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The contraction principle in extended context

By MIHÁLY BESSENYEI (Debrecen)

Dedicated to the 60th birthday of Professor Zsolt Páles

Abstract. There are several extensions of the classical Banach Fixed Point The-

orem in technical literature. A branch of generalizations replaces usual contractivity

by weaker but still effective assumptions. Our note follows this stream, presenting an

elementary proof for a known fixed point result. Some applications are also considered.

1. Introduction

Although the Contraction Principle appears partly in the method of suc-

cessive approximation through the works of Cauchy [8], Liouville [14], and

Picard [16], its abstract and powerful version is due to Banach [1] and Cac-

ciopoli [7]. This form of the Contraction Principle, quoted as the Banach Fixed

Point Theorem, states that any contraction of a complete metric space has exactly

one fixed point.

We can say that the Contraction Principle has made an explosion in con-

temporary mathematics. It has become the cornerstone of Iterative Fixed Point

Theory, has initiated new branches of important generalizations, and has found

its legacy in many fields of mathematics via applications. The monographs by
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288 Mihály Bessenyei

Berinde [2], by Granas and Dugundji [10], by Rus, Petruşel and Pet-

ruşel [18], and by Zeidler [20] give an excellent and detailed demonstration of

this fact.

An important stream of the extensions of the Contraction Principle replaces

contractivity by weaker but still effective properties. A rich overview of such

generalizations can be found in the survey of Rhoades [17]. Among them, let

us recall the pioneer works of Boyd and Wong [5], of Browder [6], and of

Matkowski [15]. These investigations present fixed point results for nonlinear

contractions. An other direction concerns linear quasicontractions, and was stud-

ied first by Ćirić [9], and also by Kannan [13]. For precise details, the Reader

can have a quick look at the corollaries of this note. Surprisingly, applying (non-

linear) quasicontractions, the above-mentioned cases get a common point of view:

independently and simultaneously, Hegedűs and Szilágyi [11] and Walter [19]

have given fixed point results for this general setting.

These extensions do not have merely theoretical importance, but enjoy many

didactic and philosophical aspects, as well. For those ones who read through and

understand the various ideas, they open a colourful perspective of the Contraction

Principle.

The aim of the present note is to re-discover the theorem of Hegedűs, Szilágyi

and Walter, this wonderful and hidden treasure of Fixed Point Theory. Requir-

ing a reasonable extra assumption on comparison functions, an elementary and

self-contained approach can be given. This approach does not exceed the stan-

dard tools of classical analysis and the basic facts on metric spaces, and hence,

according to our hope, might have some impact even in education.

2. Notations, notions, basic facts

Throughout this note, R+ and N stand for the set of nonnegative reals and

natural numbers, respectively. If T is a self-map of a nonempty set, then the

composite iterates are defined via the usual recursion Tn+1 = T ◦ Tn under the

convention T 0 = id. The orbit and the double orbit induced by T are defined in

the next way:

O(x) := {Tn(x) | n ∈ N ∪ {0}}; O(x, y) := O(x) ∪ O(y).

The notation of orbits does not refer to the role of the mapping. However,

this imprecision will not make any confusion in understanding. Our investigations
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focus on nonlinear quasicontractions, when the distance of images is controlled

by a given function of double orbits induced by the original points.

Under a comparison function we mean an increasing, right-upper semicon-

tinuous function ϕ : R+ → R+ which fulfills the properties ϕ(0) = 0 and ϕ(t) < t

for t > 0. Since the composition of nondecreasing, right-upper semicontinuous

functions remains nondecreasing and right-upper semicontinuous, the iterates of

comparison functions are comparison functions, as well.

Definition. Let (X, d) be a metric space. A mapping T : X → X is called

a weak quasicontraction with comparison function ϕ (or briefly: a weak ϕ-quasi-

contraction) if it induces bounded orbits, and, for all x, y ∈ X,

d(Tx, Ty) ≤ ϕ
(
diamO(x, y)

)
.

Similarly, under a strong ϕ-quasicontraction we mean a mapping T : X → X

fulfilling the property below for all x, y ∈ X:

d(Tx, Ty) ≤ ϕ
(
diam{x, y, Tx, Ty}

)
.

Clearly, if a strong quasicontraction induces bounded orbits, then it is a

weak quasicontraction. However, there exist strong quasicontractions that induce

unbounded orbits [3], and hence they are not considered weak quasicontractions

in our framework. Of course, the definition above subsumes the notions of linear

quasicontractions and nonlinear contractions mentioned in the Introduction. The

most unusual feature of a weak/strong quasicontraction is that its continuity

cannot be guaranteed, even in the most simple cases [13]. This phenomenon

makes impossible to apply the standard methods: new ideas have to be developed

for establishing fixed point theorems.

Note that a weak quasicontraction can have at most one fixed point. Indeed,

assume that x0 and y0 are distinct fixed points of a weak ϕ-quasicontraction T .

Then, d(x0, y0) > 0, and hence

d(x0, y0) = d(Tx0, T y0) ≤ ϕ
(
diamO(x0, y0)

)
= ϕ

(
d(x0, y0)

)
< d(x0, y0).

A similar argument shows that the fixed point of a strong quasicontraction is

unique provided that it exists at all.

In the sequel, let us present two less obvious properties for comparison func-

tions and weak quasicontractions. The first one is well known (see for example [3]).

For the Readers’ convenience, we sketch here the proof.
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Lemma. The sequence of composite iterates of a comparison function tends

to zero pointwise.

Proof. If ϕ is a comparison function, then the limit property obviously

holds at t = 0. Fix t > 0. If ϕ(t) = 0, then ϕn(t) = 0 for all n ∈ N; if ϕ(t) 6= 0,

then ϕ2(t) < ϕ(t) follows after iterating the inequality ϕ(t) < t. Proceeding by

induction, we get that (ϕn) is decreasing on R+. On the other hand, it is bounded

from below. Therefore, f = limn→∞ ϕn exists and takes nonnegative values.

Assume indirectly that f(t) > 0 for some t > 0. Then, by upper semicontinuity,

we arrive at

f(t) = lim
n→∞

ϕn+1(t) = lim sup
n→∞

ϕ
(
ϕn(t)

)
≤ ϕ

(
lim sup
n→∞

ϕn(t)
)

= ϕ
(
f(t)

)
< f(t).

This contradiction completes the proof. �

Observe that monotonicity has played no role here. However, the proof of

the next auxiliary lemma enlightens the importance of this property.

Lemma. If T is a weak ϕ-quasicontraction, then Tn is a weak ϕn-quasi-

contraction.

Proof. Fix k, l ∈ N and let T kx, T ly ∈ O(x, y). Then the contractivity of T

and the monotonicity of ϕ gives

d(T kx, T ly)=d(TT k−1x, TT l−1y)≤ϕ
(
diamO(T k−1x, T l−1y)

)
≤ϕ
(
diamO(x, y)

)
.

A similar argument leads to

d(T kx, T lx) ≤ ϕ
(
diamO(T k−1x, T l−1x)

)
≤ ϕ

(
diamO(x)

)
≤ ϕ

(
diamO(x, y)

)
.

For T ky, T ly ∈ O(x, y), the same upper estimation can be obtained in the same

way. That is, we have the next inequality between the double orbits of {x, y} and

{Tx, Ty}:

diamO(Tx, Ty)= sup
k,l∈N
{d(T kx, T ly), d(T kx, T lx), d(T ky, T ly)}≤ϕ

(
diamO(x, y)

)
.

To complete the proof, we apply induction. For n = 1, the statement holds

trivially. Assume that it also remains true for some n ∈ N. Then, applying the

inequality above and the monotonicity of the comparison function,

d(Tn+1x, Tn+1y)=d(TnTx, TnTy)≤ϕn
(
diamO(Tx, Ty)

)
≤ϕn+1

(
diamO(x, y)

)
follows. Finally, as it has been announced earlier, the iterates of a comparison

function result in comparison function, which means that ϕn is also a comparison

function. �
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Note also that an analogous statement cannot be formulated for strong qua-

sicontractions. The reason for this, in particular, is that the iterates of a strong

quasicontraction do not generate necessarily bounded orbits, even if the original

mapping does.

3. The main result

The main result of this note presents a fixed point theorem for weak qua-

sicontractions of complete metric spaces. The proof has three stages. The first

and standard one is devoted to show the Cauchy property of sequence of iterates.

Then completeness gives the existence of a limit point. The forthcomings bring

novelty: in the second step we show that the iterates on the limit point tend also

to this limit. In fact, it is an immediate consequence in the standard cases but

now, in lack of continuity, will have a particular importance. The final step con-

cludes that the orbit induced by the limit has zero diameter, which is the desired

fixed point property. The technical lemmas of the previous section play a key role

in the arguments.

Theorem. Any weak quasicontraction of a complete metric space has a

unique fixed point. Moreover, the sequence of iterates at any point converges to

this fixed point.

Proof. Let (X, d) be a complete metric space and let T : X → X be a

weak ϕ-quasicontraction. Fix x ∈ X arbitrarily. We show that (Tnx)∞n=0 has

the Cauchy property. The boundedness of orbits and the pointwise convergence

property of (ϕn) provides that, for all ε > 0, there exists n0 ∈ N such that

ϕn0
(
diamO(x)

)
< ε/2. If n > n0, then

d(Tn0x, Tnx) ≤ ϕn0
(
diamO(x, Tn−n0x)

)
= ϕn0

(
diamO(x)

)
< ε/2.

Hence the use of the triangle inequality leads to d(xn, xm) < ε for all n,m > n0.

In other words, the iterates of x defines a Cauchy sequence.

The completeness guarantees the existence of x0 ∈ X such that Tnx → x0.

Our claim is that Tnx0 → x0 also holds. Indeed,

d(x0, T
nx0) ≤ d(x0, T

nx) + d(Tnx, Tnx0) ≤ d(x0, T
nx) +ϕn

(
diamO(x, x0)

)
→ 0

as n→∞.
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To complete the proof, we suffice to show that diamO(x0) = 0. Suppose, to

the contrary, that this is not the case. Then, for all n, k ∈ N, we arrive at

d(Tnx0, T
n+kx0) ≤ ϕn

(
diamO(x0, T

kx0)
)

= ϕn
(
diamO(x0)

)
≤ ϕ

(
diamO(x0)

)
.

Therefore,

sup
n,m∈N

d(Tnx0, T
mx0) ≤ ϕ

(
diamO(x0)

)
< diamO(x0),

yielding

diamO(x0) = sup
n∈N

d(x0, T
nx0).

On the other hand, Tnx0 → x0. This property, together with the above one,

implies that there exists some n0 ∈ N such that

diamO(x0) = max{d(x0, T
kx0) | k = 1, . . . , n0}.

Let k ∈ {1, . . . , n0} be the index via the diameter is represented. Then, for all

n ∈ N, we have

d(x0, T
kx0)

≤ d(x0, T
n+kx0)+ d(Tn+kx0, T

kx0) ≤ d(x0, T
n+kx0)+ ϕk

(
diamO(Tnx0, x0)

)
= d(x0, T

n+kx0) + ϕk
(
diamO(x0)

)
≤ d(x0, T

n+kx0) + ϕ
(
diamO(x0)

)
.

Passing the limit,

diamO(x0) = d(x0, T
kx0) ≤ ϕ

(
diamO(x0)

)
< diamO(x0).

This contradiction completes the proof of the first statement. The second state-

ment is obvious. �

Not claiming completeness, we demonstrate the efficiency of the main result

in the form of alternative approaches to known fixed point results. The first one

concerns linear quasicontractions of Ćirić-type [9], while the second the non-

linear contractions studied by Boyd and Wong [5], by Browder [6], and by

Matkowski [15]. The Banach Fixed Point Theorem is not detailed, since it is

an immediate consequence of both corollaries.

Corollary. If (X, d) is a complete metric space, q ∈]0, 1[ is fixed, and

T : X → X satisfies

d(Tx, Ty) ≤ q diam{x, y, Tx, Ty}

for all x, y ∈ X, then T has a unique fixed point. Moreover, the sequence (Tnx)

converges to the fixed point for all x ∈ X.
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Hint. Obviously, T is a strong quasicontraction with comparison function

ϕ(t) = qt. Therefore, in view of the main result, one should check only the

boundedness of orbits. For any x ∈ X, consider its n-orbit

On(x) = {T kx | k = 0, 1, . . . , n}.

Then,

diamOn(x) ≤ d(x, Tx) + diamOn−1(Tx) ≤ d(x, Tx) + q diamOn(x).

The arranged form of this inequality shows that the n-orbits of x are uniformly

bounded. That is, the entire orbit of x is bounded, as well. Since x is an arbitrary

element of X, the proof is completed. �

Corollary. If (X, d) is a complete metric space, ϕ is a comparison function,

and T : X → X satisfies

d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
for all x, y ∈ X, then T has a unique fixed point. Moreover, the sequence (Tnx)

converges to the fixed point for all x ∈ X.

Hint. We shall concentrate again on the boundedness of orbits. For this,

we use the original (and beautiful) idea of domain invariance: if T makes small

perturbation on the center of a ball, then maps the ball into itself. Let p ∈ X

and r > 0 be fixed. If q ∈ B(p, r), then

d(p, Tq) ≤ d(p, Tp) + d(Tp, Tq) ≤ d(p, Tp) + ϕ
(
d(p, q)

)
< r,

provided that d(p, Tp) < r − ϕ(r) holds. That is, Tq ∈ B(p, r). In particular,

d(p, Tp) < r; substituting q = Tp, we arrive at T 2p ∈ B(p, r). Applying induc-

tion, Tmp ∈ B(p, r) follows for all m ∈ N.

On the other hand, due to the auxiliary lemmas, d(Tnx, Tn+1x)→ 0 for all

x ∈ X. The domain invariance ensures that Tn+mx ∈ B(Tnx, r) for all m ∈ N
with a sufficiently large index n. In other words, our mapping induces bounded

orbits. �

Unfortunately, a direct and common generalization of the previous corollar-

ies cannot be given for arbitrary strong quasicontractions. This phenomenon is

related to our earlier comment concerning strong quasicontractions that are not

weak ones, since they induce unbounded orbits. Among these kinds of strong

quasicontractions, there exist fixed point free ones. However, under an extra as-

sumption on the comparison function, this problem can be avoided, and the next

result is obtained. Note that it also covers the case of Banach. For details of the

proof, consult [3].
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Corollary. If (X, d) is a complete metric space, ϕ is a comparison function

such that ϕn(t) ≤ cnt holds with some convergent series
∑

cn, then any strong

ϕ-quasicontraction has a unique fixed point. Moreover, the sequence of iterates

converges pointwise to this fixed point.

Another straightforward consequence of the main result is that any weak or

strong quasicontraction of a compact metric space has a unique fixed point. This

can be considered as a counterpart of the statement on strictly nonexpansive

mappings of compact metric spaces.

Finally, let us mention two possibilities for further research. First, as it is

well known, the Banach Fixed Point Theorem has a particular importance in

Fractal Theory (see the paper of Hutchinson [12]). A natural question arises:

what kind of new impact has the main result in this field? The second possibility

is the following. Relaxing the properties of the embedding space is intensively

investigated in present technical literature. For example, the Matkowski Fixed

Point Theorem remains true in so-called regular semimetric spaces [4]. It is an

open problem whether the main result can be replaced into this general context

or not.

The main theorem points out that the boundedness of orbits has more im-

portance than the classical approaches suggest. We should say that it is a well-

established assumption: provides brief form and effective applications simultane-

ously. In our opinion, it certainly gives a deeper understanding of the well-known

Contraction Principle.
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[18] I. A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj University Press,
Cluj-Napoca, 2008.

[19] W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. 5
(1981), 21–25.

[20] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed-Point Theorems,

Springer-Verlag, New York, 1986.
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