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J-tangent affine hyperspheres with an involutive
contact distribution

By ZUZANNA SZANCER (Krakow)

Abstract. In this paper we study J-tangent affine hyperspheres. The main pur-
pose of this paper is to give a local characterization of J-tangent affine hyperspheres
of arbitrary dimension with an involutive contact distribution. Some new examples of
such hyperspheres are also given.

1. Introduction

Centro-affine real hypersurfaces with a J-tangent transversal vector field
were first studied by V. CRUCEANU in [2]. He proved that such hypersurfaces
f: M?+1 — C"*1 can be locally expressed in the form

flx1,. .. xan, 2) = Jg(a1, ..., Ton)co8 2 + g(X1, ..., Tap)sin z,

where g is some smooth function defined on an open subset of R?". He also showed
that if the induced almost contact structure is Sasakian, then a hypersurface
must be a hyperquadric. The latter result was generalized in [5] to arbitrary
hypersurfaces with a J-tangent transversal vector field.

Since the class of centro-affine hypersurfaces with a J-tangent transversal
vector field is quite large, the question arises whether there are affine hyperspheres
with a J-tangent Blaschke field. A local characterization of 3-dimensional J-
tangent affine hyperspheres with an involutive contact distribution was given
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in [7]. The main purpose of this paper is to generalize the results from [7] to an
arbitrary dimension. That is, we give a local characterization of J-tangent affine
hyperspheres of arbitrary dimension with an involutive contact distribution.

2. Preliminaries

We briefly recall the basic formulas of affine differential geometry. For more
details, we refer to [4].

Let f: M — R"*! be an orientable connected differentiable n-dimensional
hypersurface, immersed in the affine space R"*!, equipped with its usual flat
connection D. Then for any transversal vector field C' we have

and
Dx C = —f.(5X) + 7(X)C, (2)

where X,Y are vector fields tangent to M. It is known that V is a torsion-free
connection, h is a symmetric bilinear form on M, called the second fundamental
form, S is a tensor of type (1, 1), called the shape operator, and 7 is a 1-form, called
the transversal connection form. Recall that formula (1) is known as formula of
Gauss, and formula (2) is known as formula of Weingarten.

For a hypersurface immersion f: M — R"*! a transversal vector field C is
said to be equiaffine (resp. locally equiaffine) if 7 = 0 (resp. dr = 0). For an
affine hypersurface f: M — R"*! with a transversal vector field C, we consider
the following volume element on M:

@(Xl, v ,Xn) = det[f*Xl, . ,f*Xn,O]

for all Xy,...,X,, € X(M). We call © the induced volume element on M. Im-
mersion f: M — R™t! is said to be a centro-affine hypersurface if the position
vector z (from origin o) for each point « € M is transversal to the tangent plane
of M at x. In this case S = I and 7 = 0. If h is nondegenerate (that is h defines
a semi-Riemannian metric on M), then we say that the hypersurface or the hy-
persurface immersion is nondegenerate. In this paper we assume that f is always
nondegenerate. We have the following

Theorem 2.1 ([4], Fundamental equations). For an arbitrary transversal
vector field C the induced connection V, the second fundamental form h, the
shape operator S, and the 1-form T satisfy the following equations:

R(X,Y)Z = h(Y, Z)SX — h(X, Z)SY, (3)
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(Vxch)(Y, 2) + 7(X)A(Y, Z) = (Vyh)(X, 2) + T(V)R(X, Z),  (4)
(Vx9)(Y) = 7(X)SY = (VyS)(X) — 7(Y)SX, (5)
h(X,8Y) — h(SX,Y) = 2d7(X,Y). (6)

The equations (3), (4), (5), and (6) are called the equations of Gauss, Codazzi
for h, Codazzi for S, and Ricci, respectively.

When f is nondegenerate, there exists a canonical transversal vector field C,
called the affine normal (or the Blaschke field). The affine normal is uniquely
determined up to sign by the following conditions:

(1) the metric volume form wy, of h is V-parallel,
(2) wp, coincides with the induced volume form ©.

Recall that wy is defined by
wi(X1,. .., Xn) = | det[h(X;, X;)] [V,

where {X1, ..., X, } is any positively oriented basis relative to the induced volume
form ©. The affine immersion f with a Blaschke field C is called a Blaschke
hypersurface. In this case, fundamental equations can be rewritten as follows

Theorem 2.2 ([4], Fundamental equations). For a Blaschke hypersurface f,
we have the following fundamental equations:

R(X,Y)Z = h(Y,Z)SX — (X, Z)SY,  (Vxh)(Y,Z) = (Vyh)(X,2),

(VxS)(Y) = (Vy9)(X), hMX,SY)=h(SX,Y).

A Blaschke hypersurface is called an affine hypersphere if S = AI, where
A = const.

If A =0, f is called an improper affine hypersphere, if A # 0, a hypersurface
f is called a proper affine hypersphere.

Now, we will recall a notion of complex affine hypersurfaces, for details, we
refer to [3]. We always assume that R?"+2 ~ C"*+! is endowed with the standard
complex structure J. That is

J(xlv"'7$n+17y17"'7yn+1) = (_yla"'7_yn+1a$1a"'axn+1)-

Let g: M — R?"*2 be a complex hypersurface of the complex affine space
R?"+2 that is for each point p of M we have J(T,M) = T,M. The complex
structure J induces a complex structure on M, which we will also denote by J. Let
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¢: M — TR?>"*2 be a local transversal vector field on M. Then ((p), J¢((p) and
T, M together span T,R*" 2. Consequently, for all tangent vector fields X and Y
to M, we can decompose Dx ¢.Y and Dx ( into a component tangent to M and
into a component lying in the plane spanned by ¢ and J(:

Dx g.Y = g.(VxY) + h(X,Y)C + hao(X,Y)J¢  (formula of Gauss),
Dx ¢ = —g.(5X) 4+ 1 (X)¢ + 72(X)J¢  (formula of Weingarten),

where V is a torsion free affine connection on M , h1 and hy are symmetric bilinear
forms on M, S is a (1, 1)-tensor field on M, and 7; and 7 are 1-forms on M. We
have the following relations between h; and ho.

Lemma 2.3 ([3]).
h(X,JY)=hmn(JX,Y)=—-h(X,Y), ho(X,JY) = ha(JX,Y) = hi (X, Y).
On manifold M we define the volume form 6, by
0c(Xq,...,Xop) =det(9: X1, ..., g+ Xon, ¢, JC)

for tangent vectors X; (i=1,...,2n). Then, consider the function H¢ on M defined
by
H¢ = det[h (X5, X;)]i j=1...2n,

where X1,..., X5, is a local basis in T'M such that §.(X,..., X,) = 1. This
definition is independent of the choice of basis. We say that a hypersurface
is nondegenerate if h; (and in consequence hg) is nondegenerate. When ¢ is
nondegenerate, there exist transversal vector fields ¢ satisfying the following two
conditions:

|HC|:17 ’7'1:0.

Such vector fields are called affine normal vector fields. First condition is a kind
of normalization and the second condition implies that V8, = 0. We observe that
any transversal vector field ¢ can be written as

C=¢C+YJ(+ Z,
where ¢ and 1 are functions on M such that ©? +12 # 0, and where Z is tangent
to M.

A nondegenerate complex hypersurface is said to be a proper complex affine
hypersphere if there exists an affine normal vector field ¢ such that S = al, where
a € R\ {0} and 7 = 0. If there exists an affine normal vector field ¢ such that
S =0 and 7 = 0, we talk about an improper affine hypersphere.

To simplify the writing, sometimes we will omit g. and/or f, in front of
vector fields.
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3. Induced almost contact structures

Let dimM = 2n + 1 and f: (M,g) — (R?>"*2 ) be a nondegenerate iso-
metric immersion, where § is the standard inner product on R?"*2. Let C be a
transversal vector field on M. We say that C' is J-tangent it JC,, € f. (T, M) for
every x € M. We also define a distribution D on M as the biggest J invariant
distribution on M, that is,

D, = f*_l(f*(TzM) ﬂj(f*(TzM)))

for every x € M. It is clear that dimD = 2n. A vector field X is called a D-field
if X, € D, for every x € M. We use the notation X € D for vectors as well as for
D-fields. We say that the distribution D is nondegenerate if h is nondegenerate
on D.

First, recall [1] that a (2n + 1)-dimensional manifold M is said to have an
almost contact structure if there exist on M a tensor field ¢ of type (1,1), a vector
field € and a 1-form 7 which satisfy

X)) =-X+nX),, =1

for every X € TM.

Let f: M — R?"*2 be a nondegenerate hypersurface with a .J-tangent
transversal vector field C. Then we can define a vector field &, a 1-form n and
a tensor field ¢ of type (1,1) as follows:

£:=JC, nlp=0andn()=1,  ¢lp=Jlpand ¢(£) = 0.

It is easy to see that (p, &, n) is an almost contact structure on M. This structure
is called the almost contact structure on M induced by C (or simply induced almost
contact structure).

For an induced almost contact structure we have the following theorem

Theorem 3.1 ([5]). If (¢,&,n) is an induced almost contact structure on
M, then the following equations hold:

)
e(VxY) =VxeY +n(Y)SX — h(X,Y)E,
n([X,Y]) = =h(X, oY) +h(Y, o X)+ X (n(Y)) =Y (n(X)) +n(Y)7(X) —n(X)7(Y),
P([X,Y]) =VxpY — VypX — n(X)SY +n(Y)SX,
n(Vx§) = 7(X),
n(5X) = h(X,§)

for every X,Y € X(M).
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The next theorem characterizes hypersurfaces with a centro-affine J-tangent
transversal vector field and with an involutive distribution D.

Theorem 3.2 ([6]). Let f: M — R?"*2 be an affine hypersurface with a
centro-affine J-tangent vector field. The distribution D is involutive if and only
if for every x € M there exists a Kéhlerian immersion g: V — R?"*2 defined on
an open subset V' C R?"™ such that f can be expressed in the neighborhood of x
in the form

flz1, ... xon,y) = Jg(x1,...,T2n) cosy + g(x1, ..., To,) siny.

An affine hypersphere with a transversal J-tangent Blaschke field we call a
J-tangent affine hypersphere. We have the following

Theorem 3.3 ([7]). There are no improper J-tangent affine hyperspheres.

4. Main results

In this section the main results of this paper are provided. Namely, we shall
prove the following

Theorem 4.1. Let f: M — R?"*2 be a J-tangent affine hypersphere with
an involutive distribution D. Then f can be locally expressed in the form:

flx1,. . xan, 2) = Jg(a1,...,2on)co8 2 + g(X1, ..., Tap)sin z, (7)

where g is a proper complex affine hypersphere. Moreover, the converse is also true
in the sense that if g is a proper complex affine hypersphere, then f given by the
formula (7) is a J-tangent affine hypersphere with an involutive distribution D.

PROOF. (=) First note that due to Theorem 3.3 f must be a proper affine
hypersphere. Let C' be a J-tangent affine normal field. There exists A € R\ {0}
such that C' = —\f. Since C is J-tangent and transversal, the same is %C =—f.
Thus f satisfies assumptions of Theorem 3.2. From Theorem 3.2, there exists a
Kéhlerian immersion g from open subset U C R?" into R?"*2, and there exists
an open interval I such that f can be locally expressed in the form

flxe, ... xon,2) = Jg(x1, ..., 22n) cOs 2 + g(21,...,T2,)sin 2

for (z1,...,x2,) € U and z € I. Now, we shall prove that g is a proper complex
affine hypersphere.
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Let ¢ := |)\|§Zﬁg. Assume that there exist functions a?,v,§ from U into R
such that
a'gz; +79+0Jg =0

fori=1,...,2n. Then for any z € I we have
gy, sinz + ygsinz 4+ 6Jgsinz = 0

and
a'gy, cosz +ygcosz+6Jgcosz = 0.

Adding the above equalities to each other and taking into account that

fo: = Jgu, cOS 2+ gy, sin z, f.=—Jgsinz + gcos z,

we obtain

Oélfxi +vf—4df.=0.
But since f is an immersion and C' = —\f is a transversal vector field, the above
implies

al=~y=6=0.

Thus {g.,}, g, Jg are linearly independent. So g and, in consequence, ( is a
transversal vector field to g. From the Weingarten formula for g we have

D(’)wi ¢= _g*(gaﬂh) + Tl(aﬂh)g + 7—2(aﬂh)JC
On the other hand, we compute

Do, = 4,(C) = |\ =5 0. (0s,).

Summarizing, we obtain

2n+3

2"+4I, 7'1:07 TQZO. (8)

S=|A

Now, to prove that ¢ is an affine normal vector field, it is enough to show that
|H¢| = 1. Since g is Kéahlerian, J is a complex structure on TU thus, without loss
of generality, we may assume that

0,

Tnti

= JO,,
for i =1...n. Let us denote

A:=0¢(04,.-04,,J0z,,...,J0z,).
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Then the basis 1
Zam,am, ey O,y JO0gy .y JOs,

is unimodular relative to ©,. Now (according to H¢ definition) we have

He = 22 det hy,
where
h1(0zy,02,)  h1(0sy,0s,) h1(0zy, Oz,,)
det hy = det hl(az?ﬁxl) hl(a:r?aazg) h1(0x,, Oz,,)
MOrn00) (P10 <+ i (Bran Do)

From the Gauss formula for g we have

Goio, = 9+(Vo,,02,) + h1(0,, 02,)C + ha(a,, 0a) JC
= 0.(Vo,, 0u,) — N5 11 (Ds,,00,)g — [N T ho (0, 0,) 9. (9)

From the Gauss formula for f we have

fw% = Jgu;z; COS2Z + gy, SIN 2

= f«(Va,, On;) — M(0z,, 0z,)(Jg cos z + gsin z). (10)

Using (9) in (10), we obtain

£2(Vo.. 02,) — A(s,. 0, )(Jgcos= + gsin2)
=Jg*(§a J)cosz—&—g*(va Dz, ) sin z
B (o, 0s,)1g — ha(Ds,,0:,)g) cos 2
— (A5 (h1 (D, 0s,)g + h2(Os,, 0x,) T g) sin 2

2n+3

= ﬂ(%azi Dz;) — ‘)\|2n+4 h1(0z;,0x,)(Jgcos z + gsin z)

- \)‘|%h2(5z,»,3zj)(fgcosz+Jgsinz)
_f*(VB ) ‘A|2n+4h1(aZL7afljj).f_|)\|%h2(8$i7awj).t]f.

Since f. (%a” Jz,;) and J f are tangent, we immediately get that

2n+3

_/\h(awm 8@) = _|)‘| anta hl(aacl ) amj)
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By the Gauss formula for f, we also have
1
h(0;,0,) = X

and
h(0.,0x,) = h(0y,,0.) =0

for i =1...2n. Hence

h(aﬂﬂlvaﬂfl) h(aﬂfwawz) h(aluaﬂczn) 0
h0zs,02,)  h(0sy,0ss) h(0zy,0z,,) O
deth : =
h(023,,02,)  1(0zs, 5 Osr) M Ous,+ 0s,) O
0 0 0 %
1 1 1 2n43
= det[h(@s,,0:)] = 3 - (5 - A 32 dot hy
1 _2n
= N [A|”2n+2 det hy.

Finally, we get
4n+4 2

| det hy| = [A| 2557 | det h| = |\| 557 | det hl. (11)
Now, since C' = —\f is the Blaschke field, we have

wp =+/|deth] =00y, ...,0u,,,0,) =det[fu,, ..., foons [z, C]

= —Adet[Jgs, coSz + gu, Sin 2, ..., JGp,, COSZ + gp, Sinz,

— Jgsinz + gcos z, Jg cos z + gsin z].
Using the fact that a determinant is (2n + 2)-linear and antisymmetric, and since

ga:nJri = Jgaa

for i =1...n, we obtain

O(Ouyy v 30us,,02) = —=Adet[Gays -y Gans JGuys e o s JGars G5 ]
2043
= —A(AZF) 72 det[gu (D), - - - G4 (O, ), €, IC]

2n+3

== A (AT 72)0c(0rys -+, Oayy)-

» Y T2n

Now, it easily follows that

|det h| = [©(0uy, - - - Oy, » O2)]

» Y T2n
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= ‘)‘|2 : |)‘| Ga [G)C(aww s 78:I?2n)]2
= ‘)‘| e [GC(aEN s 76-”6271,)]2

—2n—2

= |\ Tz - A2

The above implies (see (11)) that

| det h1| = Az.
Summarizing,

1
|He| = 5| detha| = 1,

that is, ¢ is an affine normal field and due to (8) g is an affine hypersphere.
("«<=") Let g: U — R?*"*2 be a proper complex affine hypersphere. In particular,
g is Kéhlerian, and there exists o # 0 such that ( = —ag is an affine normal
vector field. Without loss of generality, we may assume that o > 0. Since g
is transversal, Jg is transversal too, thus {¢.,,. .., 9z, 9, Jg} form the basis of
R27*+2, The above implies that

f: UxI> (5317.-.,1727“2) Hf(xla"'axQnyz) 6R2n+2a

given by the formula:

flxy, ... xon, 2) = Jg(x1,...,29,)cos8z + g(x1,...,29,)sin 2
. . . 2n+4 .
is an immersion, and C' := —a?2+3 - f is a transversal vector field. Of course,

C'is J-tangent because JC' = o f-. Since C is equiaffine, it is enough to show
that wy, = © for some positively oriented (relative to ©) basis on U x I. Let
Ozyy---,0s,,,0, be alocal coordinate system on U x I. Since g is Kahlerian, we
= JOy, for i = 1...n. Then, in a similar way as in the

may assume that J,,_,

proof of the first implication, we compute
Oy gy 0=) = Aetlfar - frnys fo, —a 305 ]
= —q7is det[J gy, cosz + gz, sinz, ..., Jgs,, COSZ~+ gy, Sin z,
— Jgsinz + gcos z, Jg cos z + g sin 2]

2ntd
= —qnits det[g*<aw1)’ s 79*(8932n)7ga Jg]

2n+4

1
= 0B 0 (OO,

2n+42

= —a OBy -, Oy )-
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Again, in a similar way, as in the proof of the first implication, we get

2n+d
o 2n+3

_ 2n44 2n _2n44 __2n —dn—4
deth = a 2n+3 . ( ) dethy = a 3 . o 2n+3 det hy = o 2»+3 det h;.

The above implies that

wp :=+/|det h| = = V| det hq].

It is easy to see that

| det hy| = [Hel[O¢(Da, - - -, Do),

because
1

Oc(0zys- -+, 0s,,)

is a unimodular basis relative to ©.. Hence, (since |H¢| = 1)

021,00y, Ogsy,,

—2n—2
Wy, = o 23 |@C(3x1, ce »amn”'

Finally, we get wp = |©(0z;, .-, Ouy,, 02)|. The proof is completed. O

» Y T2n

Immediately, from the proof of the above theorem, we get

Remark 4.1. If f is an affine hypersphere with S = AI, and g is a complex
~ 2n+4
affine hypersphere with S = aJ, then we have the following relation |A| = || 23

Complex affine hyperspheres of complex dimension one we call complex affine
circles in C?. We have the following classification of the complex affine circles

Theorem 4.2 ([3]). A complex affine curve in C? is a complex affine circle if
and only if it is a quadratic complex curve, respectively, of parabolic or hyperbolic
type according to the circle being improper or proper.

As a consequence of the above theorem and Theorem 4.1, one may obtain
simple proof of Theorem 4.2 from [7]. That is

Theorem 4.3 ([7]). Let f: M + R* be a J-tangent affine hypersphere with
an involutive distribution D. Then f can be locally expressed in the form:

sin v/ Az sinh \/Xy cos vz cosh \/Xy
_s | —cos v Azsinh vy _s | sinvVAzcoshvhy | . 4
— s 8 R
fla,y,2) = A cosV/ Az cosh vy 008 Az + A —sin v/ Az sinh vy sin Az &
sin v/ Az cosh vy cos v/ Az sinh vy

for some \ > 0.
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PROOF. From Theorem 4.1, f can be locally expressed in the form:
[y, 2) = Jg(x,y) cos z + g(z,y) sin z,

where g is a complex affine hypersphere. Since g is a 1-dimensional (in a complex
sense) affine hypersphere, thus g is a complex affine circle. Now, by Theorem 4.2,
g is a quadratic complex curve. Moreover, since g is a proper hypersphere, it
must be of hyperbolic type, that is

2129 = Q

where « > 0. Equivalently, using the following complex equiaffine transformation

i 1
2 2
—i 1|’

g can be locally expressed in a parametric form as follows:

g(u) = Vaa [cosu] .

sinu

Now, moving to real numbers (u = z + iy, x,y € R), we have

Recosu cosh z coshy
Resinu sin x cosh
g(z,y) = V2« =12« ) ; y
Imcosu —sinzsinhy
Imsinu cos x sinh y
SO
sin x sinh y cos x cosh y
— inh i h
flz,y,2) = V2a oSSy cos z + V2« sn?xcois Y | sinz.
cosx cosh y —sinx sinhy
sin x cosh y cos x sinh y

1
a)%
that A = (2a)~5 (see Remark 4.1). Now, replacing = with v/ Az, y with v/ Ay, and
z with Az, we obtain f in the required form. ([l

Taking into account that S = - I for g (see Example 2 in [3]) we easily get
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5. Some examples

Ezample 1. Let §: C* — C™t! be a standard complex hypersphere of com-
plex dimension n. That is

[ g1(z1,- - 2n) ] [ CoS 21 1
g2(z1, -5 2n) sin 21 - COS 29
93(z1, .-y 2n) sin 2z - sin 2y - oS 23
g(z1,. oy 2n) = =
In—1(21,...,2n) Sinzy -sinzg -...-SiNz,_o - COSZ,_1
In(21, -5 2n) Sinzj-sinzg ... SN z,_1 - COS Zp,
LGn+1(21, -y 2n) ] | sinzy-sinzg ... -sinz, 1 -sinz, |

Let zp = oy + iy, for k=1,... n. Then

g: R2n > ($17y1;$27y2»~ . '7(En7yn) = g(xlvyla s 7xn7yn) S R2n+2a

given by the formula

[ Regl(zl,...,zn)
Regz(zl,...,zn)

Regn(z1,. ..y 2n)

_ |Regns1(z1,---52n)
9@ Y15 TnsYn) = Im gy (21, ..., zn)
Im ga(21, .-, 2n)
Imgn(zla .. .,Zn)

Im Gpy1(21,- .05 20) |

is a complex affine hypersphere. Now, by Theorem 4.1

f(xlay17x27y27 e 7xn7yn72)

= Jg(x1,Y1,- -y Tny Yn) €O8 2 + G(T1, Y1, -+, Ty Yp) SIN 2

is a J-tangent affine hypersphere with an involutive contact distribution.

Ezample 2. Let us consider a complex affine hypersphere (see Example 1
in [3]), given by the formula

z1-22-...~zn-zn+1:1 (12)
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(when n > 1, this hypersphere is not affinely equivalent with the hypersphere
from Example 1). Rewriting (1) in a parametric form, we get

G(z1, -y 2m) =

Now, moving to real numbers, we have

x1
€2

x’l’L
9(z1, Y1,y Ty Yn) = /(=1 yz n) 7
1

Y2

Yn
Im1/(z1-22- ... 2p)

and, by Theorem 4.1,

f(xlay17$27y27 s 737n7yn72)

= Jg(xhyla"'axn?yn) COSZ+9($1,?J17~~a$myn)8in2

is a J-tangent affine hypersphere with an involutive contact distribution.

References

[1] D. E. BLAIR, Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition,
Progress in Mathematics, Vol. 203, Birkhduser Boston, Inc., Boston, MA, 2010.

[2] V. CRUCEANU, Real hypersurfaces in complex centro-affine spaces, Results Math. 13 (1988),
224-234.

[3] F. DILLEN, L. VRANCKEN and L. VERSTRAELEN, Complex affine differential geometry, Atti.
Accad. Peloritana Pericolanti Cl.Sci.Fis.Mat.Nat. LXVT (1988), 231-260.

[4] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press, Cam-
bridge, United Kingdom, 1994.



J-tangent affine hyperspheres with. .. 413

[5] M. SZANCER and Z. SZANCER, Real hypersurfaces with an induced almost contact structure,
Collog. Math. 114 (2009), 41-51.

[6] Z. SZANCER, Real hypersurfaces with a special transversal vector field, Ann. Polon. Math.
105 (2012), 239-252.

[7] Z. SzZANCER, J-tangent affine hyperspheres, Results Math. 66 (2014), 481-490.

ZUZANNA SZANCER

DEPARTMENT OF APPLIED MATHEMATICS
UNIVERSITY OF AGRICULTURE IN KRAKOW
30-198 KRAKOW

253C BALICKA STREET

POLAND

E-mail: zuzanna.szancer@ur.krakow.pl
URL: http://kzm.ur.krakow.pl/ zszancer/

(Received April 16, 2015)



