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Abstract. We study the problems of the existence, uniqueness and continuous
dependence of Lipschitzian solutions ¢ of equations of the form

o(x) = / (@) (f(,w)) pldw) + F(z),

where p is a measure on a o-algebra of subsets of 2.

1. Introduction

Fix a measure space (€2, A, 1) and a separable metric space (X, p).
Motivated by the appearance of the equation

o(z) = /A o (f (,0)) ) + c — /A o (f (2, 0)) (o)

with disjoint A1, As € A in the theory of perpetuities and of refinement equations,
see section 3.4 of the survey paper [3], we consider problems of the existence,
uniqueness and continuous dependence of Lipschitzian solutions ¢ to the equation

o(z) = / 0(w) (f(,0)) p(dw) + F(x). (1)
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Concerning the given functions f, g and F, we assume the following hypotheses
in which B stands for the o-algebra of all Borel subsets of X and K € {R,C}.

(H;) Function f maps X x Q into X and for every z € X the function f(z,-)
is A-measurable, i.e.,

{weQ: f(z,w)eB} €A forallze X and B € B.

(Hz2) Function g: Q@ — K is integrable,

/ lg(w)|p(f(z,w),z)p(dw) < 0o for every z € X,
Q

and
AmwmumMJ@wm@nsmm@ foralle,ze X (2)

with a A € [0,1).

(Hs3) Function F maps X into a separable Banach space Y over K and
|F(z) — F(2)|| < Lp(x,z) forall z,z € X (3)

with an L € [0, +00).

As emphasized in [4, section 0.3] iteration is the fundamental technique for
solving functional equations in a single variable, and iterates usually appear in the
formulae for solutions. However, as it seems, Lipschitzian solutions are examined
rather by the fixed-point method (cf. [4, section 7.2D]). We iterate the operator
which transforms a Lipschitzian F: X — Y into [, g(w)F (f(z,w))u(dw); cf.
formulas (6) and (8) below. The special case where g(w) = —1 for every w € Q and
1(2) =1 was examined in [2] on a base of iteration of random-valued functions.

Integrating vector functions we use the Bochner integral.

2. Existence and uniqueness

Putting
1= [ gm(a) ()
we start with two simple lemmas.

Lemma 2.1. Assume (H;y) and let g:  — K be integrable with v # 1. If (2)
holds with a A € [0,1), then, for any F mapping X into a normed space Y over K,
equation (1) has at most one Lipschitzian solution ¢: X — Y.
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PRrROOF. Fix a function F' mapping X into a normed space Y over K, let
v1,02: X = Y be Lipschitzian solutions of (1), and put ¢ = @1 — ¢3. Then ¢
is a Lipschitzian solution of (1) with F' = 0, and denoting by L, the smallest
Lipschitz constant for ¢, by (2) for all z,z € X, we have

(@) — e(2)]| < /Q lg@)l[Je(f(z,w)) = o(f(z w))|nldw) < Lorp(, 2),

whence L, = 0 and ¢ is a constant function. Since 7 defined by (4) is different
from 1, the only constant solution of (1) with F' = 0 is the zero function. g

Lemma 2.2. Under the assumptions (H;)—(Hs), for every x € X the function
w e gW)F(f(z,w)), weQ,

is Bochner integrable, and
| [ P (eenuan - [ s@r(eena)| < e ©)

forallx,z € X.

PrOOF. The function considered is A-measurable, for every w € Q we have

lg(W)F(f(z,w)|| < Lig(w)lp(f(z,w), ) + Llgw)[|F ()],

and (5) holds for all z,z € X. O
Assuming (H;)—(Hs) and applying Lemma 2.2, we define
Fo(x) = F(z), Fu(z)= /Qg(w)Fn—1(f(x,W))u(dw) (6)
for all x € X and n € N, and we see that
|1En(z) — Fr(2)|| < LA"p(z,z) for all z,z € X and n € N. (7)

Our main result reads.

Theorem 2.3. Assume (H;)—(Hs). If v # 1, then equation (1) has exactly one
Lipschitzian solution ¢: X — Y; it is given by the formula

o) = % (Z (Fo(x) = vFo-1(x)) + F(m)) for every z € X, (8)
lo(z) — p(2)] < mp(x,z) for all z,z € X, (9)

and
el < 2o (125 L @) a)utd) + 1F@I) (o)

for every x € X.
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PROOF. For the proof of the existence, observe first that by (4), (6) and (7)

for all z € X and n € N we have

I1Ba@) = 1Faca @)= | [ o) Fucs (FGa))itdo) = [ )Pt

< LA /Q 19() o (f (2 w), 2) ().

(11)

Consequently, (8) defines a function ¢: X — Y. Routine calculations, (8), (7),

(2) and (11) show that this function satisfies (9) and (10).

It remains to prove that ¢ solves (1). To this end, define M: X — [0,00) by

M@) =L [ lg@)lp(Flew).)n(d)
and fix g € X. An obvious application of (12), (Hs), (10) and (3) gives
M(z) < c1ip(x,z0) + c2, |p(z)]] < c1p(x,z0) + o for every x € X

with some constants ¢y, cy € [O, oo).
Fix € X. According to Lemma 2.2, the function

W — g(w)gp(f(:mw))7 w € Q,
is Bochner integrable. Moreover, by (11)—(13),
96) (P (£ @,0)) = vFuca () ) |

< A g (@) M (F(,0)) < X ()l (e1p(f (@, w), 0) + c2)
< X" g(@)l (exp(f(x,w), ) + erp(ar, z0) + c2)

(12)

(13)

for all n € N and w € Q. Hence, making use of (Hz), the dominated convergence

theorem and (6), we see that

/Q nij:lg(w) (Fn(f(x,w)) —vF,_, (f(x,w)))u(dw)

Z/Qg<w)(Fn(f($»W)) _'Yanl(f(l’,w)))M(dw)

n=1

M

(Fn+1(x) - 'VFn(x))

n=1

(14)
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Applying now (8), (14) and (6), we get

/Q 9(w)e (F(,w)) (d)
- [Z (Falfe) - WFn_l(f(LW)))+g(w)F(f(x,W))]u(dW)
_ % ( o1 (@ fyFn(x)> 4 Fi(x)
- = §:j (Fu@) = 1Fuma(@)) +9F(@) | = (o)~ F(a).

The proof is complete. U

3. Examples

Ezample 3.1. Given A € (0,1) and an integrable : Q@ — R, consider the equation

o) =3 [ o (§o+ ) ) uta)

with p(2) = 1. According to Lemma 2.1, the zero function is its only Lipschitzian
solution ¢: R — R. Note, however, that if

[ mian =0 and [ gwui) <o
Q Q

then this equation solves also the function ¢: R — R given by

2
P o [ ()

Ezample 3.2. Given A € (0,1), consider the equation

p(r) ==z

x

=2p(\ 1-A) +log ——Fr——s-
p(z) =20 (MW + )"’Og()\ﬁJrlf)\)z
According to Lemma 2.1 (in this case f(z,w) = AWz +1— A\, g(w) = 2 and
F(z) = log Gt oye forall z € [1,00) and w € Q, u(2) = 1), the logarithmic
function restricted to [1,00) is the only Lipschitzian solution ¢: [1,00) = R to
this equation, and it is unbounded in spite of the fact that F' is bounded.



282 Karol Baron and Janusz Morawiec

Ezample 3.3. To see that assumptions (H;)—(Hz) do not guarantee the exis-
tence of a continuous solution ¢: X — Y to equation (1), given o € (—1,1),
a bounded and A-measurable £: Q — R, and a Lipschitzian F': R — [0, 00) such
that F~1({0}) is a singleton, consider the equation

wuw34¢¢m+sw»mm»+Fw> (15)

with p(£2) = 1. Assume a continuous ¢: R — R solves it. We shall see that then
¢ is a.e. constant. To this end, fix an M € (0, 00) such that |{(w)| < M for every
w € €, and a real number a > 2 such that £~1({0}) C [~a,a]. Then

]

lax 4+ &(w)| < a for all x € [—a,a] and w € Q,

and so ¢[[_q,q) is a continuous, hence also bounded, solution of (15). According
to [1, Corollary 4.1(ii) and Example 4.1], it is possible only if ¢ is a.e. constant.

4. Continuous dependence

Given a normed space (Y, || - ||), consider now the linear space Lip(X,Y) of
all Lipschitzian functions mapping X into Y, and its linear subspace BL(X,Y)
of all Lipschitzian and bounded functions mapping X into Y. Fix xg € X and
define || - ||lLip: Lip(X,Y) — [0,00) by

[ulluip = [luzo)|l + [lullz,

where |lu||z, stands for the smallest Lipschitz constant for u. Clearly, || - ||Lip is
a norm in Lip(X,Y). It depends on the given point xg, but for different points
such norms are equivalent. It is well known that if (Y, ] - ||) is Banach, then so is
(Lip(X,Y), || - lluip). In the linear space BL(X,Y) we consider the norm || - ||y,
given by

lullos, = sup {[u@)] : = € X} + [ullz.

It is also well known that if (Y, || - ||) is Banach, then so is (BL(X,Y), || - ||sL)-
Assume (H;) and (Hz), v # 1, and let Y be a separable Banach space over K.
According to Theorem 2.3, for every F € Lip(X,Y’) the formula

1 o0
o' (z) = R (T; (Fn(a:) - 'yFn_l(x)> + F(x)) for every z € X (16)
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defines the only Lipschitzian solution ¢! of equation (1),

1+ ]y
"L < ‘ 1F|z (17)

1=9[(1=23)

and

e @l < 2 (Y25 [ lol(ewoutds) + IF@I)  08)

for every z € X. Putting

1
©=1"% </Q l9(w)]p(f (x0,w), zo) p(dw) + 1 + 7|) , c=max{l,co}, (19)
and applying (17) and (18), we see that if F' € Lip(X,Y), then

1
le" e = lle™ @)l + o7l < m(CoIIFIIL + [[F(zo)ll)
C
—||F Lip-

Moreover, if dy defined by

do=su{ [ la@lo(f(z.w),a)n(d) s € X | (20)
is finite, then putting
. do+ 1+ |’7|
dmax{l, T—x (21)

and applying (18) and (17), again we see also that if ' € BL(X,Y), then " €
BL(X,Y) as well, and

1 do+ 1+ |y d
||¢F||BLS|1_W|( T 1Pl +sup{IF@):e € X} ) < il Flo.

Theorem 4.1. Assume (Hy), (Hs), and let v defined by (4) be different from 1.
If'Y is a separable Banach space over K, then:

(i) for any F € Lip(X,Y), the function ¢*: X — Y defined by (16) and (6)
is the only Lipschitzian solution of (1), the operator

F— ol Felip(X,Y), (22)
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is a linear homeomorphism of (Lip(X,Y), || - ||lLip) onto itself, and

e ILip < ﬁ”FHLip for every F € Lip(X,Y),
with ¢ given by (19);
(ii) if, additionally, dy defined by (20) is finite, then the restriction of the
operator (22) to BL(X,Y) is a linear homeomorphism of (BL(X,Y), | - ||sr) onto
itself, and

||<pF||BL < |F|lsL for every F € BL(X,Y),

1=l
with d given by (21).

PRrROOF. By the above considerations and the Banach inverse mapping the-
orem, it remains to show that operator (22) is one-to-one, maps Lip(X,Y) onto
Lip(X,Y), and BL(X,Y) onto BL(X,Y).

The first property follows from the fact that for any F' € Lip(X,Y) the
function ¢ is a solution of (1): if ¥ = 0, then FF = 0. To get the next two,
observe that if ¢ € Lip(X,Y), then, by Lemma 2.2, the function F: X — Y given
by

F(z) = $(z) - /Q 9(@)(f () dw)

belongs to Lip(X,Y), if ¢ is also bounded, then so is F', and, since both % and
o solve (1), 1 = p!" by Lemma 2.1. O
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