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Spectral geometry on certain almost
Hermitian Einstein manifolds

By LEW FRIEDLAND (New York)

Abstract. On compact Riemannian and Kähler manifolds the spectra of the real
and complex Laplacians determine the geometry of the manifolds to a considerable
extent, though not completely, as isospectral manifolds need not be isometric. The
literature on the geometric consequences of isospectrality is extensive (e.g., [1], [2],
[4]–[8], [10], [11]). In this paper we consider the spectrum of the real Laplacian on
three classes of almost Hermitian Einstein manifolds which include almost Kähler and
nearly Kähler Einstein manifolds. We prove that a compact almost Hermitian Einstein
manifold of positive scalar curvature % with % ≤ %∗, or negative scalar curvature % with
% ≥ %∗, or nonzero scalar curvature % with % = %∗ (where %∗ is the ∗–scalar curvature)
and isospectral to a Kähler manifold of constant holomorphic sectional curvature is
Kähler and the manifolds are holomorphically isometric.

1. Preliminaries

Let (M, g) be a Riemannian manifold of real dimension m = 2n ≥ 2
with metric g = (gij). If R = (Rhijk) is the Riemann curvature tensor,
Rc = (Rij) = ghkRhijk the Ricci curvature tensor and % = gijRij the
scalar curvature, then the Einstein tensor E = (Eij) is given by

(1.1) Eij ≡ Rij − %

m
gij ,

where M is Einstein if E = 0.
If (M, g) is a compact connected C∞ manifold and ∆ = −(dδ + δd)

is the Laplace operator on p–forms, 0 ≤ p ≤ 2n, (0–forms corresponding
to differentiable functions on M) with respect to the metric g, then the
spectrum of the Laplacian are the eigenvalues of ∆,

(1.2) Specp(M, g) = {λip | 0 ≥ λ1,p ≥ λ2,p ≥ · · · ≥ λk,p ≥ . . . ↓ −∞} ,

AMS Subject Classification (1991): 53C25, 53C55 and 58G25.



64 Lew Friedland

where each eigenvalue is repeated as often as its multiplicity. Further,
Spec2n−p(M, g) = Specp(M, g) when M is orientable.

Relevant to the study of the spectrum is the Minakshisundaram-
Pleijel-Gaffney asymptotic formula

(1.3)
∞∑

k=0

exp(λk,pt) ∼
t→0

1
(4πt)n

∞∑

i=0

ai,pt
i ,

where the first three coefficients are given by [8]

a0,p =
(

2n

p

) ∫

M

dM =
(

2n

p

)
vol(M) ,(1.4)

a1,p =
[
1
6

(
2n

p

)
−

(
2n− 2
p− 1

)] ∫

M

%dM ,(1.5)

a2,p =
∫

M

[
c1(2n, p)%2 + c2(2n, p)|Rc|2 + c3(2n, p)|R|2] dM ;(1.6)

where

c1(2n, p) =
1
72

(
2n

p

)
− 1

6

(
2n− 2
p− 1

)
+

1
2

(
2n− 4
p− 2

)
,(1.7)

c2(2n, p) = − 1
180

(
2n

p

)
+

1
2

(
2n− 2
p− 1

)
− 2

(
2n− 4
p− 2

)
,(1.8)

c3(2n, p) =
1

180

(
2n

p

)
− 1

12

(
2n− 2
p− 1

)
+

1
2

(
2n− 4
p− 2

)
.(1.9)

2. Almost Hermitian manifolds and the Bochner curvature tensor

Let (M, g, J) be an almost Hermitian manifold of real dimension 2n≥2
with almost complex structure J = (Fi

j) and almost Hermitian metric
g = (gij); that is, g(JX, JY ) = g(X, Y ) for all X, Y in the tangent space
of M at p, Tp(M). In dimension 2n = 2, (M, g) is Kähler Einstein and
has holomorphic sectional curvature κ = %

2 .
Define the Bochner curvature tensor B = (Bhijk) by

Bhijk ≡ Rhijk − 1
2n + 4

(Rijghk −Rikghj + Rhkgij −Rhjgik

+FijFh
rRrk − FikFh

rRrj + FhkFi
rRrj − FhjFi

rRrk(2.1)

−2FjkFh
rRri − 2FhiFj

rRrk)
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+
%

(2n + 2)(2n + 4)
(gijghk − gikghj + FijFhk − FikFhj − 2FhiFjk) .

Lemma 2.1. (see, e.g., [3]). If (M, g) is a Kähler manifold of nonzero
constant holomorphic sectional curvature κ, then the Riemann curvature
tensor, Ricci curvature tensor and scalar curvature are given, respectively,
by

Rhijk =
κ

4
(ghkgij − ghjgik + FhkFij − FhjFik − 2FhiFjk) ,(2.2)

Rij =
n + 1

2
κgij ,(2.3)

% = n(n + 1)κ .(2.4)

Hence, (M, g) is Einstein and B = 0.

By Schur’s theorem, a Kähler manifold of dimension 2n ≥ 4 with
constant holomorphic sectional curvature κ is of constant holomorphic
curvature; that is, κ is a global constant on the manifold.

Lemma 2.2. [3]. An almost Hermitian manifold (M, g) of dimension
2n ≥ 4 with curvature tensor given by (2.2) is Kähler and of constant
holomorphic sectional curvature κ = %

n(n+1) .

Consequently, we have

Corollary 2.3. If (M, g) is an almost Hermitian Einstein manifold of
dimension 2n ≥ 4 with B = 0 and % 6= 0, then the conclusion of Lemma 2.2
follows.

Lemma 2.4. If (M, g) is an almost Hermitian Einstein manifold, then
the square length of the Bochner tensor is given by

(2.5) |B|2 = |R|2 +
%2 − 3%%∗

n(n + 1)
,

where %∗ ≡ F kqF jrRkrqj .

Proof. The equation follows from a calculation of |Bhijk|2 using
(1.1) and (2.1).

3. Spectral geometry on almost Hermitian Einstein manifolds

An almost Kähler manifold (M, g, J) is an almost Hermitian manifold
such that the differential form ω ≡ Fijdxi ∧ dxj is closed; that is, dω = 0
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and hence, δω = 0 and ω is harmonic. This is equivalent to ∇iFjk +
∇jFki + ∇kFij = 0, where ∇ is the covariant derivative with respect to
the Riemannian connection on M . A nearly Kähler manifold is an almost
Hermitian manifold satisfying ∇iFj

k +∇jFi
k = 0.

Lemma 3.1. (see, e.g., [3]). On an almost Kähler manifold

(3.1) % ≤ %∗ ;

while on a nearly Kähler manifold

(3.2) % ≥ %∗ .

Further, equality holds in each case if and only if the manifold is Kähler.

Theorem 3.2. Suppose that (M, g, J) and (M ′, g′, J ′) are compact
almost Hermitian manifolds with Specp(M, g) = Specp(M ′, g′) for p = 0, 1
or 2.

a) In dimension 2n = 2, (M, g) is of constant holomorphic curvature
κ if and only if (M ′, g′) is.

b) In dimension 2n ≥ 4, if (M ′, g′) is Einstein and of positive scalar
curvature %′ with %′ ≤ %′∗, or negative scalar curvature %′ with %′ ≥ %′∗,
or nonzero scalar curvature %′ with %′ = %′∗, and (M, g) is Kähler and of
constant holomorphic sectional curvature κ, then (M ′, g′) is a Kähler man-
ifold of constant holomorphic sectional curvature κ′ = κ in the following
cases: p = 0 and 2n ≥ 4; p = 1 and 2n ≥ 16; p = 2 and 2n = 4, 6, 8, 14 or
2n ≥ 18.

Proof. Letting p = 0 in (1.4)–(1.9) gives

a0,0 =
∫

M

dM = vol(M) ,(3.3)

a1,0 =
1
6

∫

M

%dM ,(3.4)

a2,0 =
1

360

∫

M

[
5%2 − 2|Rc|2 + 2|R|2] dM .(3.5)

a) In dimension 2n = 2, |R|2 = %2 and since g is an Einstein metric,
then by (1.1), |Rc|2 = %2

2 and a2,0 = 1
60

∫
M

%2dM . Since a0,0 = a′0,0, it
follows that vol(M) = vol(M ′). If, say, (M, g) has constant holomorphic
curvature κ, since a1,0 = a′1,0 and a2,0 = a′2,0, then

∫
M ′ %

′dM ′ = 2κ vol(M ′)
and

∫
M ′ %

′2dM ′ = 4κ2 vol(M ′). We then have equality in the Schwarz in-

equality
(∫

M ′ %
′dM ′)2 ≤

(∫
M ′ %

′2dM ′
)( ∫

M ′ dM ′
)
, so that %′ is constant

and %′ = %.
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The proofs in the remaining cases are similar upon taking p = 1 and
2, respectively, in (1.4)–(1.9). For p = 2 the result follows, as well, as
a consequence of the case p = 0 since Spec0(M, g) = Spec0(M ′, g′) by
duality.

b) Suppose (M ′, g′) is almost Hermitian Einstein of either positive
scalar curvature %′ with %′ ≤ %′∗ or negative scalar curvature %′ with
%′ ≥ %′∗. In dimension 2n ≥ 4, substitute (2.5) in (3.5). Then, since E = 0
and a2,0 = a′2,0, we have

(3.6)

∫

M

[
(5n2 + 4n− 3)%2 + 6%%∗

n(n + 1)
+ 2|B|2

]
dM

=
∫

M

[
(5n2 + 4n + 3)%2

n(n + 1)
+ 2|B|2

]
dM

=
∫

M ′

[
(5n2 + 4n− 3)%′2 + 6%′%′∗

n(n + 1)
+ 2|B′|2

]
dM ′

≥
∫

M ′

[
(5n2 + 4n + 3)%′2

n(n + 1)
+ 2|B′|2

]
dM ′ .

Since (M, g, J) is Kähler with constant holomorphic sectional cur-
vature κ, then by Lemma 2.1, B = 0. Further, since % is constant,
then a0,0 = a′0,0, a1,0 = a′1,0 and the Schwarz inequality imply that(∫

M ′ %
′2dM ′

) ( ∫
M ′ dM ′

)
≥

( ∫
M ′ %

′dM ′
)2

=
( ∫

M
%dM

)2

=%2[vol(M)]2 =

%2 vol(M ′) vol(M) = vol(M ′)
∫

M
%2dM . Then by (3.6), |B′|2 = 0. Hence,

by Corollary 2.3, (M ′, g′, J ′) is Kähler and of constant holomorphic sec-
tional curvature κ′ = κ.

Letting p = 1 in (1.4)–(1.9) gives

a0,1 =2n

∫

M

dM = 2n vol(M) ,(3.7)

a1,1 =
n− 3

3

∫

M

%dM ,(3.8)

a2,1 =
1

180

∫

M

[
(5n− 30)%2 + (−2n + 90)|Rc|2(3.9)

+ (2n− 15)|R|2
]
dM .
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In dimension 2n ≥ 16, substitute (2.5) in (3.9). Then, since E = 0
and a2,1 = a′2,1, we have

∫

M

[
(5n3 − 26n2 + 12n + 60)%2 + (6n− 45)%%∗

n(n + 1)
+ (2n− 15)|B|2

]
dM

=
∫

M

[
(5n3 − 26n2 + 18n + 15)%2

n(n + 1)
+ (2n− 15)|B|2

]
dM

=
∫

M ′

[
(5n3 − 26n2 + 12n + 60)%′2 + (6n− 45)%′%′∗

n(n + 1)
(3.10)

+(2n− 15)|B′|2
]
dM ′

≥
∫

M ′

[
(5n3 − 26n2 + 18n + 15)%′2

n(n + 1)
+ (2n− 15)|B′|2

]
dM ′ .

The result then follows in a similar way as in the case p = 0.
Letting p = 2 in (1.4)–(1.9) gives

a0,2 =(2n2 − n)
∫

M

dM = (2n2 − n) vol(M) ,(3.11)

a1,2 =
2n2 − 13n + 12

6

∫

M

%dM ,(3.12)

a2,2 =
1

360

∫

M

[
(10n2 − 125n + 300)%2(3.13)

+ (−4n2 + 362n− 1080)|Rc|2

+ (4n2 − 62n + 240)|R|2
]
dM .

In dimension 2n = 4, 6, 8, 14 or 2n ≥ 18, substitute (2.5) in (3.13).
Then, since E = 0 and a2,2 = a′2,2, we have

∫

M

[
(10n4 − 117n3 + 350n2 + 3n− 780)%2 + (12n2 − 186n + 720)%%∗

n(n + 1)

+(4n2 − 62n + 240)|B|2
]
dM



Spectral geometry on certain almost Hermitian Einstein manifolds 69

=
∫

M

[
(10n4 − 117n3 + 362n2 − 183n− 60)%2

n(n + 1)

+(4n2 − 62n + 240)|B|2
]
dM(3.14)

=
∫

M ′

[
(10n4 − 117n3 + 350n2 + 3n− 780)%′2 + (12n2 − 186n + 720)%′%′∗

n(n + 1)

+(4n2 − 62n + 240)|B′|2
]
dM ′

≥
∫

M ′

[
(10n4 − 117n3 + 362n2 − 183n− 60)%′2

n(n + 1)

+(4n2 − 62n + 240)|B′|2
]
dM ′ .

The result then follows in a similar way as in the case p = 0.
If (M ′, g′) is almost Hermitian Einstein of nonzero scalar curvature

%′ with %′ = %′∗, then we have equality in (3.6), (3.10) and (3.14) and the
results follow in the same way.

Corollary 3.3. If (CPn, g0, J0) is complex projective space with the
Fubini–Study metric, (M ′, g′, J ′) a compact almost Hermitian Einstein
manifold of either positive scalar curvature %′ with %′ ≤ %′∗ or nonzero
scalar curvature %′ with %′ = %′∗, and Specp(M ′, g′, J ′) = Specp(CPn, g0,
J0) for p = 0, 1 or 2, then (M ′, g′, J ′) is Kähler and holomorphically
isometric to (CPn, g0, J0) in the following cases: p = 0 and 2n ≥ 2,
hence (CPn, g0, J0) is characterized by the spectrum in every dimension
in these classes of manifolds; p = 1 and 2n = 2 or 2n ≥ 16; p = 2 and
2n = 2, 4, 6, 8, 14 or 2n ≥ 18.

Proof. Since (CPn, g0, J0) is the only Kähler manifold with a metric
of positive constant holomorphic sectional curvature κ, then (M ′, g′, J ′) is
Kähler with constant holomorphic sectional curvature κ and (M ′, g′, J ′)
and (CPn, g0, J0) are holomorphically isometric.

Corollary 3.4. If (M, g, J) is a compact Kähler manifold of constant
holomorphic sectional curvature κ and (M ′, g′, J ′) is either compact almost
Kähler Einstein with positive scalar curvature or compact nearly Kähler
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Einstein with negative scalar curvature and Specp(M, g) = Specp(M ′, g′)
for p = 0, 1 or 2, then the conclusion of Theorem 3.2b holds.

Proof. The result follows immediately from Lemma 3.1 and Theo-
rem 3.2.

We note here that a compact almost Kähler Einstein manifold of non-
negative scalar curvature is Kähler [9].
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