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Pexiderization of some logarithmic functional equations

By TAMÁS GLAVOSITS (Miskolc) and KÁROLY LAJKÓ (Debrecen)

Dedicated to the 60th birthday of Zsolt Páles

Abstract. We study some new logarithmic functional equations and their Pex-

iderizations on different structures.

1. Introduction

The functional equation

f(xy) = f(x) + f(y) (CL)

with function f : R+ → R (or with function f : R0 → R) is usually called the

Cauchy logarithmic functional equation. Here R+ is the set of positive elements

in real numbers R and R0 = R \ {0}.
Several works appeared on functional equations satisfied by logarithmic func-

tion, referred to as logarithmic functional equation.

In [8] and [4], for function f : R+ → R, it is proved that functional equation

f(x+ y)− f(x)− f(y) = f

(
1

x
+

1

y

)
(1)
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and (CL) are equivalent in the sense that each solution of one equation is also

solution of the other.

In [9], the authors add the functional equation

f(x+ y)− f(xy) = f

(
1

x
+

1

y

)
(2)

to the above list of equivalent equations by proving that (2) and (CL) are equiv-

alent. In addition, the Pexider generalizations of (1) and (2) are considered in [9]

in form

f(x+ y)− g(x)− h(y) = k

(
1

x
+

1

y

)
(3)

and

f(x+ y)− g(xy) = h

(
1

x
+

1

y

)
, (4)

respectively for functions f , g, h, k : R+ → R.

In [3], the author gave a simple way to find the general solution of (4).

Then in [5], the equivalence of equations (1) and (2) was proved for function

f : K0 → A, where K0 = K \ {0} (K is a field excluding Z2) and A is an Abelian

group which has no 2-torsion.

In [10], the authors complemented the works [4], [8] and [9] mentioned above

by solving a few other logarithmic functional equations in Pexider form.

Here we study two new logarithmic functional equations and their Pexider-

izations for functions mapping R+ or T+ (where T+ is the set of positive elements

in an ordered field T) into R or into a uniquely 2-divisible Abelian group A.

2. The first new logarithmic equation

It is easy to see that any solution of (CL) is a solution of the functional

equation

f(x+ y) + f

(
x+ y

xy

)
= f

(
(x+ y)2

xy

)
(5)

for function f : R+ → R. We will prove the equivalence of equations (5) and (CL).

First, we present the general solution of the Pexiderized version

f(x+ y) + g

(
x+ y

xy

)
= h

(
(x+ y)2

xy

)
(6)

of (5) for x, y ∈ R+.
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Theorem 2.1. The functions f, g : R+→R and h : D = {t ∈ R+|t > 4}→R
satisfy functional equation (6) for all x, y ∈ R+ if and only if they have the form

f(x) = l(x) + a (x ∈ R+),

g(x) = l(x) + b (x ∈ R+),

h(x) = l(x) + a+ b (x ∈ D), (7)

where l : R+ → R is a logarithmic function (i.e. satisfies (CL) for all x, y ∈ R+)

and a, b ∈ R are arbitrary constants.

Proof. Assume that the functions f , g, h satisfy equation (6) for all x, y ∈
R+. Set x+ y = t, (x+ y)/(xy) = s in (6) to get

f(t) + g(s) = h(ts) (t, s ∈ R+, t · s > 4). (8)

Let t, s ∈ R+ be arbitrary, then there exists u ∈ R+ such that uts > 4. Then

we have, by (8),

h(uts) = f(ut) + g(s) and h(uts) = f(u) + g(ts),

so we get

g(ts)− g(s) = f(ut)− f(u) := α(t) (t, s ∈ R+).

Hence g(ts) = α(t)+g(s) for all t, s ∈ R+. Thus (see [1]) there exists a logarithmic

function l : R+ → R such that

g(t) = l(t) + b and α(t) = l(t) (t ∈ R+), (9)

where b ∈ R is a constant.

Putting x = y = t/2 in (6), we obtain

f(t) = −g
(

4

t

)
+ h(4) = −l

(
4

t

)
− b+ h(4) = l(t) + a (t ∈ R+), (10)

where a ∈ R is a constant.

Finally, we get from (6), (10) and (9) that

h

(
(x+ y)2

xy

)
= f(x+ y) + g

(
x+ y

xy

)
= l(x+ y) + a+ l

(
x+ y

xy

)
+ b = l

(
(x+ y)2

xy

)
+ a+ b (x, y ∈ R+),

so we have h(t)= l(t)+a+b for all t > 4, since t=(x+y)2/(xy)=x/y+y/x+2 > 4.

The converse can be easily obtained by a simple calculation. �
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Corollary 2.1. Functional equation (5) and (CL) are equivalent.

Proof. In case f = g = h, Theorem 2.1 implies that a = b = 0, thus the

only solution of (5) is the logarithmic function f(x) = l(x) for all x ∈ R+. The

converse is easy to check. �

To generalize Theorem 2.1, we need the following

Lemma 2.1 (see [6]). If S is a non-empty set and f, g : T+ → S are functions

such that

f(x+ y) = g(xy) (x, y ∈ T+), (11)

then f and g are constant.

Proof. Let µ ∈ T+ (µ > 1) be arbitrary. Replacing x by µx and y by

(1/µ)y in (11), we find that

f

(
µx+

1

µ
y

)
= g(xy) = f(x+ y) (x, y ∈ T+). (12)

Let u ∈ T+ be arbitrary and choose x, y ∈ T+ and µ > 1 such that µx +

(1/µ)y = 1 and x+ y = u. This system of equations is satisfied if and only if

x =
µ− u
µ2 − 1

and y =
µ2u− µ
µ2 − 1

.

Let µ = u+ 1/u, then x = u/(u4 + u2 + 1), y = (u5 + u3)/(u4 + u2 + 1). Putting

these in (12), we have

f(u) = f(1) (u ∈ T+).

Thus f is constant on T+, and hence so is g. �

Remark 2.1. In the case T+ = R+ this lemma was proved in [2].

Lemma 2.2. Let A be an Abelian group. The functions f , g, K : T+ → A

satisfy functional equation

f(x+ y) + g

(
x+ y

xy

)
= K

(
x

y

)
(x, y ∈ T+) (13)

if and only if

f(x) = l(x) + a (x ∈ T+),

g(x) = l(x) + b (x ∈ T+),

K(x) = l

(
x+

1

x
+ 2

)
+ a+ b (x ∈ T+), (14)

where the function l : T+ → A satisfies the Cauchy logarithmic equation (CL) for

all x, y ∈ T+, and a, b ∈ A are arbitrary constants.
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Proof. Assume that f , g, K satisfy (13) for all x, y ∈ T+. Replacing x and y

by x/2 in (13), we have that

f(x) + g

(
4

x

)
= K(1) (x ∈ T+), (15)

which gives that

g

(
x+ y

xy

)
= −f

(
4xy

x+ y

)
+K(1) (x, y ∈ T+). (16)

Applying (16) in (6), we get

f(x+ y)− f
(

4xy

x+ y

)
+K(1) = K

(
x

y

)
(x, y ∈ T+). (17)

Now let λ ∈ T+ be arbitrary. The equation (17) shows that

∆λf(x+ y) = ∆λf

(
4xy

x+ y

)
(x, y ∈ T+), (18)

where the function ∆λf : T+ → A is defined by

∆λf(x) = f(λx)− f(x) (x ∈ T+).

Replace x by x(x+ y)/4 and y by y(x+ y)/4 in (18), we obtain that

Fλ(x+ y) = ∆λf(xy) (x, y ∈ T+) (19)

with function Fλ : T+ → A defined by

Fλ(x) = ∆λf

[(x
2

)2
]

(x ∈ T+).

From (19), by Lemma 2.1, we can infer that the function ∆λf is constant, that

is for all λ ∈ T+ there exists a constant c(λ) ∈ A such that ∆λf(x) = c(λ) for all

x ∈ T+. This equality and the definition of ∆λf imply that

f(λx)− f(x) = c(λ) (λ, x ∈ T+). (20)

From (20), by the substitution x = 1, we obtain that c(λ) = f(λ) − f(1) for all

λ ∈ T+. This equation and (20) give that f(λx) = f(x) + f(λ) − f(1) for all
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x, λ ∈ T+, which shows that there exists a logarithmic function l : T+ → A, such

that

f(x) = l(x) + a (x ∈ T+), (21)

where a = f(1) ∈ A is a constant.

Now (15) implies that

g(x) = −f
(

4

x

)
+K(1) = −l

(
4

x

)
− a+K(1) = l(x) + b (x ∈ T+), (22)

with constant b = K(1)− a− l(4) ∈ A, thus f and g is of the form as in (14).

Finally, setting y = 1 in (13), from (21) and (22) we get that

K(x) = f(x+ 1) + g

(
x+ 1

x

)
= l(x+ 1) + a+ l

(
x+ 1

x

)
+ b

= l

(
(x+ 1)2

x

)
+ a+ b = l

(
x+

1

x
+ 2

)
+ a+ b (x, y ∈ T+),

which completes the proof. The converse is easy to check. �

Theorem 2.2. Let D = {t ∈ T+|∃u ∈ T+ : t = u + 1
u + 2} and A be an

Abelian group. The functions f , g : T+ → A, h : D → A satisfy functional

equation (6) for all x, y ∈ T+ if and only if

f(x) = l(x) + a (x ∈ T+),

g(x) = l(x) + b (x ∈ T+),

h(x) = l(x) + a+ b (x ∈ D), (23)

where the function l : T+ → A satisfies the Cauchy logarithmic equation (CL) for

all x, y ∈ T+, and a, b ∈ A are arbitrary constants.

Proof. Assume that functions f , g, h satisfy (6) for all x, y ∈ T+. Then

one can easily see that functions f , g and function K : D → A defined by

K(x) = h

(
x+

1

x
+ 2

)
(x ∈ T+)

satisfy the functional equation (13). It follows from Lemma 2.2 that f , g, K are of

the form (14). Finally, (14) and the definition ofK imply (23) for functions f , g, h.

Conversely, functions in (23) indeed satisfy (6). �

Corollary 2.2. Functional equations (5) and (CL) are equivalent for func-

tion f : T+ → A, too.

Proof. See the proof of Corollary 2.1. �
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3. The second new logarithmic equation

One can easily see that any solution of (CL) is a solution of the functional

equation

f(x(y + 1)) + f(y(x+ 1)) = f(x(x+ 1)) + f(y(y + 1)) (x, y ∈ T+) (24)

for function f : T+→A. We will prove the equivalence of equations (24) and (CL).

To do this, consider the functional equation

f(y(x+ 1)) + g(x(y + 1)) = h(x) + h(y) (x, y ∈ T+) (25)

for functions f , g, h : T+ → A.

Theorem 3.1. Let A be a uniquely 2-divisible Abelian group. The functions

f , g, h : T+ → A satisfy the functional equation (25) if and only if

f(x) = l(x) + a (x ∈ T+),

g(x) = l(x) + b (x ∈ T+),

h(x) = l(x(x+ 1)) +
a+ b

2
(x ∈ T+), (26)

where l : T+ → A is a logarithmic function (that is l satisfies (CL)), and a, b ∈ A
are arbitrary constants.

Proof. Suppose that f , g, h : T+ → A satisfy (25) for all x, y ∈ T+. Replace

y by 1/y in (25), we get

f

(
x+ 1

y

)
+ g

(
x

(
1

y
+ 1

))
= h(x) + h

(
1

y

)
(x, y ∈ T+). (27)

Interchange x and y in (27) and deduce that

f

(
y + 1

x

)
+ g

(
y

(
1

x
+ 1

))
= h

(
1

x

)
+ h(y) (x, y ∈ T+). (28)

Adding equations (27) and (28), we get that

f

(
x+ 1

y

)
+ f

(
y + 1

x

)
+ g

(
y

(
1

x
+ 1

))
+ g

(
x

(
1

y
+ 1

))
= h(x) + h

(
1

x

)
+ h(y) + h

(
1

y

)
(x, y ∈ T+). (29)
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Replace x by x/y and y by 1/y in (29), we obtain that

f(x+ y) + f

(
y + 1

x

)
+ g

(
x

(
1

y
+ 1

))
+ g

(
x+ y

xy

)
= h

(
x

y

)
+ h

(y
x

)
+ h(y) + h

(
1

y

)
(x, y ∈ T+). (30)

Interchange here x and y and add the resulting equation to equation (30) to

get

2f(x+ y) + f

(
x+ 1

y

)
+ f

(
y + 1

x

)
+ g

(
x

(
1

y
+ 1

))
+ g

(
y

(
1

x
+ 1

))
+ 2g

(
x+ y

xy

)
= 2h

(
x

y

)
+ 2h

(y
x

)
+ h(x) + h

(
1

x

)
+ h(y) + h

(
1

y

)
(x, y ∈ T+). (31)

Comparing equations (29) and (31) and using the uniquely 2-divisibility of A, we

see that functions f, g, h satisfy the functional equation

f(x+ y) + g

(
x+ y

xy

)
= h

(
x

y

)
+ h

(y
x

)
(x, y ∈ T+). (32)

It follows that the functions f , g and the function K : T+ → A defined by

K(x) = h(x) + h

(
1

x

)
(x ∈ T+)

satisfy functional equation (13) in Lemma 2.2. Then Lemma 2.2 shows that

f and g are of the form (26).

Finally, from (25), with substitution x = y, using the uniquely 2-divisibility

of A and the form of f , g, we get that

h(x) =
1

2
[f(x(x+ 1)) + g(x(x+ 1))] =

1

2
[l(x(x+ 1)) + a+ l(x(x+ 1)) + b]

= l(x(x+ 1)) +
a+ b

2
(x, y ∈ T+),

which gives (26) for h, too. The converse is evident again. �

Corollary 3.1 (see [6]). Let A be a uniquely 2-divisible Abelian group. The

function f : T+ → A satisfies (24) for all x, y ∈ T+ if and only if f(x) = l(x) + a

for all x ∈ T+, where l : T+ → A satisfies (CL) for all x, y ∈ T+, and a ∈ A is

an arbitrary constant. Furthermore, (24) with condition f(1) = 0 and (CL) are

equivalent for function f : T+ → A.
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Proof. f satisfies (25) with g = f and h(x) = f(x(x + 1)). Thus Theo-

rem 3.1 gives that f(x) = l(x) +a for all x ∈ T+, where l : T+ → A satisfies (CL)

for all x, y ∈ T+, and a ∈ A is an arbitrary constant. This proves the first part

of our Corollary. If f(1) = 0, then a = 0, thus we have that f(x) = l(x) for all

x ∈ T+, that is, f satisfies (CL). The converse is easy to see. �

Remark 3.1. In case T+ = R+, A = R, Theorem 3.1 and Corollary 3.1

imply that (24) with condition f(1) = 0 and (CL) are equivalent for function

f : R+ → R.

4. A third new logarithmic functional equation

As a counterpart of equation (24), we recall our former result [7, Theorem 2]:

Theorem 4.1. Let A be a uniquely 2-divisible Abelian group. The function

γ : T+ → A satisfies the functional equation

γ

(
x+ 1

y

)
+ γ

(
y + 1

x

)
= γ

(
x+ 1

x

)
+ γ

(
y + 1

y

)
(x, y ∈ T+) (33)

if and only if it is of the form

γ(x) = l(x) + c (x ∈ T+),

where l : T+ → A satisfies (CL) for all x, y ∈ T+, and c ∈ A is an arbitrary

constant.

Now, one can easily derive from Theorem 4.1 the following

Corollary 4.1. (33), with condition γ(1) = 0, and (CL) are equivalent for

function f : T+ → A (or for function f : R+ → R).
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HUNGARY

E-mail: matgt@uni-miskolc.hu
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