
Publ. Math. Debrecen

89/1-2 (2016), 187–201

DOI: 10.5486/PMD.2016.7463

A scale variational principle of Herglotz

By RICARDO ALMEIDA (Aveiro)

Abstract. The Herglotz problem is a generalization of the fundamental problem

of the calculus of variations. In this paper, we consider a class of non-differentiable

functions, where the dynamics is described by a scale derivative. Necessary conditions

are derived to determine the optimal solution for the problem. Some other problems

are considered, like transversality conditions, the multi-dimensional case, higher-order

derivatives and several independent variables.

1. Introduction

The calculus of variations deals with optimization of a given functional, whose

analytic expression is the integral of a given function, that depends on time, space

and the velocity of the trajectory:

x 7→
∫ b

a

L(t, x(t), ẋ(t)) dt.

The variational principle of Herglotz can be seen as an extension of such classical

theories, but instead of an integral, we have the functional as a solution of a

differential equation (see [9], [10]):{
ż(t) = L(t, x(t), ẋ(t), z(t)), with t ∈ [a, b],

z(a) = za.

Without the dependence of z, we can convert this problem into a calculus of

variations problem. In fact, integrating the differential equation

ż(t) = L(t, x(t), ẋ(t))
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from a to b, we obtain

z(b) =

∫ b

a

[
L(t, x(t), ẋ(t)) +

za
b− a

]
dt.

Recently, more advances were made namely proving Noether’s type theorems for

the variational principle of Herglotz (see e.g. [5], [6], [7], [8], [9], [12]). The aim

of this paper is to consider the Herglotz problem, but the trajectories x(·) may

be non-differentiable functions. We believe that this situation may model more

efficiently certain physical problems, like fractals.

The organization of the paper is the following. In Section 2 we define what

a scale derivative is, following the concept as presented in [2], and we present

some of its main properties, like the algebraic rules, integration by parts formula,

etc. In Section 3 we prove our new results. After presenting the Herglotz scale

problem, we prove a necessary condition that every extremizer must fulfill. Some

generalizations of the main result are also presented to complete the study.

2. Scale calculus

We review some definitions and the main results from [2] that we will need.

For more on the subject, see references [1], [2], [3].

From now on, let α, β, h be reals in ]0, 1[ with α + β > 1 and h � 1, and

consider I := [a− h, b+ h].

Definition 1. Let f : I → R be a function. The delta derivative of f at t is

defined by

∆h[f ](t) :=
f(t+ h)− f(t)

h
, for t ∈ [a− h, b],

and the nabla derivative of f at t is defined by

∇h[f ](t) :=
f(t)− f(t− h)

h
, for t ∈ [a, b+ h].

If f is differentiable, then

lim
h→0

∆h[f ](t) = lim
h→0
∇h[f ](t) = f ′(t).

These two operators can be combined into a single one, where the real part

is the mean value of such operators, and the complex part measures the difference

between them.
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Definition 2. The h-scale derivative of f at t is given by

2hf

2t
(t) =

1

2
[(∆h[f ](t) +∇h[f ](t)) + i (∆h[f ](t)−∇h[f ](t))] ,

for t ∈ [a, b]. (1)

For complex valued functions f , such definition is extended by

2hf

2t
(t) =

2hRef

2t
(t) + i

2hImf

2t
(t).

We now explain how to drop the dependence on the parameter h in the defini-

tion of the scale derivative. First, consider the set C0
conv([a, b]×]0, 1[,C) of the

functions g ∈ C0([a, b]×]0, 1[,C) for which the limit

lim
h→0

g(t, h)

exists for all t ∈ [a, b], and let E be a complementary space of C0
conv([a, b]×]0, 1[,C)

in C0([a, b]×]0, 1[,C).

Define π the projection of C0
conv([a, b]×]0, 1[,C)⊕E onto C0

conv([a, b]×]0, 1[,C),

π : C0
conv([a, b]×]0, 1[,C)⊕ E → C0

conv([a, b]×]0, 1[,C)

g := gconv + gE 7→ π(g) = gconv.

Using these definitions, we arrive at the main concept of [2].

Definition 3. The scale derivative of f ∈ C0(I,C), denoted by 2f
2t , is defined

by
2f

2t
(t) :=

〈
2hf

2t

〉
(t), t ∈ [a, b], (2)

where 〈
2hf

2t

〉
(t) := lim

h→0
π

(
2hf

2t
(t)

)
.

Definition 4. Given f : In = [a − nh, b + nh] → C, define the higher-order

scale derivative of f by

2nf

2tn
(t) =

2

2t

(
2n−1f

2tn−1

)
(t), t ∈ [a, b],

where 21f
2t1 := 2f

2t and 20f
2t0 := f .
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We will adopt the notation 2nf(t) instead of 2nf
2tn (t) when there is no danger

of confusion.

Scale partial derivatives are also considered here. They are defined as in the

standard case.

Definition 5. Let f :
∏n
i=1[ai−h, bi +h]→ R be a function. Define, for each

i ∈ {1, . . . , n},

∆i
h[f ](t1, . . . , tn)

:=
f(t1, . . . , ti−1, ti + h, ti+1, . . . , tn)− f(t1, . . . , ti−1, ti, ti+1, . . . , tn)

h
,

for ti ∈ [ai − h, bi] and for tj ∈ [aj − h, bj + h] if j 6= i, and

∇ih[f ](t1, . . . , tn)

:=
f(t1, . . . , ti−1, ti, ti+1, . . . , tn)− f(t1, . . . , ti−1, ti − h, ti+1, . . . , tn)

h
,

for ti ∈ [ai, bi + h] and for tj ∈ [aj − h, bj + h], if j 6= i. The h-scale partial

derivative of f with respect to the i-th coordinate is given by

2hf

2ti
(t1, . . . , tn) =

1

2

[(
∆i
h[f ] +∇ih[f ]

)
+ i
(
∆i
h[f ]−∇ih[f ]

)]
,

for ti ∈ [ai, bi].

The definition of partial scale derivatives 2f/2ti is clear.

In what follows, we will denote

Cn2([a, b],K) := {f ∈ C0(In,K) | 2
kf

2tk
∈ C0(In−k,C), k = 1, 2, . . . , n},

K = R or K = C.

Definition 6. Let f ∈ C0(I,C) and α ∈]0, 1[ . We say that f is Hölderian of

Hölder exponent α if there exists a constant C > 0 such that, for all s, t ∈ I,

|f(t)− f(s)| ≤ C|t− s|α,

and we write f ∈ Hα(I,C), or simply f ∈ Hα when there is no danger of mislead.

We say that f(t1, . . . , tn) ∈ Hα if f(t1, . . . , ti−1, ·, ti+1, . . . , tn) ∈ Hα, for all

i ∈ {1, . . . , n} and for all tj ∈ [aj , bj ], j 6= i.
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Theorem 1. For all f ∈ Hα and g ∈ Hβ , we have

2(f.g)

2t
(t) =

2f

2t
(t).g(t) + f(t).

2g

2t
(t), t ∈ [a, b].

Theorem 2. Let f ∈ C1
2([a, b],R) be such that

lim
h→0

∫ b

a

(
2hf

2t

)
E

(t) dt = 0, (3)

where
2hf

2t
=

(
2hf

2t

)
conv

+

(
2hf

2t

)
E

.

Then, ∫ b

a

2f

2t
(t) dt = f(b)− f(a).

As a consequence, we have the following integration by parts formula. If

lim
h→0

∫ b

a

(
2h(f · g)

2t

)
E

(t) dt = 0,

where f ∈ Hα and g ∈ Hβ , then∫ b

a

2f

2t
(t) · g(t)dt = [f(t)g(t)]

b
a −

∫ b

a

f(t) · 2g
2t

(t)dt.

3. The scale variational principle of Herglotz

The (classical) variational principle of Herglotz is described in the following

way. Consider the differential equation
ż(t) = L(t, x(t), ẋ(t), z(t)), with t ∈ [a, b]

z(a) = za

x(a) = xa, x(b) = xb,

where x, z and L are smooth functions. We wish to find x (and the correspondent

solution z of the system) such that z(b) attains an extremum. The necessary

condition is a second-order differential equation:

d

dt

∂L

∂ẋ
=
∂L

∂x
+
∂L

∂z

∂L

∂ẋ
,
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for all t ∈ [a, b]. This can be seen as an extension of the basic problem of calculus

of variations. If L does not depend on z, then integrating the differential equation

along the interval [a, b], we get
∫ b

a

[
L(t, x(t), ẋ(t)) +

za
b− a

]
dt → extremize

x(a) = xa, x(b) = xb.

As is well known, many physical phenomena are characterized by non-differen-

tiable functions (e.g. generic trajectories of quantum mechanics [4], scale-relativity

without the hypothesis of space-time differentiability [11]). The usual procedure

is to replace the classical derivative by a scale derivative, and consider the space

of continuous (and non-differentiable) functions. The scale calculus of variations

approach was studied in [1], [2], [3] for a certain concept of scale derivative 2x(t):
∫ b

a

L(t, x(t),2x(t)) → extremize

x(a) = xa, x(b) = xb.

Motivated by this problem, we define the fundamental scale variational prin-

ciple of Herglotz. First we need to define what extremum is.

Definition 7. We say that z ∈ C1([a, b],C) attains an extremum at t = b if

z′(b) = 0.

The problem is then stated in the following way. Consider the system
ż(t) = L(t, x(t),2x(t), z(t)), with t ∈ [a, b]

z(a) = za

x(a) = xa, x(b) = xb.

(4)

For simplicity, define

[x, z](t) := (t, x(t),2x(t), z(t)).

We assume that

(1) the trajectories x are in Hα ∩C1
2([a, b],R), 2x ∈ Hα and the functional z in

C2([a, b],C),

(2) for each x, there exists a unique solution z of the system (4),

(3) za, xa, xb are fixed numbers,
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(4) the Lagrangian L : [a, b]× R× C2 → C is of class C2.

Observe that the solution z(t) actually is a function on three variables, to know

z = z(t, x(t),2x(t)). When there is no danger of mislead, we will simply write z(t).

We are interested in finding a trajectory x for which the corresponding solution z is

such that z(b) attains an extremum; and, in particular, what necessary conditions

such solutions must fulfill. These equations are called Euler–Lagrange equation

types. Again, problem (4) can be reduced to the scale variational problem in case

L is independent of z:∫ b

a

L

[
(t, x(t),2x(t)) +

za
b− a

]
dt → extremize.

Theorem 3. If the pair (x, z) is a solution of problem (4), and ∂L
∂2x [x, z] ∈

Hα(I,C) (α ∈]0, 1[), then (x, z) is a solution of the equation

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t), (5)

for all t ∈ [a, b].

Proof. Let ε be an arbitrary real, and consider variation functions of x of

type x(t) + εη(t), with η ∈ Hβ(I,R) ∩ C1
2([a, b],R) (β ∈]0, 1[), η(a) = η(b) =

2η(a) = 0, and

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

∂L

∂2x
[x, z](t)η(t)

))
E

dt = 0.

The corresponding rate of change of z, caused by the change of x in the direction

of η, is given by

θ(t) =
d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0 .

Then

θ̇(t) =
d

dt

d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0

=
d

dε
L(t, x(t) + εη(t),2x(t) + ε2η(t), z(t, x(t) + εη(t),2x(t) + ε2η(t))|ε=0

=
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t) +

∂L

∂z
[x, z](t)θ(t).



194 Ricardo Almeida

We obtain a first order linear differential equation on θ, whose solution is

λ(b)θ(b)− θ(a) =

∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t)

]
dt,

where

λ(t) := exp

(
−
∫ t

a

∂L

∂z
[x, z](τ)dτ

)
.

Using the fact that θ(a) = θ(b) = 0, we get∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

∂L

∂2x
[x, z](t)2η(t)

]
dt = 0.

Integrating by parts the second term, we obtain∫ b

a

[
λ(t)

∂L

∂x
[x, z](t)− 2

2t

(
λ(t)

∂L

∂2x
[x, z](t)

)]
η(t)dt

+

[
η(t)λ(t)

∂L

∂2x
[x, z](t)

]b
a

= 0.

Since η(a) = η(b) = 0, and η is an arbitrary function elsewhere,

λ(t)
∂L

∂x
[x, z](t)− 2

2t

(
λ(t)

∂L

∂2x
[x, z](t)

)
= 0,

for all t ∈ [a, b]. Since the function t 7→ λ(t) is differentiable, and the function

t 7→ ∂L
∂2x [x, z](t) is in Hα, it follows that

λ(t)

(
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t)− 2

2t

(
∂L

∂2x
[x, z](t)

))
= 0.

Finally, since λ(t) > 0, for all t, we get

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t),

for all t ∈ [a, b]. �

Remark 1. Assume that the set of state functions x is C1([a, b],R). Then

equation (5) becomes

d

dt

(
∂L

∂ẋ
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂ẋ
[x, z](t),

which is the generalized variational principle of Herglotz as in [10].
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Theorem 4. Let the pair (x, z) be a solution of the problem (4), but now

x(b) is free. Then (x, z) is a solution of the equation

2

2t

(
∂L

∂2x
[x, z](t)

)
=
∂L

∂x
[x, z](t) +

∂L

∂z
[x, z](t)

∂L

∂2x
[x, z](t),

for all t ∈ [a, b], and verifies the transversality condition

∂L

∂2x
[x, z](b) = 0.

Proof. Following the proof of Theorem 3, the Euler–Lagrange equation is

deduced. Then [
η(t)λ(t)

∂L

∂2x
[x, z](t)

]b
a

= 0.

Since η(a) = 0 and η(b) is arbitrary, we obtain the transversality condition. �

Multi-dimensional case

For simplicity, we considered so far one state function x only, but the multi-

dimensional case (x1, . . . , xn) is easily studied.

Theorem 5. Let α ∈]0, 1[ and let the vector (x1, . . . , xn, z) be a solution of

the problem: find (x1, . . . , xn) that extremizes z(b), with
ż(t) = L(t, x1(t), . . . , xn(t),2x1(t), . . . ,2xn(t), z(t)), with t ∈ [a, b]

z(a) = za

xi(a) = xia, xi(b) = xib

(6)

where, for all i ∈ {1, . . . , n},
(1) the trajectories xi are in Hα ∩ C1

2([a, b],R), 2xi ∈ Hα and the functional z

in C2([a, b],C),

(2) za, xia, xib are fixed numbers,

(3) ∂L
∂2xi

[x1, . . . , xn, z] ∈ Hα(I,C)

(4) the Lagrangian L : [a, b]× Rn × Cn+1 → C is of class C2.

Then, for all i ∈ {1, . . . , n}, (x1, . . . , xn, z) is a solution of the equation

2

2t

(
∂L

∂2xi
[x1, . . . , xn, z](t)

)
=
∂L

∂xi
[x1, . . . , xn, z](t) +

∂L

∂z
[x1, . . . , xn, z](t)

∂L

∂2xi
[x1, . . . , xn, z](t),

for all t ∈ [a, b].
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Theorem 6. Let the vector (x1, . . . , xn, z) be a solution of the problem as

stated in Theorem 5, but now xi(b) is free, for all i ∈ {1, . . . , n}. Then, for all

i ∈ {1, . . . , n}, (x1, . . . , xn, z) is a solution of the equation

2

2t

(
∂L

∂2xi
[x1, . . . , xn, z](t)

)
=
∂L

∂xi
[x1, . . . , xn, z](t) +

∂L

∂z
[x1, . . . , xn, z](t)

∂L

∂2xi
[x1, . . . , xn, z](t),

for all t ∈ [a, b], and verifies the transversality condition

∂L

∂2xi
[x1, . . . , xn, z](b) = 0.

Higher-order derivatives case

Theorem 7. Let α ∈]0, 1[ and let the pair (x, z) be a solution of the problem:

find x that extremizes z(b), with
ż(t) = L(t, x,2x(t), . . . ,2nx(t), z(t)), with t ∈ [a, b]

z(a) = za

2ix(a) = xia, 2
ix(b) = xib, for all i ∈ {0, . . . , n− 1},

where

(1) the trajectories x are in Hα ∩Cn2([a, b],R), 2x ∈ Hα and the functional z in

C2([a, b],C),

(2) za, xia, xib are fixed numbers, for all i ∈ {0, . . . , n− 1},
(3) ∂L

∂2ix [x, z] ∈ Hα(In,C), for all i ∈ {1, . . . , n},
(4) [x, z](t) = (t, x,2x(t), . . . ,2nx(t), z(t)) and [x](t) = (t, x,2x(t), . . . ,2nx(t)),

(5) the Lagrangian L : [a, b]× Rn+1 → R is of class C2.

Then, (x, z) is a solution of the equation

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b].

Proof. Let x(t)+εη(t) be a variation function of x, with ε ∈ R and η ∈ Hβ∩
Cn2([a, b],R) (β ∈]0, 1[). Also, assume that the variations fulfill the conditions:

(1) for all i = 0, . . . , n− 1, 2iη(a) = 2iη(b) = 0, and 2nη(a) = 0,
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(2) for all i = 1, 2, . . . , n and k = 0, 1, . . . , i− 1,

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

2k

2tk

(
∂L

∂2ix
[x, z](t)

)
2i−k−1η(t)

))
E

dt = 0.

Define

θ(t) =
d

dε
z(t, x(t) + εη(t),2x(t) + ε2η(t), . . . ,2nx(t) + ε2nη(t))|ε=0 .

Then

θ̇(t) =
∂L

∂x
[x, z](t)η(t) +

n∑
i=1

∂L

∂2ix
[x, z](t)2iη(t) +

∂L

∂z
[x, z](t)θ(t).

Solving this linear ODE, we arrive at∫ b

a

λ(t)

[
∂L

∂x
[x, z](t)η(t) +

n∑
i=1

∂L

∂2ix
[x, z](t)2iη(t)

]
dt = 0,

where

λ(t) := exp

(
−
∫ t

a

∂L

∂z
[x, z](τ)dτ

)
.

Integrating by parts n times, we obtain the following:∫ b

a

[
λ(t)

∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)]
η(t)dt

+

[
n∑
i=1

i−1∑
k=0

(−1)k
2k

2tk

(
λ(t)

∂L

∂2ix
[x, z](t)

)
2i−1−kη(t)

]b
a

= 0,

and rearranging the terms, we get∫ b

a

[
λ(t)

∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)]
η(t)dt

+

[
n∑
i=1

[
n∑
k=i

(−1)k−i
2k−i

2tk−i

(
λ(t)

∂L

∂2kx
[x, z](t)

)]
2i−1η(t)

]b
a

= 0.

Since 2iη(a) = 2iη(b) = 0, for all i ∈ {0, . . . , n− 1} and η is arbitrary elsewhere,

we get

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b]. �
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Theorem 8. Let the pair (x, z) be a solution of the problem as stated in

Theorem 7, but now 2ix(b) is free, for all i ∈ {0, . . . , n − 1}. Then, (x, z) is a

solution of the equation

λ(t)
∂L

∂x
[x, z](t) +

n∑
i=1

(−1)i
2i

2ti

(
λ(t)

∂L

∂2ix
[x, z](t)

)
= 0,

for all t ∈ [a, b], and verifies the transversality condition

n∑
k=i

(−1)k−i
2k−i

2tk−i

(
λ(t)

∂L

∂2kx
[x, z](t)

)
= 0 at t = b,

for all i ∈ {1, . . . , n}.

Several independent variables case

We generalize Theorem 3 for several independent variables. First we fix some

notations. The variable time is t ∈ [a, b], x = (x1, . . . , xn) ∈ Ω :=
∏n
i=1[ai, bi] are

the space coordinates and the state function is u := u(t, x).

Theorem 9. Let α ∈]0, 1[ and let the pair (u, z) be a solution of the problem:

find u that extremizes z(b), with

ż(t) =

∫
Ω

L

(
t, x, u,

2u

2t
,
2u

2x1
, . . . ,

2u

2xn
, z(t)

)
dnx, with t ∈ [a, b]

z(a) = za

u(t, x) takes fixed values, ∀t ∈ [a, b]∀x ∈ ∂Ω

u(t, x) takes fixed values, ∀t ∈ {a, b} ∀x ∈ Ω,

(7)

where, for all i ∈ {1, . . . , n},
(1) the trajectories u are in Hα(I×Ω,R)∩C1

2([a, b]×Ω,R), 2u
2t ,

2u
2xi
∈ Hα([a, b]×

Ω,C) and the functional z in C2([a, b],C),

(2) za is a fixed number,

(3) dnx = dx1 . . . dxn,

(4) ∂L
∂2t [u, z],

∂L
∂2xi

[u, z] ∈ Hα(I × Ω,C), where ∂L
∂2t [u, z] denotes the partial de-

rivative of L with respect to the variable 2u
2t , and ∂L

∂2xi
[u, z] denotes the

partial derivative of L with respect to the variable 2u
2xi

, and [u, z](t) =

(t, x, u, 2u
2t ,

2u
2x1

, . . . , 2u
2xn

, z(t)),

(5) L : [a, b]× Ω× R× Cn+2 → C is of class C2.
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Then, (u, z) is a solution of the equation

∂L

∂u
[u, z](t) +

∂L

∂2t
[u, z](t)

∫
Ω

∂L

∂2z
[u, z](t) dnx− 2

2t

(
∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
∂L

∂2xi
[u, z](t)

)
= 0, (8)

for all t ∈ [a, b] and for all x ∈ Ω.

Proof. Let u(t, x) + εη(t, x) be a variation function of u, with ε ∈ R and

η ∈ Hβ(I ×Ω,R)∩C1
2([a, b]×Ω,R) (β ∈]0, 1[). Also, assume that the variations

fulfill the conditions:

(1) η(t, x) = 0, ∀t ∈ [a, b]∀x ∈ ∂Ω,

(2) η(t, x) = 0, ∀t ∈ {a, b} ∀x ∈ Ω,

(3) 2η
2t (a, x) = 2η

2xi
(a, x) = 0, ∀x ∈ Ω,

(4) for all i = 1, 2, . . . , n,

lim
h→0

∫ b

a

(
2h

2t

(
λ(t)

∂L

∂2t
[u, z](t)η(t)

))
E

dt = 0.

and

lim
h→0

∫ b

a

(
2h

2xi

(
λ(t)

∂L

∂2xi
[u, z](t)η(t)

))
E

dt = 0,

where

λ(t) := exp

(
−
∫ t

a

∫
Ω

∂L

∂z
[u, z](τ) dnx dτ

)
.

Let

θ(t) =
d

dε
z

(
t, x, u+ εη,

2u

2t
+ ε

2η

2t
,
2u

2x1
+ ε

2η

2x1
, . . . ,

2u

2xn
+ ε

2η

2xn

)∣∣∣∣
ε=0

.

Proceeding with some calculations, we arrive at the ODE

θ̇(t)−
∫

Ω

∂L

∂z
[u, z](t) dnx θ(t)

=

∫
Ω

∂L

∂u
[u, z](t)η +

∂L

∂2t
[u, z](t)

2η

2t
+

n∑
i=1

∂L

∂2xi
[u, z](t)

2η

2xi
dnx.

Solving the ODE, and taking into consideration that θ(a) = θ(b) = 0, we get∫ b

a

∫
Ω

λ(t)

[
∂L

∂u
[u, z](t)η +

∂L

∂2t
[u, z](t)

2η

2t
+

n∑
i=1

∂L

∂2xi
[u, z](t)

2η

2xi

]
dnx dt = 0.
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Integrating by parts, and considering the boundary conditions over η, we get∫ b

a

∫
Ω

[
λ(t)

∂L

∂u
[u, z](t)− 2

2t

(
λ(t)

∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
λ(t)

∂L

∂xi
[u, z](t)

)]
ηdnxdt = 0.

By the arbitrariness of η, it follows that for all t ∈ [a, b] and for all x ∈ Ω,

λ(t)
∂L

∂u
[u, z](t)− 2

2t

(
λ(t)

∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
λ(t)

∂L

∂xi
[u, z](t)

)
= 0.

Since λ(t) > 0, this condition implies that

∂L

∂u
[u, z](t) +

∂L

∂2t
[u, z](t)

∫
Ω

∂L

∂2z
[u, z](t) dnx− 2

2t

(
∂L

∂2t
[u, z](t)

)
−

n∑
i=1

2

2xi

(
∂L

∂2xi
[u, z](t)

)
= 0,

for all t ∈ [a, b] and for all x ∈ Ω, and the theorem is proved. �
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