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Hölder equivalence of homogeneous Moran sets

By YU-MEI XUE (Beijing) and TETURO KAMAE (Osaka)

Abstract. For two homogeneous Moran sets E = C([0, 1], {nk}, {ck}) and E′ =

C([0, 1], {n′
k}, {c′k}) with Hausdorff dimensions s and s′ with s′ < s such that {nk} and

{n′
k} are bounded and the spacings are uniform in some sense, we prove that there

exists a homeomorphism f : E → E′ such that f is

(
s′

s
− ε

)
-Hölder continuous but not(

s′

s
+ ε

)
-Hölder continuous for any ε > 0.

1. Introduction

The class of homogeneous Moran sets are defined and studied by Dejun

Feng, Zhiying Wen and Jun Wu [4]. Let nk ≥ 2 be integers and ck be positive

numbers satisfying that 0 < cknk < 1 (k = 1, 2, . . . ). Let Dk =
∏k
i=1{1, 2, . . . ni}

and D = ∪∞k=0Dk, where an element in Dk is denoted by a finite sequence

σ1σ2 . . . σk of σi ∈ {1, 2, . . . , ni} (i = 1, 2, . . . , k) and D0 consists of the empty

sequence ∅. Let J∅ = [0, 1] and define closed intervals Jσ ⊂ [0, 1] for σ ∈ D induc-

tively. Let σ = σ′i ∈ Dk with σ′ ∈ Dk−1 and i ∈ {1, 2, . . . , nk}. Let Jσ′ = [a, b]

with b − a = c1 . . . ck−1. Then, Jσ′1, Jσ′2, . . . , Jσ′nk
are disjoint closed intervals

of length c1 . . . ck−1ck contained in Jσ′ arranged from left to right in this order.

To determine these sets, we introduce another quantity, a sequence of positive

numbers (d1k, . . . , d
nk−1
k ) called spacing satisfying that

d1k + · · ·+ dnk−1
k + nkck ≤ 1.
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Then define

Jσ′i = [a+ ((i− 1)ck + d1k + · · ·+ di−1k )δ, a+ (ick + d1k + · · ·+ di−1k )δ]

(i = 1, 2, . . . , nk),

where δ = c1 . . . ck−1. Finally, we define a fractal set

E =

∞⋂
k=0

⋃
σ∈Dk

Jσ (1.1)

which we call a homogeneous Moran set denoted as C([0, 1], {nk}, {ck}, {dik}).
In this paper, we always assume that

(∗) sup
k=1,2,...

nk <∞, ∆ := inf
k=1,2,...; i=1,...,nk−1

dik > 0,

and

s = lim
k→∞

logNk
− log δk

exists and 0 < s < 1,

where δk = c1 . . . ck and Nk = n1 . . . nk (k = 1, 2, . . . ).

It is known [4] that for any E ∈ C([0, 1], {nk}, {ck}, {dik}) satisfying (∗), the

Hausdorff dimension dimH E is equal to s as above. For the general notions of

fractal geometry, refer to [1], [5]. For the multifractal properties of Moran sets,

refer to [3], [9]. For the notions of Hölder equivalence or Lipschitz equivalence,

refer to [2], [7], [8]. We prove that

Theorem 1. For homogeneous Moran sets E = C([0, 1], {nk}, {ck}, {dik})
and E′ = C([0, 1], {n′k}, {c′k}, {di

′

k }) satisfying the condition (∗) with s = dimH E

and s′ = dimH E
′ such that s ≤ s′. Then, there exists a homeomorphism f :

E → E′ such that

C1(y − x)
s
s′+ε < f(y)− f(x) < C2(y − x)

s
s′−ε (1.2)

holds for any x < y in E, where ε > 0 is arbitrary and C1, C2 are positive

constants.

Corollary 1 (Qin Wang and Li-feng Xi [6]). In the above theorem, if

s = s′, then E and E′ are quasi-Lipschitz equivalent.
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2. Basic lemmas

Lemma 1. Let k and l be positive integers. Let U1, U2, . . . , Uk be a disjoint

family of sets having the same number l of elements. Let k < n ≤ kl. Then, there
exists a disjoint family V1, V2, . . . , Vn of nonempty sets such that

(1) V1 ∪ V2 ∪ · · · ∪ Vn = U1 ∪ U2 ∪ · · · ∪ Uk, and
(2) for any j = 1, 2, . . . , n, there exists i = 1, 2, . . . , k such that Vj ⊂ Ui.
(3) #Vi ≤ 3#Vj holds for any i, j = 1, 2, . . . , n, where #V denotes the number

of elements in a set V .

Proof. Let d = bn/kc and n = kd + r with 0 ≤ r < k. Then, n =

(k − r)d + r(d + 1). We partition each of U1, U2, . . . , Uk−r into d number of

subsets and each of Uk−r+1, Uk−r+2, . . . , Uk into d+ 1 number of subsets. These

subsets will become V1, V2, . . . , Vn. Let h = bl/dc. Since l = dh+s with 0 ≤ s < d,

we have l = (d − s)h + s(h + 1). Partition each of U1, U2, . . . , Uk−r into d − s
number of subsets with h elements and s number of subsets with h+ 1 elements.

Let m = bl/(d + 1)c. Since l = (d + 1)m + t with 0 ≤ t < d + 1, we have

l = (d+1−t)m+t(m+1). Partition each of Uk−r+1, Uk−r+2, . . . , Uk into d+1−t
number of subsets with m elements and t number of subsets with m+1 elements.

The collection of these sets becomes V1, V2, . . . , Vn. Then, we have (1)(2).

Let us prove (3). We have

max
i

#Vi =

{
h+ 1 if l is not a multiple of d,

h if l is a multiple of d,

min
i

#Vi =

{
m if n is not a multiple of k,

h if n is a multiple of k.

Case 1. If l is not a multiple of d, then h = bl/dc ≤ (l−1)/d. Since l = (d+1)m+t,

0 ≤ t ≤ d and d ≥ 1, we have

maxi#Vi = h+ 1 = bl/dc+ 1 ≤ (l − 1)/d+ 1 = ((d+ 1)m+ t− 1)/d+ 1

≤ ((d+ 1)m+ d− 1)/d+ 1 = m+ 1 + (m− 1)/d+ 1

≤ m+ 1 + (m− 1) + 1 = 2m+ 1 ≤ 3m ≤ 3 mini#Vi.

Case 2. If l is a multiple of d, then

maxi#Vi = h = bl/dc = l/d = ((d+ 1)m+ t)/d ≤ ((d+ 1)m+ d)/d

= m+ 1 +m/d ≤ m+ 1 +m = 2m+ 1 ≤ 3m ≤ 3 mini#Vi. �
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Let Dk =
∏k
i=1{1, 2, . . . ni} and D′k =

∏k
i=1{1, 2, . . . n′i} (k = 0, 1, 2, . . . ).

For σ ∈ Dk or σ′ ∈ D′k, let Jσ or Jσ′ be the intervals defined in (1.1) with respect

to E = C([0, 1], {nk}, {ck}, {dik}) or E′ = C([0, 1], {n′k}, {c′k}, {di
′

k }), respectively.

We call it a basic interval of E or E′ of level k. We denote by δ′k, N ′k or ∆′ the

quantities δk, Nk or ∆ for E′.

Notation. Denote C0 := supi ni and C ′0 = supi n
′
i.

Definition 1. Let k = 1, 2, . . . and e = 0, 1, . . . , k. For basic intervals I and J

of E of level k contained in a same basic interval of E of level k−e, the minimum

interval containing I and J is called an (k, e)-admissible interval of E. Specially,

a basic interval of E of level k is a (k, 0)-admissible interval of E. The number of

basic intervals of level k contained in an interval H is called the k-size of H and

denoted by #kH. Let I = {I1, I2, . . . , It} be a set of (k, e)-admissible intervals

of E. We call it an (k, e)-admissible partition of F (in E) if

(1) Ii ∩ Ij = ∅ for any i 6= j, and

(2) (∪ti=1Ii) ∩ E = F .

Specially, the (k, 0)-admissible partition of E, that is, the set of all basic intervals

of level k is denoted by Ek and called the k-basic partition of E. Just by an

admissible partition, we mean an (k, e)-admissible partition for some e and k. We

define the same things for E′ and the k-basic partition of E′ is denoted by E ′k

Definition 2. An (l, g)-admissible partition I ′ = {I1, I2, . . . , It} of E′ is said

to be of Ek-type if t = #I ′ = Nk. In this case, there exists a unique order-

preserving bijection ϕ from Ek to I ′, that is, if x < y holds for any x ∈ I and

y ∈ J with I, J ∈ Ek, then x′ < y′ holds for any x′ ∈ ϕ(I) and y′ ∈ ϕ(J). We

call ϕ the isomorphism from Ek to I ′. Let I ′ and J ′ be admissible partitions of E′

of Ek-type and Em-type with k < m, respectively. They are said to be consistent

if for any I ∈ Ek and J ∈ Em with I ⊂ J , ϕ(I) ⊂ ψ(J) holds, where ϕ and ψ are

the isomorphisms from Ek to I ′, and from Em to J ′, respectively.

Lemma 2. (1) For any k = 1, 2, . . . , let N ′l−1 < Nk ≤ N ′l . Then, there exists
an (l, 1)-admissible partition I ′l of E′ of Ek-type such that #lI ≤ 3#lJ holds for

any I, J ∈ I ′l .
(2) Assume that I ′l is an (l, e)-admissible partition of E′ of Ek-type such that

#lI ≤ C#lJ for any I, J ∈ I ′l with C > 1. Let

g = b(logC + logC0)/ log 2 + 1c.
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Then for any integer h > k, there exists an (s, g)-admissible partition I ′s of E′ of

Em-type with h ≤ m < h+
logC ′0
log 2

g and some s such that I ′l and I ′s are consistent.

Moreover, #sI ≤ 9C#sJ holds for any I, J ∈ I ′s.

Proof. (1) We consider a basic interval I of E′ of level l − 1 to be the set

of basic intervals J of E′ of level l such that J ⊂ I. There are N ′l−1 number of

sets as this which are denoted by U1, U2, . . . , UN ′l−1
. All of them have n′l number

of elements. Since N ′l−1 < Nk ≤ n′lN
′
l−1 = N ′l , applying Lemma 1, we have a

disjoint family V1, V2, . . . , VNk
of nonempty sets such that (1)(2)(3) of Lemma 1

hold with k = N ′l−1, n = Nk and l = n′l. Moreover, we may assume that

each of V1, V2, . . . , VNk
consists of neighboring basic intervals of level l, so that

the admissible intervals generated by them are disjoint. Hence, they define a

(l, 1)-admissible partition I ′l of E′ of Ek-type satisfying that #lI ≤ 3#lJ for any

I, J ∈ I ′l .
(2) Denote Nk,h = nk+1 · · ·nh for h = k+ 1, k+ 2, · · · and N ′l,s = n′l+1 · · ·n′s

for s = l + 1, l + 2, · · · . If h ≤ k or s ≤ l, we define Nk,h = N ′l,s = 1. Let

p = minI∈I′l #lI and q = maxI∈I′l #lI.

Take any h > k and take an integer s such that pN ′l,s−g < Nk,h ≤ pN ′l,s.

Since
pN ′l,s
qN ′l,s−g

≥
n′s−g+1 · · ·n′s

C
≥ 2g

C
≥ 2(logC+logC0)/ log 2

C
= C0,

there exists m such that

qN ′l,s−g < Nk,m ≤ pN ′l,s. (2.1)

If qN ′l,s−g < Nk,h, then we can take m = h. Otherwise, since Nk,h ≤ qN ′l,s−g <

Nk,m, we must have h < m. Moreover, since pN ′l,s−g < Nk,h and Nk,m ≤ pN ′l,s,

we have
Nk,m
Nk,h

<
pN ′l,s
pN ′l,s−g

= n′s−g+1 · · ·n′s ≤ C
′g
0 .

Therefore,

2m−h ≤ nh+1 · · ·nm =
Nk,m
Nk,h

< C ′g0 ,

and hence, m < h+
logC ′0
log 2

g. Thus, there exists m satisfying (2.1) together with

h ≤ m < h+
logC ′0
log 2

g.
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Construct an (s, g)-admissible partition I ′s of E′ of Em-type such that

I ′l and I ′s are consistent and #sI ≤ 9C#sJ holds for any I, J ∈ I ′s.
Take any K ∈ I ′l . Then, we have

#lKN
′
l,s−g ≤ qN ′l,s−g < Nk,m ≤ pN ′l,s ≤ #lKN

′
l,s−g.

Hence by the same argument as in the proof of (1) applying Lemma 1, there

exists a (s, g)-admissible partition KK of K in E′ with #KK = Nk,m. Moreover,

#sI ≤ 3#sJ holds for any I, J ∈ KK . Let I ′s = ∪K∈I′lKK . Then, it is clear that

I ′s is a (s, g)-admissible partition of E′ of Em-type which is consistent with I ′l .
Take any I, J ∈ I ′s. Let I ∈ KK and J ∈ KL. Then, since

#sI ≤
1

#KK

∑
I′∈KK

3#sI
′ =

3

Nk,m

∑
I′∈KK

#sI
′ =

3

Nk,m
N ′l,s#lK

and

#sJ ≥
1

#KL

∑
I′∈KL

(1/3)#sI
′ =

1/3

Nk,m

∑
I′∈KL

#sI
′ =

1/3

Nk,m
N ′l,s#lL,

we have

#sJ ≤ 9
#lK

#lL
#sJ ≤ 9C#sJ,

which completes the proof. �

Corollary 2. There exist sequences of positive integers {ki}, {gi} and {si}
increasing to ∞ such that

(i) limi→∞ ki/i =∞ and limi→∞ ki+1/ki = 1,

(ii) (1/2)ki+1−ki < ∆ (i = 1, 2, . . . ),

(iii) sup gi/i <∞, and

(iv) there exists a consistent family of (si, gi)-admissible partitions I ′i (i=1, 2, . . . )

of E′ of Eki-type.

Proof. Take j such that 2−j < ∆. We construct k1 < k2 < · · · inductively

starting by an arbitrary k1. For k = k1, there exists (l, 1)-admissible partitions

I ′l of E′ of Ek-type by (1) of Lemma 2. Let (s1, g1) = (l, 1) and I ′1 = I ′l . Assume

that ki, (si, gi) and I ′i are determined. For k = ki, h = k + j and I ′i, apply

Lemma 2 and get m and (s, g)-admissible partitions I ′s of E′ of Ek-type. Define

ki+1 = m, (si+1, gi+1) = (s, g) and I ′i+1 = I ′s. Then, we have (i)(ii). We also

have (iii) since

gi ≤
i log 9 + logC0

log 2
+ 1 (i = 1, 2, . . . ).

�
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3. Proof of the main theorem

Take a sequence k1 < k2 < · · · and a consistent family of (si, gi)-admissible

partitions I ′i (i = 1, 2, . . . ) as in Corollary 2. Note that since limi→∞ gi/ki = 0

and Nsi−gi ≤ Nki ≤ Nsi , we have

0 < lim inf
i→∞

N ′si−gi/Nki ≤ lim sup
i→∞

N ′si/Nki <∞.

In particular, we have

(iv) limi→∞ si/i =∞ and limi→∞ si+1/si = 1.

We may also assume that

(v) (1/2)si+1−si < ∆′ (i = 1, 2, . . . ).

For x ∈ E, let Ii(x) be I ∈ Eki such that x ∈ I. Let ϕi be the isomorphism

from Eki to I ′i. Since limi→∞N ′si−gi =∞, y ∈ E′ such that y ∈ ϕi(Ii(x)) for any

i = 1, 2, . . . is determined, which is denoted by f(x).

We prove that f satisfies the required conditions. By the construction, it is

clear that f is strictly increasing. Take any x ∈ E. If x+ 0 ∈ E, then x is not the

right end point of Ii(x) for any i = 1, 2, . . . . Hence, f(x) and f(x + 0) stay in a

same (si, gi)-admissible interval of E′ as si−gi →∞. Hence, f(x+0) = f(x)+0.

Thus, f is right continuous. The same argument holds for x − 0. Thus, f is

continuous.

Now, we prove the inequality (1.2). Let x, y ∈ E satisfy that x < y and y−x
is sufficiently small. Take i = 1, 2, . . . such that δki+2

< y − x ≤ δki+1
. Then,

since

y − x ≤ δki+1
≤ (1/2)ki+1−ki+1δki−1 < ∆δki−1 ≤ d

j
ki
δki−1

for any j ∈ {1, 2, . . . , nki−1 − 1}. Hence, there exists a basic interval I of E of

level ki such that {x, y} ⊂ I. Therefore, f(x) and f(y) belong to a same (si, gi)-

admissible interval of E′, and hence, in a same basic interval of E′ of level si−gi.
Denote l = si−gi and h = si. Since f(x) and f(y) belong to a same basic interval

of E′ of level l, we have f(y)−f(x) ≤ δ′l. For any ε > 0, there exists a sufficiently

small λ > 0 such that

(1− λ)2(s′ + λ)−1(s− λ) <
s

s′
− ε.

Take i0 such that

|s−
logNki+2

− log δki+2

| < λ, |s′ − logN ′l
− log δ′l

| < λ,
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(ki+2 − ki) logC0

ki+2 log 2
< λ and

(h− l) logC ′0
h log 2

< λ

for any i ≥ i0. Assume that i ≥ i0. Since N ′l ≤ Nki ≤ N ′h, we have

− log(f(y)− f(x)) ≥ − log δ′l > (s′ + λ)−1 logN ′l

= (s′ + λ)−1 logN ′h

(
1−

log(n′l+1 · · ·n′h)

logN ′h

)
≥ (s′ + λ)−1 logN ′h

(
1− (h− l) logC ′0

h log 2

)
> (s′ + λ)−1 logN ′h (1− λ) ≥ (1− λ)(s′ + λ)−1 logNki

= (1− λ)(s′ + λ)−1 logNki+2

(
1−

log(nki+1 · · ·nki+2
)

logNki+2

)
≥ (1− λ)(s′ + λ)−1 logNki+2

(
1− (ki+2 − ki) logC0

ki+2 log 2

)
> (1− λ)2(s′ + λ)−1 logNki+2

> (1− λ)2(s′ + λ)−1(s− λ)(− log δki+2)

> (1− λ)2(s′ + λ)−1(s− λ)(− log(y − x))

> (
s

s′
− ε)(− log(y − x))

Hence, for any ε > 0, f(y) − f(x) < (y − x)
s
s′−ε holds for any x < y in E such

that y − x is sufficiently small. Thus, for any ε > 0, there exists C1 such that

f(y)− f(x) < C1(y − x)
s
s′−ε

for any x < y in E.

Let us prove the inequality of the opposite direction. Let x, y ∈ E satisfy

that x < y and y − x is sufficiently small. Take i = 1, 2, . . . such that δki−1
<

y − x ≤ δki−2
. Then, there exists a basic interval I of level ki−1 such that x ∈ I

but y /∈ I. Therefore, f(x) and f(y) belong to distinct (si−1, gi−1)-admissible

intervals in I ′i−1, and hence, belong to distinct basic interval of E′ of level si−1.

Therefore, by (v),

f(y)− f(x) ≥ dj
′

si−1
δ′si−1−1 ≥ ∆δ′si−1−1 > δ′si .

Denote l = si − gi and h = si. For any ε > 0, there exists a sufficiently small

λ > 0 such that

(1 + λ)2(s′ − λ)−1(s+ λ) <
s

s′
+ ε.
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Take i0 such that

|s−
logNki−2

− log δki−2

| < λ, |s′ − logN ′h
− log δ′h

| < λ,

(ki − ki−2) logC0

ki−2 log 2
< λ and

(h− l) logC ′0
l log 2

< λ

for any i ≥ i0. Assume that i ≥ i0. Since N ′l ≤ Nki ≤ N ′h, we have

− log(f(y)− f(x)) < − log δ′h < (s′ − λ)−1 logN ′h

= (s′ − λ)−1 logN ′l

(
1 +

log(n′l+1 · · ·n′h)

logN ′l

)
≤ (s′ − λ)−1 logN ′l

(
1 +

(h− l) logC ′0
l log 2

)
< (s′ − λ)−1 logN ′l (1 + λ) ≤ (1 + λ)(s′ − λ)−1 logNki

= (1 + λ)(s′ − λ)−1 logNki−2

(
1 +

log(nki−2+1 · · ·nki)
logNki−2

)
≤ (1 + λ)(s′ + λ)−1 logNki−2

(
1 +

(ki − ki−2) logC0

ki−2 log 2

)
< (1 + λ)2(s′ − λ)−1 logNki−2

< (1 + λ)2(s′ − λ)−1(s+ λ)(− log δki−2
)

≤ (1 + λ)2(s′ − λ)−1(s+ λ)(− log(y − x))

< (
s

s′
+ ε)(− log(y − x))

Hence, for any ε > 0, f(y) − f(x) > (y − x)
s
s′+ε holds for any x < y in E such

that y − x is sufficiently small. Thus, for any ε > 0, there exists C2 such that

f(y)− f(x) > C2(y − x)
s
s′+ε

for any x < y in E.

Thus, we complete the proof.
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