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A minimal set of cancellation violating sequences for finite
two-dimensional non-additive measurement
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This paper is dedicated to Professor Zsolt Páles on the occasion

of his 60th birthday

Abstract. A weak order - on a finite two-dimensional Cartesian product set

X = X1 × X2 has an additive real-valued representation if and only if it satisfies a

sequence of cancellation conditions C(2), C(3), .... Given fixed cardinalities m and n for

X1 and X2, there is a largest K, denoted by f(m,n), such that some - on X satisfies

C(2) to C(K − 1) but violates C(K). In 2001, Fishburn presented several open prob-

lems, including the exact values of f(m,n) for some small (m,n). Recently, by giving

a minimal chain of cancellation violating sequences adequate for the detection of all

non-additively representable weak orders for (m,n) = (3, 3), (3, 4) and (3, 5), Ng shows

that f(3, 5) = 4. This article is a continuation of the above work for (m,n) = (3, 6).

1. Introduction

A binary relation - on the Cartesian product X = X1 × X2 is said to be

additively representable (or additive) if there exist real-valued functions ui on Xi

(i = 1, 2) such that, for all x = (x1, x2) and y = (y1, y2) in X,

x - y iff u1(x1) + u2(x2) ≤ u1(y1) + u2(y2).
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A function f : X → R is said to be additive if there exist functions ui : Xi → R
such that

f(x) =

2∑
i=1

ui(xi), ∀x = (x1, x2) ∈ X.

A utility function representing - is any function u : X → R such that

x - y iff u(x) ≤ u(y), ∀x, y ∈ X.

It is clear that - is a weak order by additive representability. On a finite set it is

equivalent to the presence of a utility representation.

Definition 1.1. Given X = X1 × X2, integer K ≥ 2, a sequence of distinct

pairs (x1, y1), (x2, y2), . . . , (xK , yK) ∈ X×X, and positive integers a1, a2, . . . , aK ,

the expression ∑
k

ak(xk, yk) ∈ CK

means that for the two coordinates i = 1, 2, the sequence a1x
1
i [ i.e. x1

i repeated a1
times], a2x

2
i , . . . , aKxK

i is a permutation of the sequence a1y
1
i , a2y

2
i , . . . , aKyKi in

the coordinate set Xi. We shall say that the sequence
∑

k ak(xk, yk) is balanced.

We call
∑

k ak(yk, xk) the co-sequence of
∑

k ak(xk, yk) and it is clear that a

sequence is balanced if and only if its co-sequence is balanced.

The K-th order cancellation condition on - is C(K): for all
∑

k ak(xk, yk) ∈
CK it is false that x1 - y1, x2 - y2, . . . , xK - yK and xk ≺ yk for at least one k.

In [6],
∑

k ak is called the cardinality of the sequence and K is called its

width. Krantz et al. [4] show that every additively representable order satisfies

C(K) for all K whence a non-additive order violates C(K) for some K. By the

definition of C(2), when it holds, it induces well-defined weak orders -i on the

coordinate sets Xi by xi -i yi if x - y whenever xj = yj for all j 6= i. The

associated indifference relations xi ∼i yi, defined by xi -i yi and yi -i xi, are

equivalence relations on Xi. The quotient spaces X∗
i = Xi/ ∼i are then linearly

ordered. We henceforth assume that the coordinate sets Xi are linearly ordered

under the induced orders.

Definition 1.2. Let X = X1 × X2 be of finite size m by n (|X1| = m and

|X2| = n), where m,n ≥ 2. The unique K ≥ 2 such that (i) every weak order

on X that satisfies C(2), C(3), ..., C(K) is additively representable and (ii) some

weak order on X that satisfies all cancellation conditions (if any) prior to C(K)

is not additively representable will be denoted by f(m,n).



A minimal set of cancellation violating sequences. . . 391

It is obtained in [4] that f(2, n) = 2 and f(3, 3) ≥ 3. In his pivotal papers,

Fishburn gives many significant results, including the conclusions f(3, 3) = 3,

f(3, 4) = f(4, 4) = 4, and 4 ≤ f(3, 5) ≤ 7. Recently, by determining a minimal set

of cancellation violating sequences adequate for the detection of all non-additive

weak orders on a product of size 3 by 5, Ng in [2] gets the exact value of f(3, 5). In

this paper, we continue the study for (m,n) = (3, 6) and make explicit a minimal

set of cancellation violating sequences to detect all non-additively representable

weak orders on a 3 by 6 product.

2. The canonical representation and the diagrams for C(K) violations

Let - be a weak order on a 3 by 6 product satisfying C(2). We can map

X1 to {1, 2, 3} and X2 to {1, 2, 3, 4, 5, 6} in such a way that the induced linear

orders on Xi coincide with the natural order of the integers. In this sense we

identify X1 with {1, 2, 3} and X2 with {1, 2, 3, 4, 5, 6}. The weak order - is then

representable by a utility function u : {1, 2, 3} × {1, 2, 3, 4, 5, 6} → R. Then u is

strictly increasing in its two variables. We may choose to use consecutive integer

values and set u(1, 1) = 1. Such choice will make u unique for the given weak order

and will be called the canonical representation of the weak order. If the order is

linear, then there will be 18 distinct values and the canonical representation will

start with u(1, 1) = 1, and end with u(3, 6) = 18. Each function u, canonical or

otherwise, can be presented as a 6 by 3 array

A =



u(1, 6) u(2, 6) u(3, 6)

u(1, 5) u(2, 5) u(3, 5)

u(1, 4) u(2, 4) u(3, 4)

u(1, 3) u(2, 3) u(3, 3)

u(1, 2) u(2, 2) u(3, 2)

u(1, 1) u(2, 1) u(3, 1)


.

Any array with strictly increasing rows and columns, not necessarily canonical,

still represents a unique weak order.

From the known results in [2], Ng shows that non-additive 3 by 3, 4 by 3

or 5 by 3 arrays are detected by a specific chain of sets of balanced sequences

presented through diagrams. For instance, Figure 1, Figure 2 and Figure 3 detect

all 5 by 3 non-additive arrays, where ⊕ and 	 signs mark the opposite sides in

the comparison.
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Figure 2.
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Figure 3.

Figure 1 carries two sequences: a balanced sequence (x1, y1) = ((1, 2), (2, 1)),

(x2, y2) = ((3, 1), (1, 3)), (x3, y3) = ((2, 3), (3, 2)) (and with implicit multiplicities

a1 = a2 = a3 = 1) and its co-sequence. The illustration next to Figure 1 conveys

the statement that the array with the nine indicated values is non-additive because

it fails C(3) by a balanced sequence carried in Figure 1. In this sense we say

Figure 1 detects (the non-additivity of) the (weak order represented by the) array.

It is clear that if any 5 by 3 subarray is non-additive, the 6 by 3 array itself

is non-additive, and so will be detected by Figures 1–3. Hence, we need to pay

attention to those 6 by 3 arrays that are non-additive and have all 5 by 3 subarrays

additive. We call them the critical-to-inspect ones.

Step 1. Using the Maple software we obtain all weak orders in canonical

arrays. With input argument ([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]) in a

procedure, our worksheet returns all (87516) linear orders (cf. [5]). By the same

worksheet, we also collect non-linear orders. For example, with input argument

([1,2,2,3,3,3,4,4,4,5,5,5,6,6,7,8,9,10]) it returns all (8) arrays that come with a

double 2, a triple 3, a triple 4, a triple 5 and a double 6.

Step 2. We obtain the sublist of (63903) linear orders which are non-additive.
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Among them, (40) are found critical-to-inspect. They are



12 17 18

11 15 16

10 13 14

4 7 9

2 5 8

1 3 6


,



12 17 18

11 15 16

9 13 14

4 7 10

2 5 8

1 3 6


,



12 17 18

11 15 16

7 13 14

4 9 10

2 5 8

1 3 6


,



12 17 18

11 15 16

8 13 14

4 7 10

2 5 9

1 3 6


,



12 17 18

11 15 16

7 13 14

4 8 10

2 5 9

1 3 6


,



12 17 18

10 15 16

7 13 14

4 8 11

2 5 9

1 3 6


,



11 17 18

8 15 16

5 12 14

4 9 13

2 6 10

1 3 7


,



12 17 18

11 14 16

8 13 15

4 7 10

2 5 9

1 3 6


,



9 17 18

6 14 16

5 11 15

3 10 13

2 7 12

1 4 8


,



13 16 18

10 15 17

8 12 14

3 9 11

2 6 7

1 4 5


,



13 16 18

11 14 17

10 12 15

3 8 9

2 6 7

1 4 5


,



13 16 18

11 14 17

10 12 15

5 6 9

3 4 8

1 2 7


,



13 16 18

11 14 17

9 12 15

3 8 10

2 6 7

1 4 5


,



13 16 18

11 14 17

9 12 15

5 6 10

3 4 8

1 2 7


,



13 16 18

10 14 17

9 12 15

3 8 11

2 6 7

1 4 5


,



13 16 18

10 14 17

9 12 15

3 7 11

2 6 8

1 4 5


,
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

13 16 18

10 14 17

9 12 15

5 6 11

3 4 8

1 2 7


,



13 16 18

10 14 17

9 12 15

4 6 11

3 5 8

1 2 7


,



13 16 18

10 14 17

8 12 15

3 9 11

2 6 7

1 4 5


,



13 16 18

10 14 17

7 12 15

3 9 11

2 6 8

1 4 5


,



13 16 18

11 14 17

9 10 15

5 6 12

3 4 8

1 2 7


,



13 16 18

10 14 17

9 11 15

5 6 12

3 4 8

1 2 7


,



13 16 18

10 14 17

8 11 15

5 6 12

3 4 9

1 2 7


,



12 16 18

8 14 17

5 11 15

3 10 13

2 7 9

1 4 6


,



12 16 18

9 13 17

6 10 15

5 7 14

3 4 11

1 2 8


,



10 16 18

6 13 17

4 12 15

3 9 14

2 8 11

1 5 7


,



7 16 18

6 13 17

4 12 15

3 9 14

2 8 11

1 5 10


,



14 15 18

12 13 17

10 11 16

4 7 9

2 5 8

1 3 6


,



14 15 18

12 13 17

9 11 16

4 7 10

2 5 8

1 3 6


,



14 15 18

12 13 17

8 11 16

4 7 10

2 5 9

1 3 6


,



14 15 18

12 13 17

8 10 16

5 7 11

2 4 9

1 3 6


,



14 15 18

12 13 17

8 10 16

4 7 11

2 5 9

1 3 6


,
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

14 15 18

11 13 17

8 12 16

4 7 10

2 5 9

1 3 6


,



14 15 18

11 13 17

8 10 16

4 7 12

2 5 9

1 3 6


,



8 15 18

5 14 17

4 11 16

3 10 13

2 7 12

1 6 9


,



13 15 18

10 12 17

6 9 16

4 8 14

2 5 11

1 3 7


,



11 15 18

7 12 17

6 9 16

4 8 14

3 5 13

1 2 10


,



12 14 18

8 11 17

5 10 16

4 7 15

2 6 13

1 3 9


,



9 14 18

8 11 17

5 10 16

4 7 15

2 6 13

1 3 12


,



10 13 18

7 12 17

6 9 16

3 8 15

2 5 14

1 4 11




.

None of the (8) arrays that come with a double 2, a triple 3, a triple 4, a

triple 5 and a double 6 are critical-to-inspect.

Step 3. We find that Figures 4–11 detect all critical-to-inspect 3 by 6 arrays.
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Note: some arrays are detected by more than one figure, e.g. the fourth array

is detected by both Figure 6 and Figure 8. Each figure detects at least one array

which is not detected by the others – in this sense the family is a minimal set.
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Steps 1 to 3 lead us to a conclusion – that the set of cancellation violating

sequences presented by Figures 1–11 is a minimal collection detecting all non-

additive 3 by 6 weak orders.

The widths of the sequences do not exceed six and so f(3, 6) ≤ 6 follows.

On the other hand, a theorem of Fishburn ([1, Theorem 3.1]) on lower bound is

found applicable to the sequences in Figures 4–11 and we get f(3, 6) ≥ 6. Hence

f(3, 6) = 6.

3. Further works

Our determination of f(3, 6) assisted by the Maple software is very time

demanding. For example, there are (87516) linear orders and (12441) arrays with

a double 2 and a double 3. Time taken to handle all non-linear orders exceeds

that for the linear ones by far. The following conjecture by Fishburn remains

open.

(P1): if we define the function f∗(m,n) by restricting Definition 1.2 to linear

orders, is it true that f(m,n) = f∗(m,n)? (see Conjecture 1 in [3] and Problem 2

in [6]).

We have only confirmed here that f(3, 6) = f∗(3, 6).

4. Supporting worksheets and data

All of our Maple Worksheets and data can be downloaded from Portal

http://hdl.handle.net/10864/11822.
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