsGN . This implies that (HN)sG = HsGN . Since either N ≤ H or

(|H|, |N |) = 1, HN ∩ TN = (H ∩ T )N , and so (HN ∩ TN)(HN)sG/(HN)sG ≤
V N/HsGN ≤ Φ(HN/HsGN). This shows that HN/N is generalized SΦ-supple-

mented in G/N . �

Let P be a p-group. If P is not a non-abelian 2-group, then we use Ω(P ) to

denote the subgroup Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 2.4 (see [4, Lemma 2.12]). Let P be a normal p-subgroup ofG and C

a Thompson critical subgroup of P (see [7, p. 186]). If P/Φ(P ) ≤ ZU(G/Φ(P ))

or C ≤ ZU(G) or Ω(P ) ≤ ZU(G), then P ≤ ZU(G).
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Lemma 2.5 (see [3, Lemma 2.10]). Let C be a Thompson critical subgroup

of a nontrivial p-group P .

(1) If p is odd, then the exponent of Ω1(C) is p.

(2) If P is an abelian 2-group, then the exponent of Ω1(C) is 2.

(3) If p = 2, then the exponent of Ω2(C) is at most 4.

Lemma 2.6 (see [1, Theorem 2.1.6]). Let G be a p-supersoluble group. Then

the derived subgroup G′ of G is p-nilpotent. In particular, if Op′(G) = 1, then G

has a unique Sylow p-subgroup.

Lemma 2.7 (see [25, Lemma 2.13]). Let F be a formation and E a normal

subgroup of G. Then E ≤ ZpF(G) if and only if F ∗p (E) ≤ ZpF(G).

Lemma 2.8 (see [20, Lemma 2.6]). Let V be an s-permutable subgroup of G

of order 4.

(1) If V = A × B, where |A| = |B| = 2 and A is s-permutable in G, then B is

s-permutable in G.

(2) If V = 〈x〉 is cyclic, then 〈x2〉 is s-permutable in G.

Lemma 2.9 (see [22, Theorem B]). Let F be any formation and E a normal

subgroup of G. If F ∗(E) ≤ ZF(G), then E ≤ ZF(G).

3. Proof of main results

For a p-subgroup H of G, we know that Φ(H/HsG) = Φ(H)HsG/HsG (see

[13, Chap. 3, Theorem 3.14(c)]). Therefore, if H is a generalized SΦ-supplemented

p-subgroup of G, then there exists a subnormal subgroup T of G such that G =

HT and H ∩ T ≤ Φ(H)HsG.

Proof of Proposition 1.6. Suppose that the assertion is false and let

(G,P ) be a counterexample for which |G|+ |P | is minimal. Then:

(1) |D| > p.

If |D| = p, then by the hypothesis, every cyclic subgroup of P of order p or 4

(when P is a non-abelian 2-group) is generalized SΦ-supplemented in G. Let P/R

be a chief factor of G. Clearly, (G,R) satisfies the hypothesis of the proposition.

The choice of (G,P ) implies that R ≤ ZU(G). If |P/R| = p, then P ≤ ZU(G),

a contradiction. Hence |P/R| > p. Suppose that L E G and L < P . Then,

similarly as above, we have that L ≤ ZU(G). If L � R, then P = RL ≤ ZU(G), a

contradiction. Hence L ≤ R. This shows that G has a unique normal subgroup R
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such that P/R is a chief factor of G. Let C be a Thompson critical subgroup of P .

Note that C is characteristic in P (see [7, Chap. 5, Theorem 3.11]). If Ω(C) < P ,

then Ω(C) ≤ R ≤ ZU(G). It follows from Lemma 2.4 that P ≤ ZU(G), which is

impossible. Hence P = C = Ω(C). Then by Lemma 2.5, the exponent of P is p

or 4 (when P is a non-abelian 2-group).

Obviously, P/R ∩ Z(Gp/R) > 1, where Gp is a Sylow p-subgroup of G.

Suppose that V/R ≤ P/R∩Z(Gp/R) and |V/R| = p. Let x ∈ V \R and H = 〈x〉.
Then V = HR and |H| = p or 4. If H = HsG, then by Lemma 2.2(1), H is

s-permutable in G, and so V/R = HR/REG/R by Lemma 2.1(2)(3). But since

P/R is a chief factor of G, we have that P = V . It follows that P/R = V/R is

cyclic, and so P ≤ ZU(G), a contradiction. Hence H 6= HsG and so HsG ≤ Φ(H).

By the hypothesis, there exists a subnormal subgroup T of G such that G = HT

and H ∩ T ≤ Φ(H). In this case, P ∩ T < P , and so (P ∩ T )G = (P ∩ T )P < P .

This means that (P ∩ T )G ≤ R, and so P = H(P ∩ T ) = HR = V , also a

contradiction. Hence |D| > p.

(2) |D| < |P |/p.

Suppose that p|D| = |P |. By the hypothesis, every maximal subgroup of P

is generalized SΦ-supplemented in G. Let N be a minimal normal subgroup of G

contained in P . Then by Lemma 2.3(2), (G/N,P/N) satisfies the hypothesis of

the proposition. The choice of (G,P ) yields that P/N ≤ ZU(G/N). If |N | = p,

then P ≤ ZU(G), which is impossible. Hence |N | > p. Suppose that G has

another minimal normal subgroup L contained in P such that N 6= L. With

a similar discussion as above, we have that P/L ≤ ZU(G/L). It follows that

NL/L ≤ ZU(G/L), and so |N | = p, a contradiction. Thus G has a unique

minimal normal subgroup N contained in P .

If Φ(P ) = 1, then P is elementary abelian. Let N1 be a maximal subgroup

of N such that N1 is normal in some Sylow p-subgroup Gp of G, and let S be a

complement of N in P . Then P1 = N1S is a maximal subgroup of P . By [13,

Chap. 3, Lemma 3.3], Φ(P1) ≤ Φ(P ) = 1. Therefore, there exists a subnormal

subgroup T of G such that G = P1T and P1 ∩ T ≤ (P1)sG. Then G = PT and

P = P1(P ∩ T ). It is easy to see that 1 6= P ∩ T E G. Hence N ≤ P ∩ T , and

so P1 ∩ N ≤ P1 ∩ T ≤ (P1)sG. It follows that N1 = P1 ∩ N = (P1)sG ∩ N is s-

permutable in G. By Lemma 2.1(3), N1EG, and so |N | = p, a contradiction. Thus

Φ(P ) 6= 1. Then N ≤ Φ(P ). Since P/N ≤ ZU(G/N), P/Φ(P ) ≤ ZU(G/Φ(P )).

Applying Lemma 2.4, we obtain that P ≤ ZU(G). The contradiction completes

the proof of (2).
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(3) Final contradiction.

We shall show that all subgroups H of P with |H| = |D| are s-permutable

in G. By the hypothesis, G has a subnormal subgroup T such that G = HT and

H ∩ T ≤ Φ(H)HsG. If T < G, then there exists a normal subgroup M of G such

that T ≤ M and |G : M | = p. Since |P : P ∩M | = |PM : M | = p, P ∩M is a

maximal subgroup of P and so |D| < |P ∩M | by (2). Clearly, P ∩M EG. Then

(G,P ∩M) satisfies the hypothesis of the proposition. The choice of (G,P ) yields

that P ∩M ≤ ZU(G). Consequently, P ≤ ZU(G), which is impossible. Hence

T = G. This implies that H = HsG is s-permutable in G by Lemma 2.2(1). Then

by [24, Theorem], P ≤ ZU(G). The final contradiction ends the proof. �

Proof of Proposition 1.7. Suppose that the assertion is false and let

(G,E) be a counterexample for which |G| + |E| is minimal. We now proceed

via the following steps.

(1) Op′(E) = 1.

If Op′(E) 6= 1, then by Lemma 2.3(2), (G/Op′(E), E/Op′(E)) satisfies the

hypothesis of the proposition. The choice of (G,E) implies that E/Op′(E) ≤
ZpU(G/Op′(E)) = ZpU(G)/Op′(E), and so E ≤ ZpU(G), a contradiction. Hence

Op′(E) = 1.

(2) E = G.

Suppose that E < G. Then by Lemma 2.3(1), (E,E) satisfies the hypothesis

of the proposition. The choice of (G,E) implies that E is p-supersoluble. By (1)

and Lemma 2.6, we see that P E E. Thus P E G. Then by Proposition 1.6,

we have P ≤ ZU(G). Consequently, E ≤ ZpU(G), which is absurd. Therefore,

E = G.

(3) ZpU(G) is the unique normal subgroup of G such that G/ZpU(G) is a chief

factor of G, GU = G and Op(G) = Z(G) = ZU(G) is the Sylow p-subgroup of

ZpU(G).

Let G/K be a chief factor of G. Obviously, (G,K) satisfies the hypothesis of

the proposition. By the choice of the (G,E), K ≤ ZpU(G), and so K = ZpU(G).

This shows that ZpU(G) is the unique normal subgroup of G such that G/ZpU(G)

is a chief factor of G. By Proposition 1.6, Op(G) ≤ ZU(G) ≤ ZpU(G). Then

by (1), (2) and Lemma 2.6, Op(G) is the Sylow p-subgroup of ZpU(G). If GU < G,

then GU ≤ ZpU(G). So GU ∩ Op(G) is the Sylow p-subgroup of GU. Let P1 =

GU∩Op(G). Note that (G/P1)/(GU/P1) is supersoluble and GU/P1 is a p′-group.

Hence G/P1 is p-supersoluble, and so G is p-supersoluble because P1 ≤ ZU(G), a

contradiction. Thus GU = G. It follows from [6, Chap. IV, Theorem 6.10] that
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ZU(G) ≤ Z(G). Since Op′(Z(G)) ≤ Op′(G) = 1 by (1) and (2), Z(G) ≤ Op(G).

Therefore, Op(G) = Z(G) = ZU(G).

(4) Final contradiction.

By (3), we have that G′ = G. If P is abelian, then by (3) and [13, Chap. VI,

Theorem 14.3], Z(G)=1. Hence by (3), ZpU(G) is a p′-group. Then by (1) and (2),

ZpU(G) = 1, and so G is simple by (3) again. Let x be an element of G of order p.

Then by the hypothesis, G has a subnormal subgroup T such that G = 〈x〉T and

〈x〉 ∩ T ≤ 〈x〉sG. In this case, clearly, T = G and so 〈x〉 is s-permutable in G by

Lemma 2.2(1). Then 〈x〉 is subnormal in G by Lemma 2.1(1). So G = 〈x〉, which

is impossible. Thus P is non-abelian.

By [13, Chap. IV, Satz 5.5], we see that there exists a cyclic subgroup H of P

of order p or 4 which is not contained in Z(G). Then by the hypothesis, H is

generalized SΦ-supplemented in G. Thus G has a subnormal subgroup T such

that G = HT and H∩T ≤ Φ(H)HsG. If T < G, then G has a normal subgroup M

such that T ≤ M and |G : M | = p. It is easy to see that (G,M) satisfies the

hypothesis of the proposition. The choice of (G,E) implies that M ≤ ZpU(G),

and so G ≤ ZpU(G), which is impossible. Hence T = G. Then H = HsG is

s-permutable in G by Lemma 2.2(1). Since H � Z(G) and Z(G) is the Sylow

p-subgroup of ZpU(G) by (3), H � ZpU(G). Hence by (3) and Lemma 2.1(3), we

have that G = (HZpU(G))G = (HZpU(G))
P ≤ PZpU(G). But since G/ZpU(G)

is a chief factor of G, |G/ZpU(G)| = p. This shows that G is p-supersoluble, a

contradiction. This completes the proof. �

Proof of Proposition 1.8. Suppose that the assertion is false and let

(G,E) be a counterexample for which |G|+ |E| is minimal. Then:

(1) Op′(E) = 1 and E = G.

See steps (1) and (2) in the proof of Proposition 1.7.

(2) Let N be a minimal normal subgroup of G. Then either G/N is p-

supersoluble or |G/N |p = p.

Suppose that M/N is a maximal subgroup of PN/N . Then there exists a

maximal subgroup P1 of P such that M = P1N and P ∩ N = P1 ∩ N . By the

hypothesis, G has a subnormal subgroup T such that G = P1T and P1 ∩ T ≤
Φ(P1)(P1)sG. Clearly, (|N : P1∩N |, |N : T∩N |) = 1. Hence N = (P1∩N)(T∩N),

and so P1N ∩ TN = (P1 ∩ T )N . By discussing similarly as in the proof of

Lemma 2.3(2), M/N = P1N/N is generalized SΦ-supplemented in G/N . This

shows that (G/N,G/N) satisfies the hypothesis of the proposition. The choice of

(G,E) implies that either G/N is p-supersoluble or |G/N |p = p. Hence (2) holds.
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(3) If PN < G, then N ≤ Op(G).

By Lemma 2.3(1), (PN,PN) satisfies the hypothesis of the proposition, and

so the choice of (G,E) implies that either PN is p-supersoluble or |PN |p = p.

Then by (1), N ≤ Op(G).

(4) N is the unique minimal normal subgroup of G.

Let N and L be two distinct minimal normal subgroups of G. By (2), we

may discuss the following three possible cases.

(i) If G/N and G/L are all p-supersoluble, then G is p-supersoluble, a con-

tradiction.

(ii) Without loss of generality, we may assume that G/N is p-supersoluble

and |G/L|p = p. Since LN/N is a minimal normal subgroup of G/N and p||L|
by (1), |L| = |LN/N | = p, and so |P | = p2. Then by (1), |N |p = |P ∩ N | = p

and N is a non-abelian simple group. Let N1 = P ∩ N . Then (N1)sG = 1

by Lemma 2.1(1). By the hypothesis, N1 is generalized SΦ-supplemented in G.

Thus G has a subnormal subgroup T such that G = N1T and N1 ∩ T = 1. Thus

T EG. It follows that either N ∩ T = 1 or N ≤ T . For the former case, we have

N = N ∩N1T = N1, a contradiction. For the latter case, it follows that N1 = 1,

which is impossible.

(iii) Suppose that |G/N |p = p and |G/L|p = p. Without loss of generality,

we may assume that N and L are non-abelian simple groups. Then P = (P ∩
N)(P ∩ L), and so |P | = p2. Then with a similar discussion as above, we can

derive a contradiction. Hence (4) holds.

(5) N � Φ(P ).

Suppose that N ≤ Φ(P ). Then N ≤ Φ(G). By (2), either G/N is p-super-

soluble or |G/N |p = p. But the former case is clearly impossible. Hence we may

assume that |G/N |p = p. Then |P/N | = p. This implies that P is cyclic, and

so |N | = p. Then |P | = p2. We show that G/N is a non-abelian simple group.

Let A/N = Op′(G/N). Then A ∩ P ≤ N ≤ Φ(P ), and so A is p-nilpotent by

[13, Chap. IV, Satz 4.7]. It follows from (1) that A = N . Thus Op′(G/N) = 1.

Suppose that K/N is a chief factor of G. Then |K/N |p = p, and so P ≤ K.

Obviously, (G,K) satisfies the hypothesis of the proposition. If K < G, the choice

of (G,E) yields that K ≤ ZpU(G). Thus G is p-supersoluble. This contradiction

shows that G = K. Then G/N is a non-abelian simple group. Since |N | = p,

G/CG(N) is abelian, and so CG(N) = G. It follows that N ≤ Z(G), which

contradicts [13, Chap. VI, Satz 14.3].
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(6) Op(G) = 1.

Suppose that Op(G) 6= 1. By (4), N ≤ Op(G). If G/N is p-supersoluble,

then N � Φ(G). Therefore there exists a maximal subgroup M of G such that

G = NM and N ∩M = 1. Since P = N(P ∩M), P has a maximal subgroup P1

containing P ∩ M and P = NP1. If (P1)sG 6= 1, then by (4), Lemma 2.1(3)

and Lemma 2.2(1), N ≤ ((P1)sG)G = ((P1)sG)P ≤ P1, a contradiction. Thus

(P1)sG = 1. Then by the hypothesis, there exists a subnormal subgroup T of G

such that G = P1T and P1∩T ≤ Φ(P1). Note that N ≤ Op(G) ≤ T by (4). Thus

P1 ∩ N ≤ Φ(P1). This induces that P1 = (P1 ∩ N)(P ∩M) = P ∩M . Hence

P1 ∩ N = 1, and so |N | = p, a contradiction. Now assume that |G/N |p = p.

Then |P/N | = p. By (5), P has a maximal subgroup P2 such that P = P2N .

With a similar argument as above, we have that (P2)sG = 1. Therefore, by the

hypothesis, there exists a subnormal subgroup T of G such that G = P2T and

P2 ∩ T ≤ Φ(P2). Then clearly, N ≤ T , and so |G : T | = p. This implies that

T E G and T/N is a p′-group. Thus G/N is p-supersoluble. This case has been

dealt with in the above. Hence we have (6).

(7) Final contradiction.

By (3) and (6), we have that G = PN . If P ≤ N , then G is a non-abelian

simple group. Let P1 be a maximal subgroup of P . Then P1 is generalized

SΦ-supplemented in G. It follows that P1 = (P1)sG is s-permutable in G by

Lemma 2.2(1), and so P1 = 1 by Lemma 2.1(1). Thus |G|p = |P | = p. This con-

tradiction shows that P has a maximal subgroup P2 such that P ∩N≤P2. Then

(P2)sG = 1 by (6), Lemma 2.1(1) and Lemma 2.2(1). Hence, by the hypothesis,

G has a subnormal subgroup T such that G = P2T and P2 ∩ T ≤ Φ(P2) ≤ Φ(P ).

By [21, Lemma 2.5(7)], we have Op(G) ≤ T . Hence by (4), N ≤ Op(G) ≤ T ,

and thereby P ∩ N = P2 ∩ N ≤ Φ(P ). Then by [13, Chap. IV, Satz 4.7], N is

p-nilpotent, and so N is a p-group by (1), which contradicts (6). The proof is

thus completed. �

Proof of Theorem 1.4. Suppose that the result is false and let (G,E)

be a counterexample for which |G| + |E| is minimal. We now proceed via the

following steps.

(1) Op′(E) = 1 and X = E = G.

Suppose that X < E. Then clearly, F ∗p (X) = F ∗p (E). Hence (G,X) satisfies

the hypothesis of the theorem. The choice of (G,E) implies that F ∗p (E) ≤ X ≤
ZpU(G), and so E ≤ ZpU(G) by Lemma 2.7. This contradiction shows that X=E.

With a similar argument as in steps (1) and (2) in the proof of Proposition 1.7,

we have that Op′(E) = 1 and E = G.
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(2) p < |D| < |P |/p.

It follows immediately from Propositions 1.7 and 1.8.

(3) If H ≤ P and |H| = |D|, then H is s-permutable in G.

By the hypothesis, G has a subnormal subgroup T such that G = HT and

H ∩ T ≤ Φ(H)HsG. If T < G, then there exists a normal subgroup M of

G such that T ≤ M and |G : M | = p. Hence by (2), (G,M) satisfies the

hypothesis of the theorem. The choice of (G,E) implies that M ≤ ZpU(G), and

so G is p-supersoluble, a contradiction. Thus T = G. It follows that H = HsG is

s-permutable in G by Lemma 2.2(1).

(4) Final contradiction.

Let N be a minimal normal subgroup of G. Then by (1), p | |N |. If N �
Op(G), then we may take a subgroup H of P such that |H| = |D| and H ∩N 6= 1.

By (3) and Lemma 2.1(1), H ∩ N ≤ Op(N) = 1, a contradiction. Hence N ≤
Op(G). If |N | > |D|, then N has a subgroup H such that H E P and |H| = |D|.
By (3) and Lemma 2.1(3), H EG, a contradiction. Now assume that |N | = |D|.
Then by (2), there exists a subgroup V of P such that N < V < P , V E P and

|V : N | = p. If Φ(V ) = N , then V is cyclic, and so |N | = p, which contradicts (2).

Thus Φ(V ) < N . It follows that N has a subgroup N1 such that Φ(V ) ≤ N1 < N ,

N1 E P and |N : N1| = p. Then V has a subgroup H such that |H| = |D| and

H ∩N = N1. By (3), N1 is s-permutable in G, and so N1 EG by Lemma 2.1(3).

Thus N1 = 1, which implies that |N | = |D| = p, which contradicts (2). Therefore,

we have that |N | < |D|.
If p > 2 or p = 2 and P/N is abelian or p = 2 and |D| > 2|N |, then

by Lemma 2.3(2), we see that (G/N,G/N) satisfies the hypothesis of the the-

orem. Now assume that p = 2, P/N is non-abelian and |D| = 2|N |. Then

P is non-abelian. By (3) and Lemma 2.1(2), all subgroups of P/N of order 2

are s-permutable in G/N . Let L/N be a cyclic subgroup of order 4 of P/N .

If N ≤ Φ(L), then L is cyclic, and so |D| = 2|N | = 4. By (3), all subgroups of

P of order 4 are s-permutable in G. For any subgroup K of P of order 2 with

K 6= N , NK is s-permutable in G. Thus by Lemma 2.8, K is s-permutable in

G. Now by Proposition 1.7, we have that G is p-supersoluble, a contradiction.

Hence we may assume that N � Φ(L). Then there exists a maximal subgroup

L1 of L such that L = L1N . Since |L1| = |D|, L/N = L1N/N is s-permutable in

G/N by (3) and Lemma 2.1(2). This shows that (G/N,G/N) also satisfies the

hypothesis of the theorem. Hence, by the choice of (G,E), G/N is p-supersoluble.

Then clearly, N is the unique normal subgroup of G and N � Φ(G). It follows

that G has a maximal subgroup M such that G = N oM . Since Op(G)∩M = 1,
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N = Op(G), and so |N | ≥ |D| by (3) and Lemma 2.1(1). The final contradiction

completes the proof. �

4. Further applications

By Theorem 1.4, we can prove the following corollaries.

Corollary 4.1. Let E be a normal subgroup of G and P a Sylow p-subgroup

of E, where (|E|, p − 1) = 1. If P has a subgroup D such that 1 < |D| < |P |,
and all subgroups H of P with |H| = |D| and all cyclic subgroups of P of order 4

(when P is a non-abelian 2-group and |D| = 2) are generalized SΦ-supplemented

in G, then E is p-nilpotent.

Proof. By Theorem 1.4, E ≤ ZpU(G), and so E is p-supersoluble. Since

(|E|, p− 1) = 1, we see that E is p-nilpotent. �

Corollary 4.2. Let E and X be normal subgroups of G such that F ∗(E) ≤
X ≤ E. If for any non-cyclic Sylow subgroup P of X, P has a subgroup D such

that 1 < |D| < |P |, and all subgroups H of P with |H| = |D| and all cyclic

subgroups of P of order 4 (when P is a non-abelian 2-group and |D| = 2) are

generalized SΦ-supplemented in G, then E ≤ ZU(G).

Proof. By Lemma 2.3(2) and Corollary 4.1, we have that X has a Sylow

tower of supersoluble type. If P is cyclic, then clearly, X ≤ ZpU(G). Now assume

that P is non-cyclic. Then by Theorem 1.4, X ≤ ZpU(G) also holds. Therefore,

F ∗(E) ≤ X ≤ ZU(G), and so E ≤ ZU(G) by Lemma 2.9. �

Corollary 4.3. Let E be a normal subgroup of G such that G/E is

p-nilpotent and P a Sylow p-subgroup of E such that NG(P ) is p-nilpotent.

If P has a subgroup D such that 1 < |D| < |P |, and all subgroups H of P

with |H| = |D| and all cyclic subgroups of P of order 4 (when P is a non-abelian

2-group and |D| = 2) are generalized SΦ-supplemented in G, then G is

p-nilpotent.

Proof. Suppose that the result is false and let (G,E) be a counterexample

for which |G|+ |E| is minimal. Assume that Op′(E) 6= 1. Since

NG/Op′ (E)(POp′(E)/Op′(E)) = NG(P )Op′(E)/Op′(E), (G/Op′(E), E/Op′(E))

satisfies the hypothesis of the corollary by Lemma 2.3(2). The choice of (G,E)

implies that G/Op′(E) is p-nilpotent, and so G is p-nilpotent, a contradiction.
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Hence Op′(E) = 1. Note that by Theorem 1.4, E is p-supersoluble. Then by

Lemma 2.6, P EG. Hence G = NG(P ) is p-nilpotent, a contradiction. �

Note that Corollaries 4.1–4.3 generalize many known results, for example,

[16, Theorems 3.1, 3.6, 3.11, 4.1, 4.3 and 4.4], [17, Theorems 3.1–3.5], [18, Theo-

rems 1.2 and 1.3], [19, Theorems 3.1 and 3.2], [20, Theorem 1.4], [21, Theorems 1.3

and 1.4], [24, Theorem]. Moreover, we point out that [16, Theorem 3.9] and [19,

Theorem 3.3] follow directly from Proposition 1.8.

Acknowledgements. The authors cordially thanks the referees for their

careful reading and helpful comments.

References

[1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite

Groups, Walter de Gruyter, Berlin – New York, 2010.

[2] A. Ballester-Bolinches, L. M. Ezquerro and A. N. Skiba, Local embeddings of some

families of subgroups of finite groups, Acta Math. Sinica 25 (2009), 869–882.

[3] X. Chen and W. Guo, On Π-supplemented subgroups of a finite group, Comm. Algebra
44 (2016), 731–745.

[4] X. Chen, W. Guo and A. N. Skiba, Some conditions under which a finite group belongs
to a Baer-local formation, Comm. Algebra 42 (2014), 4188–4203.
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