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Some results concerning symmetric generalized skew
biderivations on prime rings
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and GIOVANNI SCUDO (Messina)

Abstract. Let R be a ring. A biadditive symmetric mapping D: R x R — R is
called a symmetric skew biderivation if for every z € R, the map y — D(x,y) is a skew
derivation of R (as well as for every y € R, the map = — D(z,y) is a skew derivation
of R).

Let D : Rx R — R be a symmetric biderivation. A biadditive symmetric mapping
A : Rx R — R is said to be a symmetric generalized skew biderivation if for every
z € R, the map y — A(z,y) is a generalized skew derivation of R associated with D
(as well as for every y € R, the map = — A(x,y) is a generalized skew derivation of R
associated with D).

In this paper we study some commutativity conditions for a prime ring R related
to the behaviour of the trace of symmetric generalized skew biderivations of R.

1. Introduction

Throughout, R will be a prime ring with center Z(R). We denote the right
Martindale quotient ring of R by Q. The center of @) is denoted by C, which is
called eztended centroid of R. R is a prime ring if and only if C is a field. We
refer the reader to [3] for more details.

An additive mapping d: R — R is said to be a derivation of R if

d(zy) = d(z)y + zd(y)
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for all x,y € R. An additive mapping F': R — R is called a generalized deriva-
tion of R if there exists a derivation d of R such that

F(zy) = F(z)y + zd(y)

for all z,y € R. The derivation d is uniquely determined by F', which is called an
associated derivation of F.

The definition of generalized skew derivation is a unified notion of skew
derivation and generalized derivation, which are considered as classical additive
mappings of non-commutative algebras. Let R be an associative ring and « be
an automorphism of R. An additive mapping d: R — R is said to be a skew
derivation of R if

d(wy) = d(x)y + a(z)d(y)

for all x,y € R. The automorphisms « is called an associated automorphism of d.
An additive mapping F': R — R is called a generalized skew derivation of R if
there exists a skew derivation d of R with associated automorphism « such that

F(ry) = F(z)y + a(r)d(y)

for all z,y € R. In this case, d is called an associated skew derivation of F' and « is
called an associated automorphism of F.

In this paper we will study the structure of two appropriate maps d1, 65 :
R — R, satisfying the condition 01(x)ds(x) = 0, for any x € R. In literature,
several answers to the above-mentioned problem exist. In particular, many au-
thors study the case when §; and J; are additive maps of R, such as derivations,
generalized derivations and skew derivations. For instance, in [2] it is proved that
if R is a prime ring with infinite extended centroid and 41, ..., J, are derivations
of R such that d1(x)da(z) - - - §,(x) = 0, for all x € R, then at least one §; is trivial.

Later, in [14], VUKMAN extends the previous result to skew derivations, in
the case n = 2. More precisely, let 41,02 : R — R be skew derivations with
associated automorphism «. If §;(z)d2(x) = 0, for all © € R, then either §; = 0
or 65 = 0.

Recently, in [15] this result has been generalized to the case of («, 8)-deriva-
tions. We recall that an additive d : R — R is called (o, 8)-derivation if d(zy) =
d(z)a(y) + B(z)d(y), for all z,y € R and for fixed automorphisms «, 3 of R.
In [15], it is proved that if §; and 2 are («, 8)-derivations such that either d; or do
commutes with o and 3, and 6;(x)d2(x) = 0, for all z € R, then either 6; = 0 or
02 = 0.
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More recently, M. FOSNER and VUKMAN have considered an analogous prob-
lem, where derivations and («, 8)-derivations are replaced by generalized deriva-
tions. In Theorem 3 in [7], they prove that if §; and J, are generalized derivations
of a prime ring R of characteristic different from 2, such that d;(z)d2(x) = 0, for
all x € R, then there exist p, ¢ elements of the Martindale quotient ring @ of R,
such that 01(z) = ap and d2(x) = gx for all z € R and pg = 0, except when at
least one §; is zero.

In [13], VUKMAN considers a different approach, by studying similar problems
when the maps §1,02 : R — R are not additive. More precisely, he analyzes
the case where 01,02 are traces of symmetric biderivations and proves that if R
is a prime ring of characteristic different from two and three, D, Dy are two
symmetric biderivations of R, 1,02 are the traces of Dy and D5, respectively,
such that d1(x)d2(x) = 0 for any = € R, then either D; =0 or Dy = 0.

Following this line of investigation, we extend the result in [13] to symmetric
generalized skew biderivations and prove the following results:

Theorem 1. Let R be a prime ring of characteristic different from two
and three, D a symmetric skew biderivation of R, associated with the automor-
phism a of R, A : R X R — R be the symmetric generalized skew biderivation
associated with o and D, and let ¢ be the trace of A. If x§(x) = 0 for any x € R,
then A = 0.

Theorem 2. Let R be a prime ring of characteristic different from two
and three, D a symmetric skew biderivation of R, associated with the automor-
phism o of R, A : R x R — R be the symmetric generalized skew biderivation
associated with a and D, and let § be the trace of A. If a(x)dé(x) = 0 for any
x € R, then A = 0.

Theorem 3. Let R be a prime ring of characteristic different from two
and three, D1, Do two symmetric skew biderivations of R, associated with the
automorphism « of R, A1,As : R x R — R two symmetric generalized skew
biderivations associated with o and respectively with Dy and Ds, and let 61, 02
be the traces respectively of Ay and As. If 61(x)da(x) = 0 for any x € R, then
either A1 =0 or Ay = 0.

2. Preliminaries

Let D : R x R — R be a biadditive map. We say that D is symmetric
if D(z,y) = D(y,z), for all x,y € R. A mapping f : R — R defined by
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f(z) = D(x,x), where D : Rx R — R is a symmetric mapping, is called the trace
of D. It is obvious that in the case D : Rx R — R is a symmetric mapping which
is also biadditive (i.e. additive in both arguments), the trace f of D satisfies the
relation f(x+y) = f(z)+ f(y) +2D(z,y), for all z,y € R. A biadditive mapping
D : R x R — R is called a biderivation if D(xy, z) = D(x, 2)y + 2D(y, z) for all
x,y,z € R. Obviously, in this case the relation D(x,yz) = D(x,y)z + yD(z, z) is
also satisfied for all x,y, 2z € R.

In [10], MAKSA introduces the concept of a symmetric biderivation (see
also [11]), where an example can be found). It was shown in [10] that symmetric
biderivations are related to the general solution of some functional equations.

The notion of generalized biderivation is introduced by ARGAG in [1].

Let D : RxR — R be a biderivation. A biadditive mapping A : RxR — R
is said to be a generalized biderivation if for every « € R, the map y — A(z,y) is a
generalized derivation of R associated with D as well as for every y € R, the map
x — A(z,y) is a generalized derivation of R associated with D, i.e., Az, yz) =
Ax,y)z+yD(x, z) and A(xy, z) = Az, 2)y + D(y, 2) for all z,y,z € R.

Let D : Rx R — R be a symmetric biadditive mapping, o an automorphism
of R. D is said to be a symmetric skew biderivation associated with « if for every
z € R, the map y — D(z,y) is a skew derivation of R associated with « as well as
for every y € R, the map x — D(z,y) is a skew derivation of R associated with
a, ie., D(x,yz) = D(x,y)z + a(y)D(x, z) and D(zy, z) = D(z, z)y + a(x)D(y, 2)
for all z,y,z € R.

Let D : Rx R — R be a symmetric skew biderivation of R, associated with
the automorphism « of R. The symmetric biadditive mapping A: R x R — R

is said to be a symmetric generalized skew biderivation associated with o and D,
if for every x € R, the map y — A(xz,y) is a generalized skew derivation of R
associated with o and D, as well as for every y € R, the map z — A(z,y) is
a generalized skew derivation of R associated with o and D, i.e., A(x,yz) =
Az,y)z+ a(y)D(z, z) and A(xy, z) = Az, 2)y + a(z)D(y, 2) for all z,y,z € R.

In order to prove our results, we need to recall the following known Facts:

Fact 1. In [4], CHANG extends the definition of generalized skew derivation
to the right Martindale quotient ring @ of R as follows: by a (right) generalized
skew derivation we mean an additive mapping G : @ — @ such that G(zy) =
G(x)y + a(x)d(y) for all x,y € Q, where d is a skew derivation of R and « is
an automorphism of R. Moreover, there exists G(1) = a € @ such that G(z) =
ax + d(x) for all x € R.
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Fact 2. In [5], CHUANG and LEE investigate polynomial identities with skew
derivations. They prove that if ®(x;, D(x;)) is a generalized polynomial identity
for R, where R is a prime ring and D in an outer skew derivation of R, then R
also satisfies the generalized polynomial identity ®(z;,y;), where x; and y; are
distinct indeterminates. Furthermore, they prove [5, Theorem 1] that in the case
®(z;, D(x;), ax;)) is a generalized polynomial identity for R, where R is a prime
ring, D is an outer skew derivation of R and « is an outer automorphism of R,
then R also satisfies the generalized polynomial identity ®(x;,y;,2;), where z;,
y;, and z; are distinct indeterminates.

Fact 3. By [5, Theorem 1] we have the next result. If d is a non-zero skew-
derivation of R and

<I><x1, ceyEpyd(x1), .y d(xn)>
is a skew-differential identity of R, then one of the following statements hold:
(1) either d is inner;

(2) or R satisfies the generalized polynomial identity

(I)(xla-“a'rnvyh"'ayn)-

3. The proof of Theorem 1

Lemma 1. Let R be a prime ring of characteristic different from two, D a
symmetric skew biderivation of R, associated with the automorphism « of R,
A : Rx R — R be the symmetric generalized skew biderivation associated with
a and D and § the trace of A. If 2§(x) = 0 for any x € R, then y?*A(z,y) —
ya(y)D(x,y) =0, for all x,y € R.

PRrROOF. We start from x§(x) = 0 for any = € R, that is
xA(x,z) =0, Vx € R. (1)
The linearization of (1) gives us
zA(z,y) + Ay, x) + zA(y, y)
+ YA, x) + yA(z,y) +yAy,2) =0, Vz,y € R.
Substituting —z for x in (2), we have

+ yA(J,‘,J?) - yA(J?, y) - yA(yax) = Oa any S Ra
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and from (2) and (3) it follows that
Ay, y) + 2yA(zr,y) =0, Vz,y € R. (4)
Replacing x by yz in (4), we get
yrA(y,y) + 2yA(y, y)z + 2ya(y) D(z,y) = 0, Va,y € R. (5)
Using (1) and (4) in (5), one has
v Alw,y) —yaly)D(z,y) =0, Va,y€R. (6)

O

Lemma 2. Let R be a prime ring of characteristic different from two, D a
symmetric biderivation of R and § the trace of D. If z6(x) = 0 for any « € R,
then D = 0.

ProOOF. Firstly, we consider the case when R is commutative. Then, by our
hypothesis, for any 0 # x € R it follows d(z) = 0, and by linearizing this relation
we get D(z,y) =0 for any z,y € R.

Therefore, in all that follows we assume that R is not commutative.

Replacing x with zy in (4) and using (1), we get 2yD(zy,y) = 0, that is

yD(z,y)y +yzD(y,y) =0, Vz,y € R. (7
Using (4), in (7) it follows that
yD(z,y)y — 2y°D(z,y) =0, Vax,y € R. (8)

Hence, for any zg € R, the map F(y) = D(xg,y), for all y € R, is a derivation
of R such that
yF(y)y —2y°F(y) =0, Vye€R. 9)

If F =0 for any =y € R, then D(z,y) = 0 for all z,y € R and we are done.
Let zg € R be such that the related F' is not zero. We prove that in this case a
contradiction follows.

By KHARCHENKO’s theorem in [9], if F is outer, we have the contradiction
yty — 2y*t = 0 for all y,t € R. Then we may assume that there exists an el-
ement p € @ such that F(y) = [p,y], for any y € R, moreover, p ¢ C. Thus
y[q, yly — 2y%[q, y] is a non-trivial generalized polynomial identity for R. By [12],
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@ is a primitive ring having nonzero socle with the field C' as its associated divi-
sion ring. By [8, p. 75] @ is isomorphic to a dense subring of the ring of linear
transformations of a vector space V over C, containing nonzero linear transfor-
mations of finite rank. Since R is not commutative, dimg V' > 2. Moreover,
since p ¢ C, there exists v € V such that {v, pv} is not linearly dependent over C.
By the density of R, there exists r € R such that rv = 0 and rpv = pv. Therefore,
the following contradiction occurs:

0 = (r[g,r]r — 2r%[q,r])v = 2pv # 0. O

Lemma 3. Let R be a prime ring of characteristic different from two, D a
symmetric biderivation of R, A a symmetric generalized biderivation of R, asso-
ciated with the symmetric biderivation D, and ¢ the trace of A. If x6(x) = 0 for
any r € R, then A = 0.

PROOF. For any xy € R, we consider again the following additive maps on R:
F(y) :A(any)v VyER and f(y) :D(Ian)v VyER

Here F' is a generalized derivation of R with associated derivation f. Moreover,
by (6) we have that

YVF(y) —y*f(y) =0, VyeR. (10)

Since there exists a € Q such that F(y) = ay + f(y), for all y € R, then y?ay =0
and a = 0 follows. Therefore, A(zg,y) = D(zo,y), for all y € R. Repeating
this process for any zy € R, it follows that A(z,y) = D(z,y), for all z,y € R,
that is A is a symmetric biderivation of R. Thus the conclusion follows from
Lemma 2. O

PROOF OF THEOREM 1. By the same argument as in Lemma 2, we may
assume that R is not commutative.
We start from relation (6), that is

v Az, y) —ya(y)D(z,y) =0, Vr,yeR.
Again we fix o € R and introduce the following additive maps on R:
F(y) = A(zo,y), Yy e R and  f(y) = D(z0,y), Yy € R.

Notice that F' is a generalized skew derivation of R with associated automor-
phism « and associated skew derivation f. Moreover, by (6) we have that

Y*F(y) —ya(y)f(y) =0, VyeR. (11)
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By Fact 1, there exists a € @ such that F(y) = ay + f(y), for all y € R, so that

y*(ay + f(y) —ya(y) f(y) =0, Vye€R. (12)

Note that if f =0, then y?ay = 0 and a = 0 follow: in this case F = 0.
Consider f # 0. If f is an outer skew derivation of R, then by (12) it follows
that R satisfies
y*(ay +t) —ya(y)t =0, Vy€R, (13)

in particular, y*t — ya(y)t = 0, and by the primeness of R we get y? —ya(y) = 0,
for all y € R.

In case « is an outer automorphism of R, then we get the contradiction
y?>— yt =0 for any y,t € R. Therefore, there exists an invertible element ¢ € @

such that a(y) = qyq~! and

v —yqyg ' =0, VyeR. (14)

Firstly, we assume that ¢ ¢ C = Z(Q), so that (14) is a non-trivial generalized
polynomial identity for R. By [12], @ is a primitive ring having nonzero socle
with the field C as its associated division ring. By [8, p. 75], @ is isomorphic to
a dense subring of the ring of linear transformations of a vector space V over C,
containing nonzero linear transformations of finite rank. Since R is not commu-
tative, dimg V' > 2, so that @) contains some non-trivial idempotent elements, say
e? = e € Q. For any x € R, replacing y by ex(1—e) in (14,), we get ex(1 — e)qex
(1 —e)g~! =0, that is eq(1 — e) = 0. Thus the contradiction q € C follows.

The previous argument says that if f is outer, then « is the identity map.

Let now f be inner, that is there exists b € @ such that f(z) = bx — a(z)b,
for all x € R. Hence (12) reduces to

y*(ay + by — a(y)b) — ya(y)(by — a(y)b) =0, Vy € R. (15)
If o is outer, then (15) implies that
y*(ay + by — tb) — yt(by —tb) =0, Vy,t € R. (16)

As above, since R satisfies a generalized polynomial identity, @ is a primitive ring
and it is isomorphic to a dense subring of the ring of linear transformations of a
vector space V over C, containing nonzero linear transformations of finite rank.
As above dimg V' > 2, then () contains some non-trivial idempotent elements, say
e? = e € Q. Replacing y by ex(1 — e) in (16) and right multiplying by e, we get
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ex(1 — e)t?be = 0, for all z,t € R, that is be = 0. Analogously, for y = (1 — e)xe
in (16), we have b(1 — e) = 0, therefore, b = 0. Thus, by (16) it follows y?ay = 0
for all y € R, i.e. a =0 and F = 0.

Finally, we consider the case when there exists an invertible element g € @

1

such that a(y) = qyg~* and

v (ay + by — qyq~'b) — yayq ' (by — qyq~'b) =0, Vy € R. (17)

If g7'b € C, then f = 0 and as above a = 0 and F' = 0. Moreover, if ¢ € C, then
« is the identity map. We consider here both ¢='b ¢ C and ¢ ¢ C and prove that
a contradiction follows.

Once again R satisfies a non-trivial generalized polynomial identity. As
above, we may assume that ) is isomorphic to a dense subring of the ring of
linear transformations of a vector space V' over C, with dim¢c V' > 2.

If dime V' = k is finite, then @ = M (C), the ring of k x k matrices over C,
with k > 2. Assume firstly that C is infinite. Since both ¢='b ¢ C and ¢q ¢ C,
then, by [6, Lemma 1.5], there exists an invertible matrix P € My (C') such that
each matrix v = P¢~'bP~! and v = PgP~" has all non-zero entries. Moreover,
by (17) it is easy to see that

v2(ay + by — vyu) — yoyuy + yvy*u =0, Vy € R. (18)

Let y = e;; for any i # j, the usual matrix unit with 1 in the (7, j)-entry and zero
elsewhere, then e;;ve;;ue;; = 0, which is a contradiction.

Now let E be an infinite field which is an extension of the field C' and let
R = M;(E) = R®c E. Consider the generalized polynomial

U(y) = y*(ay + by — qya~'b) — yayq " (by — qyq™'b),

which is a generalized polynomial identity for R. Moreover, it is homogeneous of
degree 3 in the indeterminate y. Hence, the complete linearization of ¥(y) is a
multilinear generalized polynomial ©(y, z). Moreover, ©(y,y) = 3¥(y). Clearly,
the multilinear polynomial O(y,y) is a generalized polynomial identity for R
and R too. Since char(C) # 3, we obtain ¥(r) = 0 for all r € R, and the
conclusion follows from the above argument.

Let now dimcV = oo. Recall that if an element » € R centralizes the
non-zero ideal H = soc(RC'), then r € C.

Hence, we may assume there exist 1,79 € H = soc(RC) such that [g,r1] # 0
and [¢~1b, 7] # 0, and prove that a number of contradictions follows.

By Litoff’s Theorem [8, Page 90], there exists e? = e € H such that
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* 11,73 € eRe;

e ari,ria,ars,rea € eRe;

o bry,m1b,bro, rob € eRe;

* qr1,714,qr2, 729 € eRe;

o ¢ lbry,r1g b, ¢ tbry, r9q b € eRe;

where eRe = M,,(C), the matrix ring over the extended centroid C. Note that
eRe satisfies (17). By the above matrix case, we have that one of the following
assertions holds:

(1) ege € C, which contradicts with the choice of ry € H;
(2) eq~'be € C, which contradicts with the choice of 7, € H.

All the previous arguments imply that either F(y) = A(zg,y) =0 for all y € R,
or « is the identity map. Repeating this process for all ¢y € R, it follows that
A(z,y) =0 for all z,y € R, unless « is the identity map.

In the latter case, A is a generalized symmetric biderivation associated with
the symmetric biderivation D. Thus, by Lemma 3 we are done.

4. The proof of Theorem 2

Lemma 4. Let R be a prime ring of characteristic different from two, D a
symmetric skew biderivation of R, associated with the automorphism « of R,
A : R x R — R be the symmetric generalized skew biderivation associated
with « and D and 0 the trace of A. If a(x)d(z) = 0 for any © € R, then
a(x)d(y) + 2a(y)A(z,y) =0, for all z,y € R.

PrOOF. We start from a(z)d(x) = 0 for any = € R, that is
a(x)A(z,x) =0, Ve R. (19)
The linearization of (19) gives us
a(x)d(y) + 2a(x)A(z,y) + a(y)d(x) + 2a(y)A(z,y) =0, Vz,y e R.  (20)
Substituting —z for « in (20) we have

a(x)d(y) + 2a(y)A(z,y) =0, Vz,y € R. (21)
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Lemma 5. Let R be a prime ring of characteristic different from two, D a
symmetric skew biderivation of R, associated with the automorphism « of R, and
d the trace of D. If a(x)d(z) = 0 for any x € R, then D = 0.

PRrROOF. If R is commutative, then for any 0 # = € R it follows that é(x) = 0,
and linearizing this relation we get D(x,y) = 0 for any x,y € R. Thus we may
assume in the sequel that R is not commutative.

We fix z¢ € R, by (21) we have that

a(y)d(zo) + 2a(zo) Ay, m0) =0, Vy € R. (22)

Here we denote b = §(xg), ¢ = 2a(zg) and introduce the following additive map
on R:

f(y) = D(y,z0), Yy€R.

Notice that f is a skew derivation of R with associated automorphism «. There-
fore, by (22)
a(y)b+cf(y) =0, VyeR. (23)

If f =0, then b = 0 follows from (23). Assume that f # 0 is outer, then by (23)
it follows that a(y)b+ cz = 0, for all y,z € R. In particular a(y)b = 0, for any
y € R, that is b = 0 again. Let now f(z) = va — a(z)v for any € R and for a
fixed element 0 # v € Q). Hence R satisfies

a(y)b+ cvy — ca(y)v =0, Vy e R. (24)

If « is outer, then (24) implies that R satisfies zb + cvy — czv = 0. In particular

cvy =0 for any y € R, i.e. cv =0. Thus zb—czv =0, for any z € R. Replacing z

with vz, we get vzb =0 for all z € R, and since v # 0 it follows that b = 0.
Consider now the case when there exists an invertible element ¢ € @ such

that a(y) = qyq~! and

qyq'b+cvy —cqyg v =0, VyeR. (25)

Notice that since f # 0, ¢~v ¢ C. Moreover, if ¢ € C, then a(zg) € C, and by
our main assumption it follows that b = §(zp) = 0. Thus, we may also assume
that ¢ ¢ C. In light of this, (25) is a non-trivial generalized polynomial identity
for R. As above, we may assume that @ is isomorphic to a dense subring of the
ring of linear transformations of a vector space V over C, with dimg V' => 2.

If dime V' = k is finite, then Q = M (C), the ring of k x k matrices over C,
with k& > 2. Assume firstly that C is infinite. Left multiplying (25) by ¢!, we
have that

1

yg b+ g tevy — g teqygTlv =0, Vy e R. (26)
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Since both ¢~ 1v ¢ C and ¢ 'cq ¢ C, by [6, Lemma 1.5], there exists an invertible
matrix P € M} (C) such that each matrix u = Pg~'vP~! and w = Pq tcqP~!
has all non-zero entries. Denote b = Pg~'bP~!, 7 = Pq~'cvP~!, then by (26) it
is easy to see that
yb+ Ty —wyu =0, Yy € R. (27)
For y = e;; (i # j) in relation (27), both left and right multiplying by e;;, we get
e;jwe;;ue;; = 0, which is a contradiction, since u and w have all non-zero entries.
Now let E be an infinite field which is an extension of the field C and let
R = M,(E) =~ R®c E. Consider the generalized polynomial

U(y) =ya 'b+q vy — g teqyg o
which is a generalized polynomial identity for R. Moreover, it is a linear identity
in the indeterminate 3. Hence W(y) is a generalized polynomial identity for R
too, and the conclusion follows from the above argument.

Let now dimeg V' = co. We may assume there exist 71,75 € H = soc(RC)
such that [¢,71] # 0 and [¢~ v, 73] # 0 and prove that a number of contradictions
follows.

By Litoff’s Theorem [8, Page 90], there exists e = e € H such that

e 71,72 € eRe;

® Cri,T1C,Cre, ToC € eRe;

o ¢ tbry,riq b, g thra, 70q b € eRe;

« g lory, g o, g org, g

e ¢ teqri,rigteq, g teqra, raq eq € eRe;

v € eRe;

. q_lcvrl,rlq_lcv,q_lcvrg,rgq_lcv € eRe;
where eRe = M,,(C), the matrix ring over the extended centroid C. Note that

eRe satisfies (26). By the above matrix case, we have that one of the following
assertions hold:

(1) ece € C, which contradicts with the choice of r; € H;
(2) eq~'ve € C, which contradicts with the choice of ro € H.

All the previous arguments imply that b = 6(xo) = 0. Repeating this process for
all zg € R, it follows that D(z,x) = 0 for all € R. Finally, by linearizing this
relation, we have that D(z,y) = 0, for all z,y € R. |

PROOF OF THEOREM 2. Replacing = with yz in relation (21) and using
again (21), it follows

a(y?) (A(aﬁ, y) — D(m,y)) =0, Vz,y€R. (28)
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As above, we fix zp € R and introduce the following additive maps on R:
F(y) = A(zo,y), Vy€ R and  f(y) = D(xo,y), Yy € R.

Notice that F' is a generalized skew derivation of R with associated automor-
phism « and associated skew derivation f. Moreover, by (28) we have that

a<y2>(F<y> - f<y>) —0, WeR (20)

By Fact 1, there exists a € @ such that F(x) = ax + f(x), for all x € R, so that
a(y®)ay = 0, for all y € R. Easy computations show that in this case a = 0,
that is F' = f, in other words A(zg,y) = D(zo,y) for any y € R. Repeating this
process for all xg € R, it follows that A(z,y) = D(z,y) for any z,y € R, then A
is symmetric skew biderivation of R and the conclusion follows from Lemma 5.

5. The proof of Theorem 3

We premit the following easy result on symmetric biadditive maps, which
will be useful in the sequel. Notice that in the next Lemma, the hypothesis on
the primeness of the ring R is not needed. Moreover, the involved symmetric
biadditive maps are not requested to be neither biderivations, nor generalized
biderivations, nor generalized skew biderivations:

Lemma 6. Let R be a ring of characteristic different from two and three,
A1,As : R X R — R two symmetric biadditive maps of R, d; the trace of Aq,
and 0q the trace of Ag. Assume that for any y € R either §;(y) = 0 or d2(y) = 0.
Then either A1 = 0 or Ay = 0.

PROOF. We remark that if §;(y) = 0 for all y € R, then
0= (51(11,‘ + y) = (51(115) + 6l(y) + 2A1($,y) = 2A1(l‘7y)a vay €R

that is A; = 0. Analogously, if d2(y) = 0 for all y € R, then Ay = 0.

We now assume that both §; # 0 and §; # 0 and prove that a number of
contradictions follows. In other words, we suppose there exists x,y € R such
that d1(z) # 0 and d2(y) # 0, so that, by the hypothesis of the present Lemma,
d2(x) = 0 and 61 (y) = 0. We divide the argument into two cases:

Case 1.  61(x+1y)=0.
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In this case
01(x) + 2A1(z,y) = 0. (30)

Moreover, if §;(z — y) = 0, then
d1(z) — 2A1(2,y) =0 (31)

and comparing (31) with (30), we have the contradiction d;(x) = 0. Similarly, if
01 (z — 2y) = 0, then

01(x) —4Aq1(z,y) =0 (32)
and comparing (32) with (30) we have again the contradiction §;(z) = 0.

Thus both §;(z — y) # 0 and 6;(x — 2y) # 0, that is do(x —y) = 0 and
da(x — 2y) = 0, that is, respectively,

02(y) — 202(z,y) =0 (33)
and
402 (y) — 40s(x,y) = 0. (34)

Once again comparing (33) with (34), we get the contradiction d2(y) = 0.
Case 2. d1(x +y) #0.

In this case
0 =102z +y) = da(y) +245(z,y) = 0. (35)

Moreover, if d2(z — y) = 0, then
62(y) - 2A2(xa y) = Ov (36)

and comparing (36) with (35), we have d2(y) = 0, which is a contradiction.
Similarly, if d2(x — 2y) = 0, then

409(y) — 4Aq(x,y) =0, (37)

and comparing (37) with (35) we have again d2(y) = 0, a contradiction.

On the other hand, in case both da2(z — y) # 0 and da(x — 2y) # 0, then
d1(z—y) =0 and d;(x — 2y) = 0, that is, respectively, d1(x) — 2A1(z,y) = 0 and
01(z) — 4A1(x,y) = 0, thus the contradiction d;(x) = 0 follows. O
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Proor orF THEOREM 3. By our assumption,
01(z)d2(x) =0, Vz €R. (38)

Firstly, we fix some element zy € R such that §;(z9) € Z(R). Then, by (38),
either d1(zg) = 0 or d2(xp) = 0. Analogously, if d2(xg) € Z(R), then either
01(zo) =0 or da(xg) = 0.

Hence, if we suppose that for any « € R either §;(z) € Z(R) or d2(z) € Z(R),
then we have that for any x € R either é;(x) = 0 or d2(x) = 0,
follows from Lemma 6.

Now we assume that there exists yo € R such that 0 # §1(yo) ¢ Z(R) and
0 # 02(yo) ¢ Z(R). In (38) replace = by yo + x, then

91(2)d2(yo) + 61(y0)d2(x) + 261 (x) Az (z, yo) + 261 (yo)Aa(x, yo) + 241 (x, yo)d2(z)
+ 2A1($,y0)(52(y0) + 4A1($,Q0)A2(1‘,y0) =0, Vx € R. (39)

and the conclusion

On the other hand, replacing x by yo — x in (38), we also have

61(2)d2(yo) + 61(yo)02(x) — 201 () As(z, yo) — 261(yo) A2(x, yo) — 2A1(z, yo)d2(z)

—2A4(z,90)02(y0) + 4A1(z,y0)A2(z,y0) = 0, Yz € R. (40)
By comparing (39) with (40), we get

61(w)02(yo) + 01(yo)d2 () + 4A1(x,y0)A2(x,9y0) =0, Vr € R. (41)

Substituting  with z + yo in (41), using both (38) and (41), and since char(R) #
2,3, it follows that

61(y0)A2(2, yo) + A1(2, y0)d2(yo) =0, Vz € R. (42)
Here we introduce the following notations:
Fl(‘r):Al(:E7y0)’ VIERv fl(x):Dl(xvy0)7 Vr e R
Fy(x) = Ax(w,90), Vo € R, fa(z) = Da(z,90), V2 € R
0#d1(yo) =a ¢ Z(R), 0#d02(y0) =b¢ Z(R). (43)

Notice that Fy, Fy are generalized skew derivations of R with associated automor-
phism « and associated skew derivations fi, fo respectively. Moreover, by (42)
we have that

aFy(z) + Fi(z)b=0, VzeR. (44)

Application of [4, Theorem 1 and Corollary 1] implies that there exists an invert-
ible element s € @ such that a(x) = szs~!, for all € R, and one of the following
holds:
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(1) Fi(z) = [a, szs™ s, Fa(x) = s[b, z] for any z € R, with s 'asb € C;
(2) there exists € C such that Fy(x) = sz + nla, szs~ s, Fa(x) = sz + ns[b, 2]
for any x € R, with as + sb =0 and ns 'asb—b € C.

Case 1. Fy(z) = [a, szs™1]s, Fy(x) = s[b, z] for any x € R, with s~ tasb € C.
For any z,t € R we have that

Fy(xt) = [a, swts™ s = asxt — sxts ™ Las, (45)
and also
Fi(at) = Fy(z)t + sws™ f1(t) = asat — sws™ tast + szs™ L f1(t). (46)

By (45) and (46) we get s~ f1(t) = [s"las,t], that is

fi(t) = s[stas, t],Vt € R. (47)
Moreover,
Fy(xt) = s[b, xt] = s[b, x|t + sx[b, ] (48)
and also
Fy(at) = Fy(x)t + sws™ fo(t) = s[b, z]t + szs™ fo(t). (49)

By (48) and (49) we get s~1 f2(t) = [b,t], that is
fo(t) = s[b, ],V € R. (50)
Using (49) and (50), it follows that
afs(z) + fi(x)b=0,Vz € R. (51)

We recall that, by Fact 1, there exist ¢1,¢co € @ such that Fy(x) = c1x + f1(2)
and Fy(z) = cax + fo(x), for any € R. Then, by (44) and (51) one has
acex + c1zb = 0, for all € R. Since 0 # b ¢ C, we have ¢; = acy = 0. Denote
dy the trace of Dy, hence

Fi(z) = fi(z), Ai(z,y0) = Di(z,y0), di(z)=061(x), Vre€R,

and
01(yo) Fa(w) = 61(yo) f2(x) = 01(yo) D2(z,90), Vx € R.

Thus (44) reduces to

aDs(x,y0) + D1 (z,90)b = 0,Vz € R. (52)
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Replacing in (52) = by 2t and using again (52), we get
D1 (z,y0)[b, t] + [a, a(z)]D2(t, yo) = 0,Vx,t € R. (53)
Now we substitute z with zz in (53) and use again (53), then
D1(z,y0)z|b,t] + [a, a(2)]a(z) D2 (t,y9) = 0,Vz,t,2 € R. (54)
Since a(z) = sxs~!, by replacing x with xs in (54), we have
D1 (2,y0)xs[b, t] + [a, 528 ]sxDy(t,y0) = 0,Va,t,2 € R. (55)

Here we remark that

Ds(t,yo) = fo(t) = s[b,t] and  Di(z,y0) = Fi(2) = [a, 525 ']s,
therefore, we may write (55):
2[a, sz ']sxs[b,t] = 0,Vz,t,2 € R.

By the primeness of R it follows that: either [a,sz571]s = 0 for all z € R, which
implies a € C; or s[b,t] =0, for all t € R, that is b € C. In any case, we have a
contradiction.

Case 2. There exists n € C such that Fy(x) = sz + nfa, sxs~ s, Fy(z) =
sz + ns[b, x| for any € R, with as + sb = 0 and ns~tasb — b € C. Note that
b ¢ C implies n # 0. Moreover, it is easy to see that nb?> + b = X\ € C and also
that bs~b = 0 (since ab = 0).

For any z,t € R, we have that

Fy(xt) = szt +nla, sxts™ s = swt + nasxt — nswts tas (56)
and also

Fy(xt) = Fy(2)t + szs™ L f1(t) = swt + nla, szs™ st + sws L f1(t). (57)

Comparing (56) and (57), we get
s <—77tslas +ns tast — s fy (t)> =0

and by the primeness of R, and since as = —sb, it follows

£i(t) = ns[t.b], VteR. (58)
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Moreover,
Fy(xt) = szt + ns[b, xt] = sxt + nsb, x|t + nsx[b, ] (59)
and also
Fy(at) = Fa(x)t + szs™ fo(t) = (qu + ns[b, z])t + szs™ fa(t). (60)
By (59) and (60) we get sz(n[b,t] — s~1 f2(t)), and, by the primeness of R,
f2(t) = ns[b,t], VteR. (61)
We note that f1 = —fa. As above, there exists ¢; € @ such that Fj(x)

az + fi(x) = ez + sz, b], for all € R. Thus we may write c1z + ns[z,b] =
Fy(x) = sz + nla, svs~!]s, and by computations it follows ¢; = s.

In other words, we obtain that Fy(z) = sz + fi(z) = sx + ns[x,b] and
Fy(z) = sx — fi(x) = sz — ns[x,b], for any x € R. According to (43), this means
that Da(x,y0) = —D1(x,y0), for any x € R. By (42)

als(xz,y0) + A1(z2,90)0 =0, Vz,z € R, (62)
so that, since Dy = — D1,
als(z,y0)z—asrs D1 (z,y0)+A1 (x, yo) 2b+sws Dy (z,90)b=0, Vo, 2 € R. (63)
Using (42) in (63), we have
—asrs ' Dy(z,y0) + A1 (z,90)[2, 0] + szs ' Di(2,90)b =0, VYa,z€ R (64)

and right multiplying by s~!b, left multiplying by bs~2, and since as = —sb and
bs~'b = 0, it follows that

bs 2A1(x,y0)bzs b =0, Vz,z€ R. (65)

By the primeness of R, either s~!'b = 0, that is b = 0, which is a contradiction,
or bs~2Aq(x,y0)b = 0, for any x € R. In this last case

0=bs? (sx + ns|x, b])bzslb =nbs tzb?, Vz € R, (66)
which implies b2 = 0. Thus, right multiplying (42) by b, one has
als(z,y0)b =0, VzeR, (67)
that is
0= a(sm —nslz, b])b = —sbxb, V& € R, (68)

which implies again the contradiction b = 0.
As consequence of Theorem 3, we also have the following:

Corollary 1. Let R be a prime ring of characteristic different from two and
three, A1,As : R x R — R two symmetric generalized skew biderivations. If
Aq(z,y)As(z,y) =0 for any x,y € R, then either A; =0 or Ay = 0.



(1]
2]
(3]
(4]
(5]
[6]
[7]

(8]
[9]

[10]
[11]
[12
[13]

(14]

Symmetric generalized skew biderivations. . . 467

References

N. ARGAG, On prime and semiprime rings with derivations, Algebra Collog. 13 (2006),
371-380.

M. BRESAR, M. CHEBOTAR and P. SEMRL, On derivations of prime rings, Comm. Algebra
27 (1999), 3129-3135.

K. I. BEIDAR, W. S. MARTINDALE III and A. V. MIKHALEV, Rings with Generalized Iden-
tities, Pure and Applied Math., Dekker, New York, 1996.

J.-C. CHANG, On the identitity h(z) = af(z) + g(x)b, Taiwanese J. Math. 7 (2003),
103-113.

C.-L. CHUANG and T.-K. LEE, Identities with a single skew derivation, J. Algebra 288
(2005), 59-77.

V. DE FiLippis, A product of two generalized derivations on polynomials in prime rings,
Collect. Math. 61 (2010), 303-322.

M. FOSNER and J. VUKMAN, Identities with generalized derivations in prime rings, Mediterr.
J. Math. 9 (2012), 847-863.

N. JACOBSON, Structure of Rings, Amer. Math. Soc., Providence, RI, 1964.

V. K. KHARCHENKO, Differential identity of prime rings, Algebra and Logic 17 (1978),
155-168.

GY. MAKSA, A remark on symmetric biadditive functions having non-negative diagonaliza-
tion, Glasnik. Mat. Ser. IIT 15 (35) (1980), 279-282.

GY. MAKSA, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada
9 (1987), 303-307.

W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra
12 (1969), 576-584.

J. VUKMAN, Two results concerning symmetric biderivations on prime rings, Aequationes
Math. 40 (1990), 181-189.

J. VUKMAN, On a-derivations of prime and semiprime rings, Demonstratio Math. 38 (2005),
283-290.

[15] J. VukmAN, Identities with product of («, 3)-derivations of prime rings, Demonstratio
Math. 39 (2006), 291-298.

LUISA CARINI VINCENZO DE FILIPPIS

MIFT MIFT

UNIVERSITY OF MESSINA UNIVERSITY OF MESSINA

ITALY ITALY

E-mail: lcarini@unime.it E-mail: defilippis@unime.it

GIOVANNI SCUDO

MIFT

UNIVERSITY OF MESSINA
ITALY

E-mazil: gscudo@unime.it

(Received July 14, 2015)



