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Holder equivalence of homogeneous Moran sets

By YU-MEI XUE (Beijing) and TETURO KAMAE (Osaka)

Abstract. For two homogeneous Moran sets £ = C([0,1], {nx}, {cx}) and E' =
C([0,1], {n%}, {c}}) with Hausdorff dimensions s and s’ with s’ < s such that {n,} and

{n},} are bounded and the spacings are uniform in some sense, we prove that there
/

exists a homeomorphism f : E — E’ such that f is <S— - e) -Hélder continuous but not
s

!

<5— + e) -Holder continuous for any € > 0.
s

1. Introduction

The class of homogeneous Moran sets are defined and studied by DEJUN
FENG, ZHIYING WEN and JUN WU [4]. Let n;, > 2 be integers and ¢, be positive
numbers satisfying that 0 < ¢gnp <1 (k=1,2,...). Let D = Hle{l, 2,...n;}
and D = U32,Dy, where an element in D is denoted by a finite sequence
0109...0p of 0y € {1,2,...,n;} (i = 1,2,...,k) and Dy consists of the empty
sequence (. Let Jy = [0, 1] and define closed intervals J, C [0, 1] for 0 € D induc-
tively. Let 0 = ¢’t € Dy with o/ € Dy_1 and i € {1,2,...,n;}. Let Jo» = [a, ]
with b —a = ¢ ...cg—1. Then, Jo1,J52,...,J5/n, are disjoint closed intervals
of length ¢; ...cx_1c, contained in J,» arranged from left to right in this order.
To determine these sets, we introduce another quantity, a sequence of positive
numbers (d},, . .., dzkfl) called spacing satisfying that

di + -+ dPFE T e, < 1
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Then define

Jg’lz[a‘k((Z*l)Ck‘Fd,lCﬁ»+d;€_1)57 a+(lck+d]1€++d2—l)5]
(i=1,2,...,n),

where § = ¢y ...cg_1. Finally, we define a fractal set

E= ﬁ U I (1.1)

k=00c€Dy

which we call a homogeneous Moran set denoted as C([0, 1], {ng}, {cx }, {d}}).
In this paper, we always assume that

(¥) sup ngp <oo, A:= inf di, > 0,
k=1,2,... k=1,2,...; i=1,...,n*—1
and
log N .
s = lim &k exists and 0 < s < 1,

k:aoo—log k
where 0y =¢1...cp and N, =nq...ng (k=1,2,...).

It is known [4] that for any E € C([0,1], {ng}, {cx}, {d}}) satisfying (), the
Hausdorff dimension dimgy F is equal to s as above. For the general notions of
fractal geometry, refer to [1], [5]. For the multifractal properties of Moran sets,

refer to [3], [9]. For the notions of Holder equivalence or Lipschitz equivalence,
refer to [2], [7], [8]. We prove that

Theorem 1. For homogeneous Moran sets E = C([0, 1], {ny}, {cx}, {di})
and E' = C([0,1], {n}.}, {¢}.}, {di'}) satisfying the condition (%) with s = dimy E
and s’ = dimg E’ such that s < s’. Then, there exists a homeomorphism f :
E — FE’ such that

Cily — )77 < f(y) — f(z) < Caly — )7 (1.2)

holds for any x < y in E, where ¢ > 0 is arbitrary and Cy, Cy are positive
constants.

Corollary 1 (QIN WANG and LI-FENG X1 [6]). In the above theorem, if
s =s', then E and E’ are quasi-Lipschitz equivalent.
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2. Basic lemmas

Lemma 1. Let k and l be positive integers. Let Uy, Us,...,Uy be a disjoint
family of sets having the same number [ of elements. Let k < n < kl. Then, there
exists a disjoint family V1, Vs, ..., V,, of nonempty sets such that

(1) VuWU---UV,=U;UUU---UUy, and

(2) for any j =1,2,...,n, there exists i = 1,2,...,k such that V; C U,.

(3) #V; < 3#V; holds for any i,j = 1,2,...,n, where #V denotes the number
of elements in a set V.

PrROOF. Let d = |n/k] and n = kd + r with 0 < r < k. Then, n =
(k —r)d +r(d+1). We partition each of Uy,Us,...,Ui_, into d number of
subsets and each of Ug_,41,Ug_r19,...,Ux into d + 1 number of subsets. These
subsets will become V1, Vs, ..., V,. Let h = |I/d]. Sincel = dh+swith0 < s < d,
we have | = (d — s)h + s(h + 1). Partition each of Uy, Us,...,U_, into d — s
number of subsets with A elements and s number of subsets with hA + 1 elements.
Let m = |I/(d+1)|. Since Il = (d+ 1)m + ¢ with 0 < t < d + 1, we have
l=(d+1—t)m+t(m+1). Partition each of Ug_y 1, Ug—ry2,..., U intod+1—t¢
number of subsets with m elements and ¢ number of subsets with m + 1 elements.
The collection of these sets becomes Vi, Va, ..., V,,. Then, we have (1)(2).

Let us prove (3). We have

h+1 if]is not a multiple of d,
max #V; =
i h if [ is a multiple of d,
. m if n is not a multiple of k&,
min #V; =
@ h  if n is a multiple of k.

Case 1. If [ is not a multiple of d, then h = [I/d] < (I-1)/d. Since | = (d+1)m+t,
0<t<dandd>1, we have

max;#V;=h+1=11/d]+1<(-1)/d+1=(d+1)m+t—1)/d+1
<((d+1)ym+d—-1)/d+1=m+1+(m—-1)/d+1
<m+1+(m—-1)+1=2m+1<3m <3 min; #V;.
Case 2. 1f [ is a multiple of d, then

maz;#V; =h=[1/d] =1/d= ((d+1)m+1t)/d < ((d+1)m+d)/d
=m+1l+m/d<m+1+m=2m+1<3m <3 min;#V;. O
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Let Dy = [1_,{1,2,...n;} and D}, = [[_,{1,2,...n}} (k = 0,1,2,...).
For o € Dy, or ¢’ € Dj, let J, or J,» be the intervals defined in (1.1) with respect
to E = C([0,1], {nx}, {cx}, {di}) or E' = C([0,1],{n}},{c,},{dL}), respectively.
We call it a basic interval of E or E’ of level k. We denote by 6}, Nj, or A’ the
quantities 0y, Ny or A for E’.

Notation. Denote Cy := sup; n; and C} = sup, n}.

Definition 1. Let k =1,2,... ande =0, 1,..., k. For basic intervals I and J
of F of level k contained in a same basic interval of E of level k — e, the minimum
interval containing I and J is called an (k, e)-admissible interval of E. Specially,
a basic interval of E of level k is a (k, 0)-admissible interval of E. The number of
basic intervals of level k contained in an interval H is called the k-size of H and
denoted by #rH. Let T = {I1,I,...,I;} be a set of (k,e)-admissible intervals
of E. We call it an (k, e)-admissible partition of F' (in E) if

(1) ;N I; =0 for any ¢ # j, and
(2) (U_ L)NE=F.

Specially, the (k, 0)-admissible partition of E, that is, the set of all basic intervals
of level k is denoted by & and called the k-basic partition of E. Just by an
admissible partition, we mean an (k, e)-admissible partition for some e and k. We
define the same things for E’ and the k-basic partition of E’ is denoted by &;,

Definition 2. An (I, g)-admissible partition Z' = {I1, I5, ..., I;} of E’ is said
to be of &-type if t = #ZI' = Ni. In this case, there exists a unique order-
preserving bijection ¢ from & to Z’, that is, if x < y holds for any x € I and
y € J with I,J € &, then 2’ < ¢ holds for any 2’ € ¢(I) and y' € p(J). We
call o the isomorphism from & to Z'. Let Z' and J’ be admissible partitions of E’
of E-type and &,,-type with k < m, respectively. They are said to be consistent
if for any I € & and J € &, with I C J, o(I) C ¢(J) holds, where ¢ and v are
the isomorphisms from &, to Z’, and from &,, to [J’, respectively.

Lemma 2. (1) Forany k =1,2,..., let N|_; < N, < N/. Then, there exists
an (I, 1)-admissible partition Z] of E' of E,-type such that #,I < 3#;J holds for
any I,J € .

(2) Assume that Z] is an (I, e)-admissible partition of E' of &,-type such that
#,I < C#,J for any I,J € I] with C' > 1. Let

g=|(ogC +1logCy)/log2 +1].
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Then for any integer h > k, there exists an (s, g)-admissible partition Z' of E' of

log C},

Em-type with h <m < h+ ?g 209 and some s such that Z] and T, are consistent.
og

Moreover, #,1 < 9C+#sJ holds for any I, J € T..

PROOF. (1) We consider a basic interval I of E’ of level [ — 1 to be the set
of basic intervals J of E’ of level [ such that J C I. There are Nl’_1 number of
sets as this which are denoted by Ui, Us,...,Un;_,. All of them have nj number
of elements. Since N/_; < N, < njN/_; = N/, applying Lemma 1, we have a
disjoint family V4, Va, ..., Vi, of nonempty sets such that (1)(2)(3) of Lemma 1
hold with k¥ = N/_;, n = Nj and | = nj. Moreover, we may assume that
each of Vi, Vs, ..., VN, consists of neighboring basic intervals of level [, so that
the admissible intervals generated by them are disjoint. Hence, they define a
(1, 1)-admissible partition Z] of E’ of E,-type satisfying that #;1 < 3#;J for any
I,Je1].

(2) Denote Ny p = ngg1---np for h=k+1,k+2,--- and Nl’,s =y
for s =14+ 1,1+2,---. If h <k ors <1, wedefine Ny = Nl’75 = 1. Let
p=minser; #iI and ¢ = maxez; #i1.

Take any h > k and take an integer s such that pNj < Npp < pNj .

Since ) , . . c
le,s Ng_gt+1 " Ns 2 > 2(10g +log Co)/ log 2 _ OO’
qu’sfg - C C ~ C

there exists m such that
qu/,ng < Nk’m S le/,S' (2.1)

If qu’s_g < N n, then we can take m = h. Otherwise, since Ny < qu’s_g <
Ni.m, we must have h < m. Moreover, since le/,s—g < Nip and Ni pm < le”S,

we have .
Nk:,m le,s ’ / g
Nen PN, =My_g1 Ny < Cp -
Therefore,
m—h Nk m /g
2 <npg1 Ny = —— < Gy,
Nip,
log C}) . e :
and hence, m < h+ loa 2 g. Thus, there exists m satisfying (2.1) together with
0g
log C},
h<m<h+—220

log 2
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Construct an (s, g)-admissible partition Z. of E’ of &,,-type such that
7, and Z are consistent and #,1 < 9C#,J holds for any I, J € Z].
Take any K € Z]. Then, we have

#lKNl/,ng S qu/,ng < Nk’m S le/,S S #ZKNZI’ng‘

Hence by the same argument as in the proof of (1) applying Lemma 1, there
exists a (s, g)-admissible partition Kx of K in E’' with #Kx = Ny ,,,. Moreover,
#I < 3#.J holds for any I,J € Kk. Let 7 = UKGI{ICK. Then, it is clear that
T! is a (s, g)-admissible partition of E’ of &,,-type which is consistent with Z;.
Take any I,J € Z!. Let I € Kk and J € ICL. Then, since

! !
#ol < #,C D B# = N — Y #Jd = w Nis#K
I'eKk I'eKk
and
1/3 1/3
#od > D AB#T == Y I = N[ #L,
#K: I'eky, k,m I'eky Nk,m
we have
#sJ < Qil—#sJ < 9CHJ,
which completes the proof. ([l

Corollary 2. There exist sequences of positive integers {k;}, {g;} and {s;}
increasing to oo such that

(i) lim; o0 ki /i = 00 and lim; o0 kiy1/ki = 1,

) (1/2)ki=ki < A (1 =1,2,...),
(ili) supg;/i < oo, and

) there exists a consistent family of (s;, g;)-admissible partitions I (i=1,2,...)
of E' of &,-type.

PROOF. Take j such that 277 < A. We construct k; < ky < --- inductively
starting by an arbitrary ki. For k = kq, there exists (I, 1)-admissible partitions
7] of E’ of E,-type by (1) of Lemma 2. Let (s1,91) = ({,1) and 7] = Z;. Assume
that k;, (s;,9:;) and Z] are determined. For k = k;, h = k + j and I/, apply
Lemma 2 and get m and (s, g)-admissible partitions Z/ of E’ of &-type. Define
kiv1 = m, (siy1,9i+1) = (s,9) and I}, | = Z]. Then, we have (i)(ii). We also
have (4i1) since
ilog9 + log Cy

1(:=1,2,...).
s Li=12)

gi <
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3. Proof of the main theorem

Take a sequence k1 < ko < -+ and a consistent family of (s;, g;)-admissible
partitions Z/ (¢ = 1,2,...) as in Corollary 2. Note that since lim;_, o g;/k; = 0
and N, g, < Ni, < Ng,, we have

0 < liminf NJ,_ . /Ny, <limsup N, /Ny, < co.
11— 00

1—00
In particular, we have
(iv) lim;— 00 8i/7 = 00 and lim; o Si+1/8; = 1.
We may also assume that
(v) (1/2)5+175% < A’ (i=1,2,...).
For # € E, let I'(x) be I € &, such that z € I. Let ¢; be the isomorphism
from &, to Zj. Since lim;_,oc N}, _,. = 00, y € E' such that y € ¢;(I'(z)) for any
i=1,2,...is determined, which is denoted by f(z).

We prove that f satisfies the required conditions. By the construction, it is
clear that f is strictly increasing. Take any = € E. If x+0 € E, then z is not the
right end point of I*(z) for any i = 1,2,.... Hence, f(z) and f(z + 0) stay in a
same (s;, g;)-admissible interval of E' as s; — g; — oco. Hence, f(x+0) = f(z)+0.
Thus, f is right continuous. The same argument holds for x — 0. Thus, f is
continuous.

Now, we prove the inequality (1.2). Let x,y € E satisfy that z < y and y —z
is sufficiently small. Take ¢ = 1,2,... such that dz,,, <y — 2 < d,,,. Then,
since

Y= < Oy, < (1/2)F TR < A1 < d), Gk,

for any j € {1,2,...,n5,—1 — 1}. Hence, there exists a basic interval I of E of
level k; such that {z,y} C I. Therefore, f(z) and f(y) belong to a same (s;, g;)-
admissible interval of E’, and hence, in a same basic interval of E’ of level s; — g;.
Denote [ = s; —g; and h = s;. Since f(z) and f(y) belong to a same basic interval
of E' of level [, we have f(y)— f(z) < 4;. For any e > 0, there exists a sufficiently
small A > 0 such that

(1= N2+ 0 (s—)\) < Si —e

Take iy such that

108 Newrs |\ 1y = 081V
—log 6%, ’

i+2
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. — . — /
(Kiv2 k2)10g00</\ and (h —1)log Cy

A
kitolog?2 hlog?2 <

for any i > 4. Assume that ¢ > iy. Since N} < Nj, < N;, we have

—log(f(y) — f(x)) > —logd; > (s'+ A) "' log N
10g(”f+1 e ”Ih)
log N/,

_ h —1)log C}
> (s 1 ! _ ( 0
> (s"+ )" log Ny, (1 Irlog 2 )

> (s +A) " tog Ni (1 —=X) > (1 =\ (s’ + )"t log Ny,

IOg(nki+1 c nki+2)>
log Niiio

(ki+2 — kl) IOg OO
kii2log?2

= (s +\)"'logN;, <1 -

= (1= N)(s'+ )" log Ny, (1 _

Z (1 - A)(S, + )‘)71 1ogNk'1,+2 (1 -

> (1= A2+ A) "' log Ny, ,,

> (1=2)2(s"+X) 7 (s = A)(— log by, )
> (1=2)2(s" +X) 7 (s = A)(—log(y — )
> (5 —€)(—log(y — 2))

s

Hence, for any € > 0, f(y) — f(z) < (y — )5 ¢ holds for any < y in F such
that y — « is sufficiently small. Thus, for any € > 0, there exists C; such that

fly) = flx) < Cily —2)7

for any z < y in E.

Let us prove the inequality of the opposite direction. Let x,y € E satisfy
that © < y and y — « is sufficiently small. Take ¢ = 1,2,... such that d,, , <
y — < Jg, ,. Then, there exists a basic interval I of level k;_; such that x € I
but y ¢ I. Therefore, f(z) and f(y) belong to distinct (s;—1, g;—1)-admissible
intervals in Z]_,, and hence, belong to distinct basic interval of E’ of level s;_;.
Therefore, by (v),

f) = fl@)>dl 6, >A8 >4

Denote [ = s; — g; and h = s;. For any € > 0, there exists a sufficiently small
A > 0 such that 5
1+ =N s+ N < 7T
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Take ig such that

log N, log N/
s — —othiz |y - BT oy
—log g, _, —log ¢;,
ki — ki_o)l h—1)logC!
( 2ogCo g (B=DloeCo
ki,Q IOg 2 llOg 2

for any 7 > ig. Assume that ¢ > 4g. Since N} < Nj, < N;, we have

—log(f(y) — f(x)) < —logd}, < (s = A)"'log N},
log(nj, - -n})
(1 / I+1 h
=(s"—A)7 " log IV (1 + T logN N )
(h—1)log C}
llog?2
< (s =N "tog N/ (1+X) < (1+X)(s" —\)"log Ny,
IOg(nkiferl t nkl)
log N, ,
(kz — ki—2) IOg CO
ki_slog?2

< (s = \)"tlog N/ (1 +

=1+ N (s =N tlog Ny, _, (1 +

< (1+A) (s + )" log Ny, , (1 +

s

Hence, for any € > 0, f(y) — f(z) > (y — x)~ 7 holds for any < y in E such
that y — « is sufficiently small. Thus, for any € > 0, there exists C such that

fly) — f(x) > Cyy — x)+ T

for any z <y in E.
Thus, we complete the proof.
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