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On (m,n)-Jordan centralizers of semiprime rings

By IRENA KOSI-ULBL (Maribor) and JOSO VUKMAN (Maribor)

Abstract. In this paper we prove the following result. Let m ≥ 1, n ≥ 1 be fixed

integers and let R be an mn(m+n)-torsion free semiprime ring. Suppose there exists an

additive mapping T : R→ R satisfying the relation (m + n)T (x2) = mT (x)x + nxT (x)

for all x ∈ R ((m,n)-Jordan centralizer). In this case T is a two-sided centralizer.

Throughout, R will represent an associative ring with center Z(R). As usual,

the commutator xy − yx will be denoted by [x, y]. We shall use the commutator

identity [xy, z] = [x, z]y + x[y, z]. Given an integer n ≥ 2, a ring R is said to be

n-torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime

if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is semiprime in

case aRa = (0) implies a = 0. We denote by char(R) the characteristic of a prime

ring R. We denote by Qr and C Martindale right ring of quotients and extended

centroid of a semiprime ring R, respectively. For explanation of Qr and C, we

refer the reader to [2]. An additive mapping T : R→ R is called a left centralizer

in case T (xy) = T (x)y holds for all pairs x, y ∈ R and is called a left Jordan

centralizer in case T (x2) = T (x)x holds for all x ∈ R. In case R has the identity

element, T : R → R is a left centralizer iff T is of the form T (x) = ax for all

x ∈ R, where a ∈ R is a fixed element. For a semiprime ring R all left centralizers

are of the form T (x) = qx for all x ∈ R, where q is a fixed element from Qr (see

[2, Chapter 2]). The definition of right centralizer and right Jordan centralizer

should be self-explanatory. We call T : R → R a two-sided centralizer in case T

is both a left and a right centralizer. In case T : R→ R is a two-sided centralizer,

where R is a semiprime ring with extended centroid C, then there exists element
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λ ∈ C such that T (x) = λx for all x ∈ R (see [2, Theorem 2.3.2]). Zalar [21] has

proved that any left (right) Jordan centralizer on a 2-torsion free semiprime ring

is a left (right) centralizer (Zalar theorem). For results concerning centralizers

(also called multipliers) on rings and algebras, we refer to [1], [3], [4], [6], [9]–[13],

[16]–[19], [21] where further references can be found.

Let R be an arbitrary ring and let m ≥ 0, n ≥ 0 be some fixed integers with

m+n 6= 0. An additive mapping T : R→ R is called an (m,n)-Jordan centralizer

in case

(m+ n)T (x2) = mT (x)x+ nxT (x) (1)

holds for all x ∈ R. The concept of (m,n)-Jordan centralizer, which has been

introduced by Vukman in [20], covers the concept of left Jordan centralizer as

well as the concept of right Jordan centralizer. Namely, putting in the relation

above m = 1, n = 0 one obtains left Jordan centralizer, in case m = 0, n = 1 the

relation (1) reduces to right Jordan centralizer. Moreover, in case m = n = 1, we

obtain the relation

2T (x2) = T (x)x+ xT (x), x ∈ R. (2)

Vukman [16] has proved that in case an additive mapping T : R → R,

where R is a 2-torsion free semiprime ring, satisfies the relation (2) for any x ∈ R,

then T is a two-sided centralizer. For results concerning (m,n)-Jordan centraliz-

ers, we refer to [8], [14], [15], [20]. In [20], one can find the following conjecture.

Conjecture 1 ([20, Conjecture 2]). Let m ≥ 1, n ≥ 1 be some fixed integers,

let R be a semiprime ring with suitable torsion restrictions, and let T : R → R

be an (m,n)-Jordan centralizer. In this case T is a two-sided centralizer.

Peršin and Vukman [15] have proved the following result.

Theorem 1 ([15, Theorem 2]). Let m ≥ 1, n ≥ 1 be some fixed integers,

let R be a prime ring with char(R) = 0 or char(R) > (m+n)2 and let T : R→ R

be an additive mapping satisfying the relation

2(m+ n)2T (x3) = m(2m+ n)T (x)x2 + 2mnxT (x)x+ n(2n+m)x2T (x) (3)

for all x ∈ R. In this case T is a two-sided centralizer.

It is easy to see that any (m,n)-Jordan centralizer on arbitrary ring satisfies

the relation (3), which means that Theorem 1 proves Conjecture 1 in a special

case we have a prime ring.

The result below proves Conjecture 1 in general.
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Theorem 2. Letm ≥ 1, n ≥ 1 be some fixed integers, letR be anmn(m+n)-

torsion free semiprime ring, and let T : R → R be an (m,n)-Jordan centralizer.

In this case T is a two-sided centralizer.

The methods used in the proof of Theorem 2 differ from those used in The-

orem 1. As the main tool in the proof of Theorem 1 the theory of functional

identities (Brešar–Beidar–Chebotar theory) is used. We refer the reader to [5] for

introductory account of functional identities and to [7] for full treatment of this

theory. The proof of Theorem 2 is, as we shall see, rather long, but it is elemen-

tary in the sense that one needs no specific knowledge concerning semiprime rings

in order to follow the proof. For the proof of Theorem 2, we need Theorem 3,

Lemma 1 and Zalar theorem.

Theorem 3 ([20, Proposition 3]). Let m ≥ 0, n ≥ 0 be some integers with

m+n 6= 0, let R be a ring and let T : R→ R be an (m,n)-Jordan centralizer. In

this case we have

2(m+ n)2T (xyx) = mnT (x)xy +m(2m+ n)T (x)yx−mnT (y)x2

+2mnxT (y)x−mnx2T (y) + n(2n+m)xyT (x) +mnyxT (x), (4)

for all pairs x, y ∈ R.

Lemma 1 ([17, Lemma 1]). Let R be a semiprime ring. Suppose that the

relation

axb+ bxc = 0

holds for all x ∈ R and some a, b, c ∈ R. In this case

(a+ c)xb = 0

is satisfied for all x ∈ R.

Proof of Theorem 2. Let us point out that from the assumption of the

theorem that R is mn(m+ n)-torsion free, it follows, that R is 2-torsion free.

The linearization of the relation (1) gives

(m+ n)T (xy + yx) = mT (x)y +mT (y)x+ nxT (y) + nyT (x), x, y ∈ R. (5)

Putting xy + yx for y in (4) and using (5), we obtain

2(m + n)3T (x2yx + xyx2) = mn(m + n)T (x)x2y + 2m(m + n)2T (x)xyx

+m(2m2 + 2mn + n2)T (x)yx2 −m2nT (y)x3 + mn(2m− n)xT (y)x2



226 Irena Kosi-Ulbl and Joso Vukman

−mn2yT (x)x2 + 2m2nxT (x)yx + mn(2n−m)x2T (y)x + 2mn2xyT (x)x

−m2nx2T (x)y −mn2x3T (y) + n(2n2 + 2mn + m2)x2yT (x)

+2n(m + n)2xyxT (x) + mn(m + n)yx2T (x), x, y ∈ R. (6)

On the other hand, putting xyx for y in (5) and applying (4), one obtains
after some calculation

2(m+n)3T (x2yx + xyx2) = m(2m2+5mn + 2n2)T (x)xyx + m2(2m+n)T (x)yx2

−m2nT (y)x3 + mn(2m− n)xT (y)x2 + mn(2n−m)x2T (y)x + mn(2n + m)xyT (x)x

+m2nyxT (x)x + mn2xT (x)xy + mn(2m + n)xT (x)yx−mn2x3T (y)

+n2(2n + m)x2yT (x) + n(2m2+5mn + 2n2)xyxT (x), x, y ∈ R. (7)

Comparing the relations (6) and (7), we obtain, since R is an mn-torsion free

ring,

(m+ n)T (x)x2y −mT (x)xyx+ (m+ n)T (x)yx2 − nyT (x)x2

−nxT (x)yx−mxyT (x)x−mx2T (x)y + (m+ n)x2yT (x)− nxyxT (x)

+(m+ n)yx2T (x)−myxT (x)x− nxT (x)xy = 0, x, y ∈ R. (8)

Putting first yx for y in the above relation, then multiplying the relation (8)

by x from the right side, and subtracting the relations so obtained one from

another, we obtain

ny[T (x), x]x2 +mxy[T (x), x]x− (m+ n)x2y[T (x), x] + nxyx[T (x), x]

−(m+ n)yx2[T (x), x] +myx[T (x), x]x = 0, x, y ∈ R. (9)

Putting T (x)y for y in the above relation, then multiplying the relation (9)

by T (x) from the left side, we arrive after subtraction

m[T (x), x]y[T (x), x]x− (m+ n)[T (x), x2]y[T (x), x]

+n[T (x), x]yx[T (x), x] = 0, x, y ∈ R.

The above relation can be written in the form

−(m+ n)[T (x), x2]y[T (x), x]

+[T (x), x]y(m[T (x), x]x+ nx[T (x), x]) = 0, x, y ∈ R.

According to Lemma 1, we obtain from the above relation

(−(m+ n)[T (x), x2] +m[T (x), x]x+ nx[T (x), x])y[T (x), x] = 0, x, y ∈ R,
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which reduces to

(n[T (x), x]x+mx[T (x), x])y[T (x), x] = 0, x, y ∈ R. (10)

Right multiplication of the above relation by nx, then putting ymx for y in

the relation (10), and combining the relations so obtained, we obtain

(n[T (x), x]x+mx[T (x), x])y(n[T (x), x]x+mx[T (x), x]) = 0, x, y ∈ R,

whence it follows

n[T (x), x]x+mx[T (x), x] = 0, x ∈ R, (11)

by semiprimeness of R. The linearization of the above relation gives

n[T (x), x]y + n[T (x), y]x+ n[T (y), x]x+mx[T (x), y]

+mx[T (y), x] +my[T (x), x] + n[T (y), y]x+ n[T (y), x]y + n[T (x), y]y

+my[T (y), x] +my[T (x), y] +mx[T (y), y] = 0, x, y ∈ R. (12)

Putting −x for x in the above relation and comparing the relation so obtained

with the relation (12), we arrive to

n[T (x), x]y + n[T (x), y]x+ n[T (y), x]x

+mx[T (x), y] + mx[T (y), x] +my[T (x), x] = 0, x, y ∈ R. (13)

In the procedure above we used the fact that R is 2-torsion free. Putting

(m+ n)(xy + yx) for y in the above relation and using first the relation (5) and

then the relation (11) we obtain after some calculation

(3mn+2n2)[T (x), x]yx+(3mn+2m2)xy[T (x), x]+m2x[T (x), x]y+n2y[T (x), x]x

+n(m+ n)[T (x), y]x2 +m(m+ n)x2[T (x), y] + (m+ n)2x[T (x), y]x

+mnT (x)[y, x]x+mnx[y, x]T (x) + n2[y, x]T (x)x+m2xT (x)[y, x]

+mn[T (y), x]x2 +mnx2[T (y), x] + (m2 + n2)x[T (y), x]x = 0, x, y ∈ R.

Rearranging the above relation, one obtains

(3mn+2n2)[T (x), x]yx+(3mn+2m2)xy[T (x), x]+m2x[T (x), x]y+n2y[T (x), x]x

+n(m + n)[T (x), y]x2 + m(m + n)x2[T (x), y] + (m + n)2x[T (x), y]x

+mnT (x)[y, x]x + mnx[y, x]T (x) + n2[y, x]T (x)x + m2xT (x)[y, x]
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+m(n[T (y), x]x+mx[T (y), x])x+nx(n[T (y), x]x+mx[T (y), x]) = 0, x, y ∈ R. (14)

According to the relation (13) one can replace in the above relation

n[T (y), x]x+mx[T (y), x]

by

−n[T (x), x]y − n[T (x), y]x−mx[T (x), y]−my[T (x), x],

which gives

(2mn + 2n2)[T (x), x]yx + (2mn + 2m2)xy[T (x), x] + (m2 − n2)x[T (x), x]y

−(m2 − n2)y[T (x), x]x + n2[T (x), y]x2 + m2x2[T (x), y] + 2mnx[T (x), y]x

+mnT (x)[y, x]x+mnx[y, x]T (x)+n2[y, x]T (x)x+m2xT (x)[y, x] = 0, x, y ∈ R. (15)

Putting first yx for y in the above relation, then multiplying the relation (15)
by x from the right side, we arrive after subtraction to

2m(m+n)xy[[T (x), x], x]−(m2−n2)y[[T (x), x], x]x−n2y[T (x), x]x2−m2x2y[T (x), x]

−2mnxy[T (x), x]x+mnx[y, x][T (x), x]+n2[y, x][T (x), x]x = 0, x, y ∈ R,

which can be written in the form

2m(m+ n)xy[[T (x), x], x]− (m2 − n2)y[[T (x), x], x]x− n2y[T (x), x]x2

−m2x2y[T (x), x]− 2mnxy[T (x), x]x+mnxyx[T (x), x]

−mnx2y[T (x), x] + n2yx[T (x), x]x− n2xy[T (x), x]x = 0, x, y ∈ R. (16)

Substitution T (x)y for y, then left multiplication of the relation (16) by T (x),

then subtraction, gives

2m(m+ n)[T (x), x]y[[T (x), x], x]−m2[T (x), x2]y[T (x), x]

−2mn[T (x), x]y[T (x), x]x+mn[T (x), x]yx[T (x), x]−mn[T (x), x2]y[T (x), x]

−n2[T (x), x]y[T (x), x]x = 0, x, y ∈ R.

We rewrite the above relation in the form

[T (x), x]y(2m(m+ n)[[T (x), x], x]−2mn[T (x), x]x+mnx[T (x), x]−n2[T (x), x]x)

−(m2 +mn)[T (x), x2]y[T (x), x] = 0, x, y ∈ R.
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According to the relation (11), one can replace in the above relation −n2[T (x), x]x

with mnx[T (x), x]. Thus we have

[T (x), x]y(2m2[[T (x), x], x])− (m2 +mn)[T (x), x2]y[T (x), x] = 0, x, y ∈ R,

whence it follows, since R is m-torsion free,

[T (x), x]y(2m[[T (x), x], x])− (m+ n)[T (x), x2]y[T (x), x] = 0, x, y ∈ R.

Using Lemma 1, we obtain from the above relation

(2m[[T (x), x], x]− (m+ n)[T (x), x2])y[T (x), x] = 0, x, y ∈ R. (17)

Using the relation (11), we obtain

(m+ n)[T (x), x2] = m[T (x), x]x+ (mx[T (x), x] + n[T (x), x]x) + nx[T (x), x]

= m[T (x), x]x+ nx[T (x), x], x ∈ R,

so we can replace in the relation (17) (m + n)[T (x), x2] with m[T (x), x]x +

nx[T (x), x]. Thus we have

2m[[T (x), x], x]−m[T (x), x]x− nx[T (x), x]

= m[[T (x), x], x] +m[T (x), x]x−mx[T (x), x]−m[T (x), x]x− nx[T (x), x]

= m[[T (x), x], x] + n[T (x), x]x− nx[T (x), x] = (m+ n)[[T (x), x], x], x ∈ R.

Now, the relation (17) reduces to

(m+ n)[[T (x), x], x]y[T (x), x] = 0, x, y ∈ R,

whence it follows

[[T (x), x], x]y[T (x), x] = 0, x, y ∈ R.

From the above relation one obtains

[[T (x), x], x]y[[T (x), x], x] = 0, x, y ∈ R,

whence it follows

[[T (x), x], x] = 0, x ∈ R.
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The relation above makes it possible to replace in the relation (11) x[T (x), x]

with [T (x), x]x, which gives (m+n)[T (x), x]x = 0, x ∈ R, and, since R is (m+n)-

torsion free,

[T (x), x]x = 0, x ∈ R. (18)

Of course we have also

x[T (x), x] = 0, x ∈ R. (19)

From the relation (18) we obtain

[T (x), x]y + [T (x), y]x+ [T (y), x]x = 0, x, y ∈ R.

Multiplying the above relation by [T (x), x] and applying the relation (19),

we obtain

[T (x), x]y[T (x), x] = 0, x, y ∈ R,

whence it follows

[T (x), x] = 0, x ∈ R.

This relation makes it possible to replace in (1) xT (x) with T (x)x, which

gives (m+ n)T (x2) = (m+ n)T (x)x, whence it follows

T (x2) = T (x)x, x ∈ R.

Similarly, we have also

T (x2) = xT (x), x ∈ R.

We have therefore proved that T is a left and a right Jordan centralizer.

By Zalar theorem, T is a two-sided centralizer. The proof of the theorem is

complete. �

In case m = n = 1, Theorem 2 reduces to Theorem 1 in [16].
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