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A regularity condition for quadratic functions involving
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By ZOLTÁN BOROS (Debrecen), W LODZIMIERZ FECHNER ( Lódz)
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Abstract. We prove that if f : R → R is additive or quadratic and the mapping

R2 3 (x, y) → f(x)f(y) is bounded on a non-degenerated arc of the unit circle, then f is

continuous, i.e. f(x) = cx for all x ∈ R or f(x) = cx2 for all x ∈ R, respectively, with

some real coefficient c.

1. Introduction

Let R, Q and N denote the sets of all real numbers, rationals, and positive

integers, respectively. Further, by S we denote the unit circle on the plane:

S = {(x, y) ∈ R2|x2 + y2 = 1}.

We call a function f : R→ R additive if

f(x+ y) = f(x) + f(y)

for all x, y ∈ R. The function f is called Q-homogeneous if the equation f(qx) =

qf(x) is fulfilled by every q ∈ Q and x ∈ R. As it is well-known (see M. Kuczma
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[11, Theorem 5.2.1]), if f : R → R is additive, then f is Q-homogeneous as well.

For more information concerning these notions, the reader is referred to the mono-

graph [11].

A function f : R → R is called quadratic if it satisfies the Jordan-von Neu-

mann functional equation:

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for every x, y ∈ R. In what follows, we will apply the fact that f is quadratic if

and only if there exists a bi-additive and symmetric functional B : R×R→ R such

that f(x) = B(x, x) for x ∈ R (see e.g. J. Aczél, J. Dhombres [2, Chapter 11,

Proposition 1]). Quadratic functions are also called generalized monomials of

order 2. Further, additive functions are generalized monomials of order 1 and

non-zero constants are generalized monomials of order 0. Generalized polynomials

are defined as sums of generalized monomials of respective degrees. For more

facts on generalized polynomials, the reader is referred to [11, Chapter 15.9] and

L. Székelyhidi [17].

Among several problems in the theory of functional equations, J. Aczél [1]

listed the following problem of I. Halperin: is every additive mapping f : R→ R,

which satisfies

f

(
1

x

)
=

1

x2
f(x)

for all x 6= 0, of the form f(x) = f(1)x for all x ∈ R (i.e. linear)? Two indepen-

dent affirmative answers to Halperin’s question are due to S. Kurepa [12] and

W. B. Jurkat [7]. These results were extended in various directions by sev-

eral authors (see A. Grza̧ślewicz [6], Pl. Kannappan and S. Kurepa [8], [9],

S. Kurepa [13], c.f. [11, Theorem 14.3.3] and A. Nishiyama and S. Hori-

nouchi [15]).

During the 27th International Symposium on Functional Equations,W. Benz

formulated the following problem [3]. Suppose that f : R → R is an additive

function satisfying yf(x) = xf(y) for every (x, y) ∈ S. Does it imply that f is

linear? This question, together with a similar one for derivations, was answered

in the affirmative by Z. Boros and P. Erdei [4].

Motivated by the question of W. Benz [3], Gy. Szabó [16] posed the fol-

lowing problem: Suppose that f : R → R is additive and f(x)f(y) = 0 for all

(x, y) ∈ S. Does it imply that f is identically equal to zero? The solution was

published in the paper by Z. Kominek, L. Reich and J. Schwaiger [10], where

the authors proved that the implication is true. Z. Boros and W. Fechner [5]

extended this result to the case when f is a generalized polynomial function.
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In this paper we investigate stability of the condition f(x)f(y) = 0 on the unit

circle by replacing it with the assumption that f(x)f(y) is bounded. Moreover,

we require only the boundedness on an arc of S of positive length. Clearly, the

assertion that f = 0 will be no longer true under these assumptions. Instead, we

will prove the continuity of f in case f is additive or quadratic.

2. Conditions involving the unit circle

We will start with a technical lemma in which we do not need any functional

equation to be satisfied by the investigated mapping.

Lemma 1. Assume that I ⊂ [0, 1] is a non-degenerated interval, I0 is a

non-void open subinterval such that cl(I0) ⊂ int(I) and f : R → R is a function

such that:

(a) f is unbounded on I0,

(b) the mapping

I 3 x→ Φ(x) := f(x)f(
√

1− x2) (1)

is bounded.

Further, let

αk :=
k2 − 1

k2 + 1
, βk :=

2k

k2 + 1
(k ∈ N).

Then, there exist a positive integer k0 and a sequence (xn)n∈N ⊂ I0 such that

with yn :=
√

1− x2n (n ∈ N) for every integer k ≥ k0 we have:

(i) |f(xn)| > n for all n ∈ N,

(ii) lim
n→∞

f(yn) = 0,

(iii) the sequence (f(αkxn − βkyn) · f(βkxn + αkyn))n∈N is bounded.

Proof. By assumption (a), there exists a sequence (xn) in I0 such that

|f(xn)| > n for all n ∈ N.

Let yn =
√

1− x2n for n ∈ N. Then, due to assumption (b), the sequence

(f(xn)f(yn))n∈N is bounded, while lim
n→∞

|f(xn)| = +∞, hence lim
n→∞

f(yn) = 0.

Therefore, (i) and (ii) are proven.

It remains to prove (iii). Observe that αk, βk ∈ Q and α2
k + β2

k = 1 for all

k ∈ N. Moreover, we have lim
k→∞

αk = 1 and lim
k→∞

βk = 0. Hence, there exists
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some k0 ∈ N such that for all k > k0 and all x ∈ I0 with y :=
√

1− x2, we have

αkx− βky ∈ I. Moreover, observe that

βkx+ αky =
√

1− (αkx− βky)2.

Therefore, we have in particular that αkxn−βkyn ∈ I for all n ∈ N. Consequently,

the sequence (
f(αkxn − βkyn)f(βkxn + αkyn)

)
n∈N

is bounded. �

Now, we are ready to prove our first main result.

Theorem 1. Assume that f : R → R is additive. If there exists a non-

degenerated interval I ⊂ [0, 1] such that the mapping (1) is bounded, then f is

continuous, i.e. there exists some real coefficient c such that f(x) = cx for x ∈ R.

Proof. For the contrary, suppose that f is discontinuous. Therefore, it must

be unbounded on every non-void open subinterval I0 (it follows, for example, from

a general result of L. Székelyhidi [17, Theorem 4.3]). Therefore, assumptions

(a) and (b) of Lemma 1 are satisfied. We will reach a contradiction using assertions

(i), (ii) and (iii) of this lemma.

Note that f is Q-linear, so, following notations of Lemma 1, we have

f(αkxn − βkyn)f(βkxn + αkyn)

= (αkf(xn)− βkf(yn))(βkf(xn) + αkf(yn))

= αkβkf(xn)2 +
(
α2
k − β2

k

)
f(xn)f(yn)− αkβkf(yn)2.

Here the first term tends to +∞ as n tends to +∞, the second term is bounded,

the third term tends to 0. Consequently, the sum tends to +∞, contrary to

Lemma 1 (iii). �

Remark 1. Let us note that the boundedness of the mapping (1) cannot be

replaced by its boundedness from one direction (above or below) in Theorem 1.

As a counterexample, let us consider a not identically zero derivation d : R→ R.

This means that d is a discontinuous additive function that fulfils the additional

equation d(x2) = 2xd(x) for all x ∈ R. The existence of such a function is

established, for instance, in [11, Theorem 14.2.2]. In particular, d(1) = 2d(1),

thus d(1) = 0. If I denotes the open unit interval, x ∈ I implies x > 0, y =√
1− x2 > 0,

0 = d(1) = d(x2 + y2) = d(x2) + d(y2) = 2xd(x) + 2yd(y),
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and thus

d(x)d(y) = d(x)

(
−x
y
d(x)

)
= −x

y
(d(x))

2 ≤ 0.

If we replace I by −I (i.e., we change the sign of x but we keep the formula and

the sign of y), we obtain the reversed inequality.

In our next theorem we are going to prove an analogous statement for qua-

dratic functions. The proof is, however, more complicated. We will need the

following observation concerning two countable almost disjoint families of natural

numbers.

Lemma 2. Assume that we are given two families {Nk}k∈N and {Mk}k∈N
of subsets of natural numbers such that for every two distinct positive integers

k, l, the sets Nk ∩Nl and Mk ∩Ml are finite. Then the sets

N \ (Nk ∪Mk)

are infinite for all but at most two numbers k ∈ N.

Proof. Let us suppose that k, l ∈ N are such that k 6= l, and the sets

N \ (Nk ∪Mk) and N \ (Nl ∪Ml)

are finite. Then the union(
N \ (Nk ∪Mk)

)
∪
(
N \ (Nl ∪Ml)

)
is also finite, so its complement

(Nk ∪Mk) ∩ (Nl ∪Ml) = (Nk ∩Nl) ∪ (Mk ∩Nl) ∪ (Nk ∩Ml) ∪ (Mk ∩Ml)

is co-finite in N (i.e., it contains all but finitely many positive integers). Since

Nk ∩Nl and Mk ∩Ml are finite, the set

Rk,l := (Mk ∩Nl) ∪ (Nk ∩Ml)

is also co-finite in N.

Let j ∈ N \ {k, l} and observe that

Nj ∩Rk,l ⊆ (Nj ∩Nl) ∪ (Nj ∩Nk).

According to our assumptions, the sets Nj ∩ Nl and Nj ∩ Nk are finite, hence

Nj ∩Rk,l is finite. Since the set Rk,l is co-finite in N, we get that Nj is finite. An

analogous argument shows thatMj is finite as well. Therefore, the set N\(Nj∪Mj)

is co-finite in N. In particular, it is infinite. �
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Theorem 2. Assume that f : R → R is quadratic. If there exists a non-

degenerated interval I ⊂ [0, 1] such that the mapping (1) is bounded, then f is

continuous, i.e. there exists some real coefficient c such that f(x) = cx2 for x ∈ R.

Proof. We will begin as in the proof of the previous theorem, by supposing

that f is discontinuous. From [17, Theorem 4.3] we get that f is unbounded

on every non-void open subinterval I0. Therefore, assumptions of Lemma 1 are

satisfied, and we will follow the notations from this lemma.

Since f is quadratic, then there exists a symmetric bi-additive (and thus

bilinear over Q) mapping B : R× R→ R such that

f(x) = B(x, x) for all x ∈ R.

So the product, which is bounded by Lemma 1 (iii), can be rewritten as

f(αkxn − βkyn)f(βkxn + αkyn) =

(
α2
kf(xn)− 2αkβkB(xn, yn) + β2

kf(yn)

)
×
(
β2
kf(xn) + 2αkβkB(xn, yn) + α2

kf(yn)

)
.

By Lemma 1 (ii), the last terms in both factors tend to 0 as n tends to +∞.

We will prove that there exist some k ∈ N and a strictly increasing sequence

(pn)n∈N of positive integers such that

lim
n→∞

|αkf(xpn)− 2βkB (xpn , ypn)| = +∞

and

lim
n→∞

|βkf(xpn
) + 2αkB (xpn

, ypn
)| = +∞.

Clearly, as soon as this two equalities are proved, we reach a contradiction.

For k ∈ N let us consider the sets

Nk = {n ∈ N : |αkf(xn)− 2βkB (xn, yn)| ≤
√
n}

and

Mk = {n ∈ N : |βkf(xn) + 2αkB (xn, yn)| ≤
√
n}.

We will show that the families {Mk}k∈N and {Nk}k∈N satisfy the assumptions

of Lemma 2. Fix two positive integers k, l such that k 6= l, and assume that

n ∈ Nk ∩Nl. Then

|αkf(xn)− 2βkB(xn, yn)| ≤
√
n, | − αlf(xn) + 2βlB(xn, yn)| ≤

√
n.
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This implies that:

|αkβlf(xn)−2βkβlB(xn, yn)| ≤
√
nβl, |−αlβkf(xn)+2βkβlB(xn, yn)| ≤

√
nβk.

Let us add the two inequalities side-by-side to get

|αkβl − αlβk||f(xn)| ≤ (βl + βk)
√
n.

Let us join this inequality with Lemma 1 (i) and with the definitions of the α’s

and the β’s to get the following estimate:

√
n <

|f(xn)|√
n
≤ βl + βk
|αkβl − αlβk|

=
k + l

|k − l|
.

It is clear, since the right-hand-side does not depend upon n, that this inequality

can be satisfied by at most finite number of positive integers n.

Now, fix n ∈Mk ∩Ml. We have

|βkf(xn) + 2αkB(xn, yn)| ≤
√
n, | − βlf(xn)− 2αlB(xn, yn)| ≤

√
n.

Then,

|αlβkf(xn)+2αlαkB(xn, yn)| ≤ αl

√
n, |−αkβlf(xn)−2αkαlB(xn, yn)| ≤ αk

√
n.

And finally,
√
n <

|f(xn)|√
n
≤ αk + αl

|αlβk − αkβl|
=
kl − 1

|k − l|
,

which proves the finiteness of Mk ∩Ml.

Now, we can apply Lemma 2 in order to verify that the set N \ (Nk ∪Mk)

is infinite for all k’s except of at most two. In particular, we can find such k

with the property k ≥ k0, where k0 is postulated by Lemma 1. This ensures the

existence of the sequence (pn)n∈N with the desired properties. �

Corollary 1. Assume that f : R→ R is a generalized polynomial of degree

at most 2 such that f(0) = 0. If the mapping

(x, y)→ Ψ(x, y) = f(x)f(y)

is bounded on a set S0 ⊆ S which contains an arc of positive length and which

is symmetric with respect to both co-ordinate axes, then f is continuous, i.e.

f(x) = ax2 + bx for all x ∈ R with some real coefficients a, b.
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Proof. Due to our assumptions, f can be represented in the form

f(x) = A(x) +G(x) (x ∈ R),

where A is additive (thus odd) and G is quadratic (thus even). Moreover, (x, y) ∈
S0 implies (±x,±y) ∈ S0, hence all four mappings (x, y) 7→ f(±x)f(±y) are

bounded on S0. Thus

A(x)A(y) =
1

4

(
f(x)− f(−x)

)(
f(y)− f(−y)

)
and

G(x)G(y) =
1

4

(
f(x) + f(−x)

)(
f(y) + f(−y)

)
are also bounded on S0. To finish the proof, it is enough to take I ⊂ [0, 1] as an

interval such that for every x ∈ I the point (x,
√

1− x2) belongs to the arc of S0

of positive length on the first quarter of the plane, and apply Theorem 1 or 2,

respectively. �

Remark 2. If in Corollary 1 function f is additive, then it is odd, and clearly,

one-sided boundedness of the map Ψ implies its boundedness from both sides

on S0 (due to the symmetry assumptions concerning S0). However, if f is qua-

dratic, then it is possible that Ψ is bounded from below and f is discontinuous.

If a : R → R is additive and discontinuous, then f = a2 is a quadratic mapping.

Clearly, f and Ψ are nonnegative.

3. Conditions involving hyperbolas

We will terminate the paper with some related problems which arise quite

naturally. Another possible way to generalize Kominek et al.’s result from [10]

would be the following. Let C be a curve in the plane (here by curve we mean the

solution set of an irreducible polynomial equation in two variables). Let f be an

additive function which satisfies the following: whenever (x, y) ∈ C, f(x)f(y) = 0.

Does this imply that f is identically zero? To the best of our knowledge, the

answer is not even known in the case of conics. However, many special cases are

known. For example, the case of the parabola y = x2 is already settled in [10].

The case x2 − ny2 = 1 is interesting (here n is a positive integer). The case

n = 1 is settled explicitly in [10]. The case where n is the square of an integer is

basically the same. Here we give a short proof for the case when n is square-free.
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Theorem 3. Let f be an additive function and C be the curve determined

by the equation x2 − ny2 = 1 where n is a square-free integer. Assume that

f(x)f(y) = 0 if (x, y) ∈ C. Then f is identically zero.

Proof. First let a, b ∈ Z be such that ab 6= 0 and a2 − nb2 = 1. Such a, b

do exist (actually infinitely many of them), a proof of this fact can be found e.g.

in the monograph of L. J. Mordell [14, Chapter 8, Theorem 1]. Now let us

consider the following matrix: (
a bn

b a

)
We prove that if (x, y) ∈ C, then if we multiply it by this matrix (from the

left), the resulting point (ax+ bny, bx+ ay) will lie on the curve as well. Indeed:

(ax+ bny)2 − n(bx+ ay)2 = a2x2 + b2n2y2 − n(b2x2 + a2y2)

= (a2 − nb2)(x2 − ny2) = 1 · 1 = 1.

Now, applying Theorem 6 of [10], we get the desired result. �

So we know the answer for a large class of hyperbolas. However, the proof

is sensitive to the parametrization of the curve. So, for example, the question for

the hyperbola y = 1
x is still an open problem.
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[6] A. Grza̧ślewicz, Some remarks to additive functions, Math. Japon. 23 (1978/79), 573–578.

[7] W. B. Jurkat, On Cauchy’s functional equation, Proc. Amer. Math. Soc. 16 (1965),

683–686.

[8] Pl. Kannappan and S. Kurepa, Some relations between additive functions I, Aequationes
Math. 4 (1970), 163–175.

[9] Pl. Kannappan and S. Kurepa, Some relations between additive functions II, Aequationes
Math. 6 (1971), 46–58.



306 Z. Boros et al. : A regularity condition for quadratic functions. . .

[10] Z. Kominek, L. Reich and J. Schwaiger, On additive functions fulfilling some additional
condition, Sitzungsber. Abt. II 207 (1998), 35–42.

[11] M. Kuczma, An introduction to the theory of functional equations and inequalities, Second
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93-005  LÓDZ
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