Publ. Math. Debrecen 89/1-2 (2016), 233–242 DOI: 10.5486/PMD.2016.7538

Hölder equivalence of homogeneous Moran sets

By YU-MEI XUE (Beijing) and TETURO KAMAE (Osaka)

Abstract. For two homogeneous Moran sets $E = \mathcal{C}([0, 1], \{n_k\}, \{c_k\})$ and $E' = \mathcal{C}([0, 1], \{n'_k\}, \{c'_k\})$ with Hausdorff dimensions s and s' with s' < s such that $\{n_k\}$ and $\{n'_k\}$ are bounded and the spacings are uniform in some sense, we prove that there exists a homeomorphism $f : E \to E'$ such that f is $\left(\frac{s'}{s} - \epsilon\right)$ -Hölder continuous but not $\left(\frac{s'}{s} + \epsilon\right)$ -Hölder continuous for any $\epsilon > 0$.

1. Introduction

The class of homogeneous Moran sets are defined and studied by DEJUN FENG, ZHIYING WEN and JUN WU [4]. Let $n_k \ge 2$ be integers and c_k be positive numbers satisfying that $0 < c_k n_k < 1$ (k = 1, 2, ...). Let $D_k = \prod_{i=1}^k \{1, 2, ..., n_i\}$ and $D = \bigcup_{k=0}^{\infty} D_k$, where an element in D_k is denoted by a finite sequence $\sigma_1 \sigma_2 \dots \sigma_k$ of $\sigma_i \in \{1, 2, ..., n_i\}$ (i = 1, 2, ..., k) and D_0 consists of the empty sequence \emptyset . Let $\mathbb{J}_{\emptyset} = [0, 1]$ and define closed intervals $\mathbb{J}_{\sigma} \subset [0, 1]$ for $\sigma \in D$ inductively. Let $\sigma = \sigma' i \in D_k$ with $\sigma' \in D_{k-1}$ and $i \in \{1, 2, ..., n_k\}$. Let $\mathbb{J}_{\sigma'} = [a, b]$ with $b - a = c_1 \dots c_{k-1}$. Then, $\mathbb{J}_{\sigma'1}, \mathbb{J}_{\sigma'2}, \dots, \mathbb{J}_{\sigma'n_k}$ are disjoint closed intervals of length $c_1 \dots c_{k-1}c_k$ contained in $\mathbb{J}_{\sigma'}$ arranged from left to right in this order. To determine these sets, we introduce another quantity, a sequence of positive numbers $(d_k^1, \dots, d_k^{n_k-1})$ called *spacing* satisfying that

$$d_k^1 + \dots + d_k^{n_k - 1} + n_k c_k \le 1.$$

Mathematics Subject Classification: 28A80.

Key words and phrases: fractal, Moran set, Hölder equivalence, Hausdorff dimensions, quasi-Lipschitz equivalent.

Then define

$$\mathbb{J}_{\sigma'i} = [a + ((i-1)c_k + d_k^1 + \dots + d_k^{i-1})\delta, \ a + (ic_k + d_k^1 + \dots + d_k^{i-1})\delta]
(i = 1, 2, \dots, n_k),$$

where $\delta = c_1 \dots c_{k-1}$. Finally, we define a fractal set

$$E = \bigcap_{k=0}^{\infty} \bigcup_{\sigma \in D_k} \mathbb{J}_{\sigma}$$
(1.1)

which we call a homogeneous Moran set denoted as $\mathcal{C}([0, 1], \{n_k\}, \{c_k\}, \{d_k^i\})$.

In this paper, we always assume that

(*)
$$\sup_{k=1,2,\dots} n_k < \infty$$
, $\Delta := \inf_{k=1,2,\dots; i=1,\dots,n^k-1} d_k^i > 0$,

and

$$s = \lim_{k \to \infty} \frac{\log N_k}{-\log \delta_k}$$
 exists and $0 < s < 1$,

where $\delta_k = c_1 \dots c_k$ and $N_k = n_1 \dots n_k$ $(k = 1, 2, \dots)$.

It is known [4] that for any $E \in \mathcal{C}([0, 1], \{n_k\}, \{c_k\}, \{d_k^i\})$ satisfying (*), the Hausdorff dimension $\dim_H E$ is equal to s as above. For the general notions of fractal geometry, refer to [1], [5]. For the multifractal properties of Moran sets, refer to [3], [9]. For the notions of Hölder equivalence or Lipschitz equivalence, refer to [2], [7], [8]. We prove that

Theorem 1. For homogeneous Moran sets $E = \mathcal{C}([0,1], \{n_k\}, \{c_k\}, \{d_k^i\})$ and $E' = \mathcal{C}([0,1], \{n'_k\}, \{c'_k\}, \{d_k^{i'}\})$ satisfying the condition (*) with $s = \dim_H E$ and $s' = \dim_H E'$ such that $s \leq s'$. Then, there exists a homeomorphism $f : E \to E'$ such that

$$C_1(y-x)^{\frac{s}{s'}+\epsilon} < f(y) - f(x) < C_2(y-x)^{\frac{s}{s'}-\epsilon}$$
(1.2)

holds for any x < y in E, where $\epsilon > 0$ is arbitrary and C_1 , C_2 are positive constants.

Corollary 1 (QIN WANG and LI-FENG XI [6]). In the above theorem, if s = s', then E and E' are quasi-Lipschitz equivalent.

2. Basic lemmas

Lemma 1. Let k and l be positive integers. Let U_1, U_2, \ldots, U_k be a disjoint family of sets having the same number l of elements. Let $k < n \leq kl$. Then, there exists a disjoint family V_1, V_2, \ldots, V_n of nonempty sets such that

- (1) $V_1 \cup V_2 \cup \cdots \cup V_n = U_1 \cup U_2 \cup \cdots \cup U_k$, and
- (2) for any j = 1, 2, ..., n, there exists i = 1, 2, ..., k such that $V_j \subset U_i$.
- (3) $\#V_i \leq 3\#V_j$ holds for any i, j = 1, 2, ..., n, where #V denotes the number of elements in a set V.

PROOF. Let $d = \lfloor n/k \rfloor$ and n = kd + r with $0 \le r < k$. Then, n = (k - r)d + r(d + 1). We partition each of $U_1, U_2, \ldots, U_{k-r}$ into d number of subsets and each of $U_{k-r+1}, U_{k-r+2}, \ldots, U_k$ into d + 1 number of subsets. These subsets will become V_1, V_2, \ldots, V_n . Let $h = \lfloor l/d \rfloor$. Since l = dh + s with $0 \le s < d$, we have l = (d - s)h + s(h + 1). Partition each of $U_1, U_2, \ldots, U_{k-r}$ into d - s number of subsets with h elements and s number of subsets with h + 1 elements. Let $m = \lfloor l/(d + 1) \rfloor$. Since l = (d + 1)m + t with $0 \le t < d + 1$, we have l = (d + 1 - t)m + t(m + 1). Partition each of $U_{k-r+1}, U_{k-r+2}, \ldots, U_k$ into d + 1 - t number of subsets with m elements and t number of subsets with m + 1 elements. The collection of these sets becomes V_1, V_2, \ldots, V_n . Then, we have (1)(2).

Let us prove (3). We have

$$\max_{i} \# V_{i} = \begin{cases} h+1 & \text{if } l \text{ is not a multiple of } d, \\ h & \text{if } l \text{ is a multiple of } d, \end{cases}$$

$$\min_{i} \# V_{i} = \begin{cases} m & \text{if } n \text{ is not a multiple of } k, \\ h & \text{if } n \text{ is a multiple of } k. \end{cases}$$

Case 1. If l is not a multiple of d, then $h = \lfloor l/d \rfloor \leq (l-1)/d$. Since l = (d+1)m+t, $0 \leq t \leq d$ and $d \geq 1$, we have

$$\begin{aligned} \max_i \# V_i &= h + 1 = \lfloor l/d \rfloor + 1 \leq (l-1)/d + 1 = ((d+1)m + t - 1)/d + 1 \\ &\leq ((d+1)m + d - 1)/d + 1 = m + 1 + (m-1)/d + 1 \\ &\leq m + 1 + (m-1) + 1 = 2m + 1 \leq 3m \leq 3 \min_i \# V_i. \end{aligned}$$

Case 2. If l is a multiple of d, then

$$\begin{aligned} max_i \# V_i &= h = \lfloor l/d \rfloor = l/d = ((d+1)m+t)/d \le ((d+1)m+d)/d \\ &= m+1+m/d \le m+1+m = 2m+1 \le 3m \le 3 \ min_i \# V_i. \end{aligned}$$

Let $D_k = \prod_{i=1}^k \{1, 2, \dots, n_i\}$ and $D'_k = \prod_{i=1}^k \{1, 2, \dots, n'_i\}$ $(k = 0, 1, 2, \dots)$. For $\sigma \in D_k$ or $\sigma' \in D'_k$, let \mathbb{J}_{σ} or $\mathbb{J}_{\sigma'}$ be the intervals defined in (1.1) with respect to $E = \mathcal{C}([0, 1], \{n_k\}, \{c_k\}, \{d_k^i\})$ or $E' = \mathcal{C}([0, 1], \{n'_k\}, \{c'_k\}, \{d_k^{i'}\})$, respectively. We call it a *basic* interval of E or E' of level k. We denote by δ'_k , N'_k or Δ' the quantities δ_k , N_k or Δ for E'.

Notation. Denote $C_0 := \sup_i n_i$ and $C'_0 = \sup_i n'_i$.

Definition 1. Let k = 1, 2, ... and e = 0, 1, ..., k. For basic intervals I and J of E of level k contained in a same basic interval of E of level k - e, the minimum interval containing I and J is called an (k, e)-admissible interval of E. Specially, a basic interval of E of level k is a (k, 0)-admissible interval of E. The number of basic intervals of level k contained in an interval H is called the k-size of H and denoted by $\#_k H$. Let $\mathcal{I} = \{I_1, I_2, \ldots, I_t\}$ be a set of (k, e)-admissible intervals of E. We call it an (k, e)-admissible partition of F (in E) if

- (1) $I_i \cap I_j = \emptyset$ for any $i \neq j$, and
- (2) $(\bigcup_{i=1}^{t} I_i) \cap E = F.$

Specially, the (k, 0)-admissible partition of E, that is, the set of all basic intervals of level k is denoted by \mathcal{E}_k and called the *k*-basic partition of E. Just by an *admissible partition*, we mean an (k, e)-admissible partition for some e and k. We define the same things for E' and the *k*-basic partition of E' is denoted by \mathcal{E}'_k

Definition 2. An (l, g)-admissible partition $\mathcal{I}' = \{I_1, I_2, \ldots, I_t\}$ of E' is said to be of \mathcal{E}_k -type if $t = \#\mathcal{I}' = N_k$. In this case, there exists a unique orderpreserving bijection φ from \mathcal{E}_k to \mathcal{I}' , that is, if x < y holds for any $x \in I$ and $y \in J$ with $I, J \in \mathcal{E}_k$, then x' < y' holds for any $x' \in \varphi(I)$ and $y' \in \varphi(J)$. We call φ the *isomorphism* from \mathcal{E}_k to \mathcal{I}' . Let \mathcal{I}' and \mathcal{J}' be admissible partitions of E'of \mathcal{E}_k -type and \mathcal{E}_m -type with k < m, respectively. They are said to be *consistent* if for any $I \in \mathcal{E}_k$ and $J \in \mathcal{E}_m$ with $I \subset J, \varphi(I) \subset \psi(J)$ holds, where φ and ψ are the isomorphisms from \mathcal{E}_k to \mathcal{I}' , and from \mathcal{E}_m to \mathcal{J}' , respectively.

Lemma 2. (1) For any $k = 1, 2, ..., let N'_{l-1} < N_k \leq N'_l$. Then, there exists an (l, 1)-admissible partition \mathcal{I}'_l of E' of \mathcal{E}_k -type such that $\#_l I \leq 3 \#_l J$ holds for any $I, J \in \mathcal{I}'_l$.

(2) Assume that \mathcal{I}'_l is an (l, e)-admissible partition of E' of \mathcal{E}_k -type such that $\#_l I \leq C \#_l J$ for any $I, J \in \mathcal{I}'_l$ with C > 1. Let

$$g = \lfloor (\log C + \log C_0) / \log 2 + 1 \rfloor.$$

Then for any integer h > k, there exists an (s, g)-admissible partition \mathcal{I}'_s of E' of \mathcal{E}_m -type with $h \le m < h + \frac{\log C'_0}{\log 2}g$ and some s such that \mathcal{I}'_l and \mathcal{I}'_s are consistent. Moreover, $\#_s I \le 9C \#_s J$ holds for any $I, J \in \mathcal{I}'_s$.

PROOF. (1) We consider a basic interval I of E' of level l-1 to be the set of basic intervals J of E' of level l such that $J \subset I$. There are N'_{l-1} number of sets as this which are denoted by $U_1, U_2, \ldots, U_{N'_{l-1}}$. All of them have n'_l number of elements. Since $N'_{l-1} < N_k \leq n'_l N'_{l-1} = N'_l$, applying Lemma 1, we have a disjoint family $V_1, V_2, \ldots, V_{N_k}$ of nonempty sets such that (1)(2)(3) of Lemma 1 hold with $k = N'_{l-1}$, $n = N_k$ and $l = n'_l$. Moreover, we may assume that each of $V_1, V_2, \ldots, V_{N_k}$ consists of neighboring basic intervals of level l, so that the admissible intervals generated by them are disjoint. Hence, they define a (l, 1)-admissible partition \mathcal{I}'_l of \mathcal{E}' of \mathcal{E}_k -type satisfying that $\#_l I \leq 3\#_l J$ for any $I, J \in \mathcal{I}'_l$.

(2) Denote $N_{k,h} = n_{k+1} \cdots n_h$ for $h = k+1, k+2, \cdots$ and $N'_{l,s} = n'_{l+1} \cdots n'_s$ for $s = l+1, l+2, \cdots$. If $h \leq k$ or $s \leq l$, we define $N_{k,h} = N'_{l,s} = 1$. Let $p = \min_{I \in \mathcal{I}'_l} \#_l I$ and $q = \max_{I \in \mathcal{I}'_l} \#_l I$.

Take any h > k and take an integer s such that $pN'_{l,s-g} < N_{k,h} \le pN'_{l,s}$. Since

$$\frac{pN'_{l,s}}{qN'_{l,s-g}} \ge \frac{n'_{s-g+1}\cdots n'_s}{C} \ge \frac{2^g}{C} \ge \frac{2^{(\log C + \log C_0)/\log 2}}{C} = C_0,$$

there exists m such that

$$qN'_{l,s-g} < N_{k,m} \le pN'_{l,s}.$$
(2.1)

If $qN'_{l,s-g} < N_{k,h}$, then we can take m = h. Otherwise, since $N_{k,h} \le qN'_{l,s-g} < N_{k,m}$, we must have h < m. Moreover, since $pN'_{l,s-g} < N_{k,h}$ and $N_{k,m} \le pN'_{l,s}$, we have

$$\frac{N_{k,m}}{N_{k,h}} < \frac{pN'_{l,s}}{pN'_{l,s-q}} = n'_{s-g+1} \cdots n'_s \le C_0'^g.$$

Therefore,

$$2^{m-h} \le n_{h+1} \cdots n_m = \frac{N_{k,m}}{N_{k,h}} < C_0'^g,$$

and hence, $m < h + \frac{\log C'_0}{\log 2} g$. Thus, there exists *m* satisfying (2.1) together with

$$h \le m < h + \frac{\log C'_0}{\log 2} g.$$

Construct an (s,g)-admissible partition \mathcal{I}'_s of E' of \mathcal{E}_m -type such that \mathcal{I}'_l and \mathcal{I}'_s are consistent and $\#_s I \leq 9C \#_s J$ holds for any $I, J \in \mathcal{I}'_s$.

Take any $K \in \mathcal{I}'_l$. Then, we have

$$\#_{l}KN'_{l,s-g} \le qN'_{l,s-g} < N_{k,m} \le pN'_{l,s} \le \#_{l}KN'_{l,s-g}$$

Hence by the same argument as in the proof of (1) applying Lemma 1, there exists a (s,g)-admissible partition \mathcal{K}_K of K in E' with $\#\mathcal{K}_K = N_{k,m}$. Moreover, $\#_s I \leq 3\#_s J$ holds for any $I, J \in \mathcal{K}_K$. Let $\mathcal{I}'_s = \bigcup_{K \in \mathcal{I}'_l} \mathcal{K}_K$. Then, it is clear that \mathcal{I}'_s is a (s,g)-admissible partition of E' of \mathcal{E}_m -type which is consistent with \mathcal{I}'_l . Take any $I, J \in \mathcal{I}'_s$. Let $I \in \mathcal{K}_K$ and $J \in \mathcal{K}_L$. Then, since

$$\#_{s}I \leq \frac{1}{\#\mathcal{K}_{K}} \sum_{I' \in \mathcal{K}_{K}} 3\#_{s}I' = \frac{3}{N_{k,m}} \sum_{I' \in \mathcal{K}_{K}} \#_{s}I' = \frac{3}{N_{k,m}} N'_{l,s} \#_{l}K$$

and

$$\#_s J \ge \frac{1}{\#\mathcal{K}_L} \sum_{I' \in \mathcal{K}_L} (1/3) \#_s I' = \frac{1/3}{N_{k,m}} \sum_{I' \in \mathcal{K}_L} \#_s I' = \frac{1/3}{N_{k,m}} N'_{l,s} \#_l L,$$

we have

$$\#_s J \le 9 \frac{\#_l K}{\#_l L} \#_s J \le 9C \#_s J,$$

which completes the proof.

Corollary 2. There exist sequences of positive integers $\{k_i\}, \{g_i\}$ and $\{s_i\}$ increasing to ∞ such that

- (i) $\lim_{i\to\infty} k_i/i = \infty$ and $\lim_{i\to\infty} k_{i+1}/k_i = 1$,
- (ii) $(1/2)^{k_{i+1}-k_i} < \Delta \ (i=1,2,\ldots),$
- (iii) $\sup g_i/i < \infty$, and
- (iv) there exists a consistent family of (s_i, g_i) -admissible partitions \mathcal{I}'_i (i=1,2,...) of E' of \mathcal{E}_{k_i} -type.

PROOF. Take j such that $2^{-j} < \Delta$. We construct $k_1 < k_2 < \cdots$ inductively starting by an arbitrary k_1 . For $k = k_1$, there exists (l, 1)-admissible partitions \mathcal{I}'_l of \mathcal{E}' of \mathcal{E}_k -type by (1) of Lemma 2. Let $(s_1, g_1) = (l, 1)$ and $\mathcal{I}'_1 = \mathcal{I}'_l$. Assume that k_i , (s_i, g_i) and \mathcal{I}'_i are determined. For $k = k_i$, h = k + j and \mathcal{I}'_i , apply Lemma 2 and get m and (s, g)-admissible partitions \mathcal{I}'_s of \mathcal{E}' of \mathcal{E}_k -type. Define $k_{i+1} = m$, $(s_{i+1}, g_{i+1}) = (s, g)$ and $\mathcal{I}'_{i+1} = \mathcal{I}'_s$. Then, we have (i)(ii). We also have (iii) since

$$g_i \le \frac{i\log 9 + \log C_0}{\log 2} + 1 \ (i = 1, 2, \dots).$$

3. Proof of the main theorem

Take a sequence $k_1 < k_2 < \cdots$ and a consistent family of (s_i, g_i) -admissible partitions \mathcal{I}'_i $(i = 1, 2, \dots)$ as in Corollary 2. Note that since $\lim_{i\to\infty} g_i/k_i = 0$ and $N_{s_i-g_i} \leq N_{k_i} \leq N_{s_i}$, we have

$$0 < \liminf_{i \to \infty} N'_{s_i - g_i} / N_{k_i} \le \limsup_{i \to \infty} N'_{s_i} / N_{k_i} < \infty.$$

In particular, we have

(iv) $\lim_{i\to\infty} s_i/i = \infty$ and $\lim_{i\to\infty} s_{i+1}/s_i = 1$.

We may also assume that

(v) $(1/2)^{s_{i+1}-s_i} < \Delta' \ (i=1,2,\ldots).$

For $x \in E$, let $I^i(x)$ be $I \in \mathcal{E}_{k_i}$ such that $x \in I$. Let φ_i be the isomorphism from \mathcal{E}_{k_i} to \mathcal{I}'_i . Since $\lim_{i\to\infty} N'_{s_i-g_i} = \infty$, $y \in E'$ such that $y \in \varphi_i(I^i(x))$ for any $i = 1, 2, \ldots$ is determined, which is denoted by f(x).

We prove that f satisfies the required conditions. By the construction, it is clear that f is strictly increasing. Take any $x \in E$. If $x + 0 \in E$, then x is not the right end point of $I^i(x)$ for any $i = 1, 2, \ldots$. Hence, f(x) and f(x + 0) stay in a same (s_i, g_i) -admissible interval of E' as $s_i - g_i \to \infty$. Hence, f(x+0) = f(x) + 0. Thus, f is right continuous. The same argument holds for x - 0. Thus, f is continuous.

Now, we prove the inequality (1.2). Let $x, y \in E$ satisfy that x < y and y - x is sufficiently small. Take $i = 1, 2, \ldots$ such that $\delta_{k_{i+2}} < y - x \leq \delta_{k_{i+1}}$. Then, since

$$y - x \le \delta_{k_{i+1}} \le (1/2)^{k_{i+1} - k_i + 1} \delta_{k_i - 1} < \Delta \delta_{k_i - 1} \le d_{k_i}^j \delta_{k_i - 1}$$

for any $j \in \{1, 2, \ldots, n_{k_i-1} - 1\}$. Hence, there exists a basic interval I of E of level k_i such that $\{x, y\} \subset I$. Therefore, f(x) and f(y) belong to a same (s_i, g_i) -admissible interval of E', and hence, in a same basic interval of E' of level $s_i - g_i$. Denote $l = s_i - g_i$ and $h = s_i$. Since f(x) and f(y) belong to a same basic interval of E' of level l, we have $f(y) - f(x) \leq \delta'_l$. For any $\epsilon > 0$, there exists a sufficiently small $\lambda > 0$ such that

$$(1-\lambda)^2(s'+\lambda)^{-1}(s-\lambda) < \frac{s}{s'} - \epsilon.$$

Take i_0 such that

$$|s - \frac{\log N_{k_{i+2}}}{-\log \delta_{k_{i+2}}}| < \lambda, \ |s' - \frac{\log N'_l}{-\log \delta'_l}| < \lambda,$$

$$\frac{(k_{i+2}-k_i)\log C_0}{k_{i+2}\log 2} < \lambda \ \text{ and } \ \frac{(h-l)\log C_0'}{h\log 2} < \lambda$$

for any $i \ge i_0$. Assume that $i \ge i_0$. Since $N'_l \le N_{k_i} \le N'_h$, we have

$$\begin{split} -\log(f(y) - f(x)) &\geq -\log \delta'_{l} > (s' + \lambda)^{-1} \log N'_{l} \\ &= (s' + \lambda)^{-1} \log N'_{h} \left(1 - \frac{\log(n'_{l+1} \cdots n'_{h})}{\log N'_{h}} \right) \\ &\geq (s' + \lambda)^{-1} \log N'_{h} \left(1 - \frac{(h - l) \log C'_{0}}{h \log 2} \right) \\ &> (s' + \lambda)^{-1} \log N'_{h} (1 - \lambda) \geq (1 - \lambda)(s' + \lambda)^{-1} \log N_{k_{i}} \\ &= (1 - \lambda)(s' + \lambda)^{-1} \log N_{k_{i+2}} \left(1 - \frac{\log(n_{k_{i}+1} \cdots n_{k_{i+2}})}{\log N_{k_{i+2}}} \right) \\ &\geq (1 - \lambda)(s' + \lambda)^{-1} \log N_{k_{i+2}} \left(1 - \frac{(k_{i+2} - k_{i}) \log C_{0}}{k_{i+2} \log 2} \right) \\ &> (1 - \lambda)^{2}(s' + \lambda)^{-1} \log N_{k_{i+2}} \\ &> (1 - \lambda)^{2}(s' + \lambda)^{-1}(s - \lambda)(-\log \delta_{k_{i+2}}) \\ &> (1 - \lambda)^{2}(s' + \lambda)^{-1}(s - \lambda)(-\log(y - x)) \\ &> (\frac{s}{s'} - \epsilon)(-\log(y - x)) \end{split}$$

Hence, for any $\epsilon > 0$, $f(y) - f(x) < (y - x)^{\frac{s}{s'} - \epsilon}$ holds for any x < y in E such that y - x is sufficiently small. Thus, for any $\epsilon > 0$, there exists C_1 such that

$$f(y) - f(x) < C_1(y - x)^{\frac{s}{s'} - \epsilon}$$

for any x < y in E.

Let us prove the inequality of the opposite direction. Let $x, y \in E$ satisfy that x < y and y - x is sufficiently small. Take i = 1, 2, ... such that $\delta_{k_{i-1}} < y - x \le \delta_{k_{i-2}}$. Then, there exists a basic interval I of level k_{i-1} such that $x \in I$ but $y \notin I$. Therefore, f(x) and f(y) belong to distinct (s_{i-1}, g_{i-1}) -admissible intervals in \mathcal{I}'_{i-1} , and hence, belong to distinct basic interval of E' of level s_{i-1} . Therefore, by (v),

$$f(y) - f(x) \ge d_{s_{i-1}}^{j'} \delta'_{s_{i-1}-1} \ge \Delta \delta'_{s_{i-1}-1} > \delta'_{s_i}.$$

Denote $l = s_i - g_i$ and $h = s_i$. For any $\epsilon > 0$, there exists a sufficiently small $\lambda > 0$ such that

$$(1+\lambda)^2(s'-\lambda)^{-1}(s+\lambda) < \frac{s}{s'} + \epsilon.$$

Take i_0 such that

$$|s - \frac{\log N_{k_{i-2}}}{-\log \delta_{k_{i-2}}}| < \lambda, \ |s' - \frac{\log N'_h}{-\log \delta'_h}| < \lambda,$$
$$\frac{(k_i - k_{i-2})\log C_0}{k_{i-2}\log 2} < \lambda \text{ and } \frac{(h-l)\log C'_0}{l\log 2} < \lambda$$

for any $i \ge i_0$. Assume that $i \ge i_0$. Since $N'_l \le N_{k_i} \le N'_h$, we have

$$\begin{aligned} -\log(f(y) - f(x)) &< -\log \delta'_{h} < (s' - \lambda)^{-1} \log N'_{h} \\ &= (s' - \lambda)^{-1} \log N'_{l} \left(1 + \frac{\log(n'_{l+1} \cdots n'_{h})}{\log N'_{l}} \right) \\ &\leq (s' - \lambda)^{-1} \log N'_{l} \left(1 + \frac{(h - l) \log C'_{0}}{l \log 2} \right) \\ &< (s' - \lambda)^{-1} \log N'_{l} (1 + \lambda) \le (1 + \lambda)(s' - \lambda)^{-1} \log N_{k_{i}} \\ &= (1 + \lambda)(s' - \lambda)^{-1} \log N_{k_{i-2}} \left(1 + \frac{\log(n_{k_{i-2}+1} \cdots n_{k_{i}})}{\log N_{k_{i-2}}} \right) \\ &\leq (1 + \lambda)(s' + \lambda)^{-1} \log N_{k_{i-2}} \left(1 + \frac{(k_{i} - k_{i-2}) \log C_{0}}{k_{i-2} \log 2} \right) \\ &< (1 + \lambda)^{2}(s' - \lambda)^{-1} \log N_{k_{i-2}} \\ &< (1 + \lambda)^{2}(s' - \lambda)^{-1}(s + \lambda)(-\log \delta_{k_{i-2}}) \\ &\leq (1 + \lambda)^{2}(s' - \lambda)^{-1}(s + \lambda)(-\log(y - x)) \\ &< (\frac{s}{s'} + \epsilon)(-\log(y - x)) \end{aligned}$$

Hence, for any $\epsilon > 0$, $f(y) - f(x) > (y - x)^{\frac{s}{s'} + \epsilon}$ holds for any x < y in E such that y - x is sufficiently small. Thus, for any $\epsilon > 0$, there exists C_2 such that

$$f(y) - f(x) > C_2(y - x)^{\frac{s}{s'} + \epsilon}$$

for any x < y in E.

Thus, we complete the proof.

ACKNOWLEDGEMENTS. We thank the anonymous referees for the useful suggestions. This work is partially supported by the Fundamental Research Funds for the Central Universities (No. YWF-15-SXXY-005 and YWF-15-SXXY-009) and NSFC grant (No. 11290141 and No. 11571030).

Y.-M. Xue and T. Kamae : Hölder equivalence of homogeneous...

References

- [1] K. J. FALCONER, Fractal Geometry: Mathematical Foundations and Applications, John Wiley, 1990.
- [2] K. J. FALCONER and D. T. MARSH, On the Lipschitz equivalence of Cantor sets, Mathematika **39** (1992), 223–233.
- [3] R. CAWLEY and R. D. MAULDIN, Multifractal decompositions of Moran fractals, Adv. Math 92 (1992), 196-236.
- [4] D. FENG, Z. WEN and J. WU, Some dimensional results for homogeneous Moran sets, Sci. China Ser. A 40 (1997), 475-482.
- [5] Z. WEN, Mathematical Foundations of Fractal Geomety, Shanghai Scientific and Technological Education Publishing House, 2000 (in Chinese).
- [6] Q. WANG and L-F. XI, Quasi-Lipschitz equivalence of Ahlfors–David regular sets, Sci. China Math. 54 (2011), 2573–2582.
- [7] L-F. XI, Lipschitz equivalence of self-conformal sets, J. London Math. Soc. 70 (2004), 369 - 382.
- [8] L-F. XI, Quasi Lipschitz equivalence of fractals, Israel J. Math. 160 (2007), 1–21.
- [9] Y. XUE and T. KAMAE, Hausdorff dimension of Moran sets with increasing spacing, Sci. China Math. 56 (2013), 553-560.

YU-MEI XUE SCHOOL OF MATHEMATICS AND SYSTEM SCIENCES LMIB BEIHANG UNIVERSITY BEIJING 100191 P. R. CHINA

E-mail: yxue@buaa.edu.cn

TETURO KAMAE ADVANCED MATHEMATICAL INSTITUTE OSAKA CITY UNIVERSITY OSAKA 558-8585 JAPAN

E-mail: kamae@apost.plala.or.jp

(Received November 13, 2015; revised January 18, 2016)