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Abstract. Let R be a ring. A biadditive symmetric mapping D : R×R −→ R is

called a symmetric skew biderivation if for every x ∈ R, the map y 7→ D(x, y) is a skew

derivation of R (as well as for every y ∈ R, the map x 7→ D(x, y) is a skew derivation

of R).

Let D : R×R −→ R be a symmetric biderivation. A biadditive symmetric mapping

∆ : R × R −→ R is said to be a symmetric generalized skew biderivation if for every

x ∈ R, the map y 7→ ∆(x, y) is a generalized skew derivation of R associated with D

(as well as for every y ∈ R, the map x 7→ ∆(x, y) is a generalized skew derivation of R

associated with D).

In this paper we study some commutativity conditions for a prime ring R related

to the behaviour of the trace of symmetric generalized skew biderivations of R.

1. Introduction

Throughout, R will be a prime ring with center Z(R). We denote the right

Martindale quotient ring of R by Q. The center of Q is denoted by C, which is

called extended centroid of R. R is a prime ring if and only if C is a field. We

refer the reader to [3] for more details.

An additive mapping d : R −→ R is said to be a derivation of R if

d(xy) = d(x)y + xd(y)
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for all x, y ∈ R. An additive mapping F : R −→ R is called a generalized deriva-

tion of R if there exists a derivation d of R such that

F (xy) = F (x)y + xd(y)

for all x, y ∈ R. The derivation d is uniquely determined by F , which is called an

associated derivation of F .

The definition of generalized skew derivation is a unified notion of skew

derivation and generalized derivation, which are considered as classical additive

mappings of non-commutative algebras. Let R be an associative ring and α be

an automorphism of R. An additive mapping d : R −→ R is said to be a skew

derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R. The automorphisms α is called an associated automorphism of d.

An additive mapping F : R −→ R is called a generalized skew derivation of R if

there exists a skew derivation d of R with associated automorphism α such that

F (xy) = F (x)y + α(x)d(y)

for all x, y ∈ R. In this case, d is called an associated skew derivation of F and α is

called an associated automorphism of F .

In this paper we will study the structure of two appropriate maps δ1, δ2 :

R→ R, satisfying the condition δ1(x)δ2(x) = 0, for any x ∈ R. In literature,

several answers to the above-mentioned problem exist. In particular, many au-

thors study the case when δ1 and δ2 are additive maps of R, such as derivations,

generalized derivations and skew derivations. For instance, in [2] it is proved that

if R is a prime ring with infinite extended centroid and δ1, . . . , δn are derivations

of R such that δ1(x)δ2(x) · · · δn(x) = 0, for all x ∈ R, then at least one δi is trivial.

Later, in [14], Vukman extends the previous result to skew derivations, in

the case n = 2. More precisely, let δ1, δ2 : R → R be skew derivations with

associated automorphism α. If δ1(x)δ2(x) = 0, for all x ∈ R, then either δ1 = 0

or δ2 = 0.

Recently, in [15] this result has been generalized to the case of (α, β)-deriva-

tions. We recall that an additive d : R→ R is called (α, β)-derivation if d(xy) =

d(x)α(y) + β(x)d(y), for all x, y ∈ R and for fixed automorphisms α, β of R.

In [15], it is proved that if δ1 and δ2 are (α, β)-derivations such that either δ1 or δ2
commutes with α and β, and δ1(x)δ2(x) = 0, for all x ∈ R, then either δ1 = 0 or

δ2 = 0.
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More recently, M. Fošner and Vukman have considered an analogous prob-

lem, where derivations and (α, β)-derivations are replaced by generalized deriva-

tions. In Theorem 3 in [7], they prove that if δ1 and δ2 are generalized derivations

of a prime ring R of characteristic different from 2, such that δ1(x)δ2(x) = 0, for

all x ∈ R, then there exist p, q elements of the Martindale quotient ring Q of R,

such that δ1(x) = xp and δ2(x) = qx for all x ∈ R and pq = 0, except when at

least one δi is zero.

In [13], Vukman considers a different approach, by studying similar problems

when the maps δ1, δ2 : R → R are not additive. More precisely, he analyzes

the case where δ1, δ2 are traces of symmetric biderivations and proves that if R

is a prime ring of characteristic different from two and three, D1, D2 are two

symmetric biderivations of R, δ1, δ2 are the traces of D1 and D2, respectively,

such that δ1(x)δ2(x) = 0 for any x ∈ R, then either D1 = 0 or D2 = 0.

Following this line of investigation, we extend the result in [13] to symmetric

generalized skew biderivations and prove the following results:

Theorem 1. Let R be a prime ring of characteristic different from two

and three, D a symmetric skew biderivation of R, associated with the automor-

phism α of R, ∆ : R × R −→ R be the symmetric generalized skew biderivation

associated with α and D, and let δ be the trace of ∆. If xδ(x) = 0 for any x ∈ R,

then ∆ = 0.

Theorem 2. Let R be a prime ring of characteristic different from two

and three, D a symmetric skew biderivation of R, associated with the automor-

phism α of R, ∆ : R × R −→ R be the symmetric generalized skew biderivation

associated with α and D, and let δ be the trace of ∆. If α(x)δ(x) = 0 for any

x ∈ R, then ∆ = 0.

Theorem 3. Let R be a prime ring of characteristic different from two

and three, D1, D2 two symmetric skew biderivations of R, associated with the

automorphism α of R, ∆1,∆2 : R × R −→ R two symmetric generalized skew

biderivations associated with α and respectively with D1 and D2, and let δ1, δ2
be the traces respectively of ∆1 and ∆2. If δ1(x)δ2(x) = 0 for any x ∈ R, then

either ∆1 = 0 or ∆2 = 0.

2. Preliminaries

Let D : R × R −→ R be a biadditive map. We say that D is symmetric

if D(x, y) = D(y, x), for all x, y ∈ R. A mapping f : R −→ R defined by
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f(x) = D(x, x), where D : R×R −→ R is a symmetric mapping, is called the trace

of D. It is obvious that in the case D : R×R −→ R is a symmetric mapping which

is also biadditive (i.e. additive in both arguments), the trace f of D satisfies the

relation f(x+y) = f(x) +f(y) +2D(x, y), for all x, y ∈ R. A biadditive mapping

D : R×R −→ R is called a biderivation if D(xy, z) = D(x, z)y + xD(y, z) for all

x, y, z ∈ R. Obviously, in this case the relation D(x, yz) = D(x, y)z + yD(x, z) is

also satisfied for all x, y, z ∈ R.

In [10], Maksa introduces the concept of a symmetric biderivation (see

also [11]), where an example can be found). It was shown in [10] that symmetric

biderivations are related to the general solution of some functional equations.

The notion of generalized biderivation is introduced by Argaç in [1].

LetD : R×R −→ R be a biderivation. A biadditive mapping ∆ : R×R −→ R

is said to be a generalized biderivation if for every x ∈ R, the map y 7→ ∆(x, y) is a

generalized derivation of R associated with D as well as for every y ∈ R, the map

x 7→ ∆(x, y) is a generalized derivation of R associated with D, i.e., ∆(x, yz) =

∆(x, y)z + yD(x, z) and ∆(xy, z) = ∆(x, z)y + xD(y, z) for all x, y, z ∈ R.

Let D : R×R −→ R be a symmetric biadditive mapping, α an automorphism

of R. D is said to be a symmetric skew biderivation associated with α if for every

x ∈ R, the map y 7→ D(x, y) is a skew derivation of R associated with α as well as

for every y ∈ R, the map x 7→ D(x, y) is a skew derivation of R associated with

α, i.e., D(x, yz) = D(x, y)z+α(y)D(x, z) and D(xy, z) = D(x, z)y+α(x)D(y, z)

for all x, y, z ∈ R.

Let D : R×R −→ R be a symmetric skew biderivation of R, associated with

the automorphism α of R. The symmetric biadditive mapping ∆ : R × R −→ R

is said to be a symmetric generalized skew biderivation associated with α and D,

if for every x ∈ R, the map y 7→ ∆(x, y) is a generalized skew derivation of R

associated with α and D, as well as for every y ∈ R, the map x 7→ ∆(x, y) is

a generalized skew derivation of R associated with α and D, i.e., ∆(x, yz) =

∆(x, y)z + α(y)D(x, z) and ∆(xy, z) = ∆(x, z)y + α(x)D(y, z) for all x, y, z ∈ R.

In order to prove our results, we need to recall the following known Facts:

Fact 1. In [4], Chang extends the definition of generalized skew derivation

to the right Martindale quotient ring Q of R as follows: by a (right) generalized

skew derivation we mean an additive mapping G : Q −→ Q such that G(xy) =

G(x)y + α(x)d(y) for all x, y ∈ Q, where d is a skew derivation of R and α is

an automorphism of R. Moreover, there exists G(1) = a ∈ Q such that G(x) =

ax+ d(x) for all x ∈ R.
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Fact 2. In [5], Chuang and Lee investigate polynomial identities with skew

derivations. They prove that if Φ(xi, D(xi)) is a generalized polynomial identity

for R, where R is a prime ring and D in an outer skew derivation of R, then R

also satisfies the generalized polynomial identity Φ(xi, yi), where xi and yi are

distinct indeterminates. Furthermore, they prove [5, Theorem 1] that in the case

Φ(xi, D(xi), α(xi)) is a generalized polynomial identity for R, where R is a prime

ring, D is an outer skew derivation of R and α is an outer automorphism of R,

then R also satisfies the generalized polynomial identity Φ(xi, yi, zi), where xi,

yi, and zi are distinct indeterminates.

Fact 3. By [5, Theorem 1] we have the next result. If d is a non-zero skew-

derivation of R and

Φ

(
x1, . . . , xn, d(x1), . . . , d(xn)

)
is a skew-differential identity of R, then one of the following statements hold:

(1) either d is inner;

(2) or R satisfies the generalized polynomial identity

Φ(x1, . . . , xn, y1, . . . , yn).

3. The proof of Theorem 1

Lemma 1. Let R be a prime ring of characteristic different from two, D a

symmetric skew biderivation of R, associated with the automorphism α of R,

∆ : R×R −→ R be the symmetric generalized skew biderivation associated with

α and D and δ the trace of ∆. If xδ(x) = 0 for any x ∈ R, then y2∆(x, y) −
yα(y)D(x, y) = 0, for all x, y ∈ R.

Proof. We start from xδ(x) = 0 for any x ∈ R, that is

x∆(x, x) = 0, ∀x ∈ R. (1)

The linearization of (1) gives us

x∆(x, y) + x∆(y, x) + x∆(y, y)

+ y∆(x, x) + y∆(x, y) + y∆(y, x) = 0, ∀x, y ∈ R.
(2)

Substituting −x for x in (2), we have

x∆(x, y) + x∆(y, x)− x∆(y, y)

+ y∆(x, x)− y∆(x, y)− y∆(y, x) = 0, ∀x, y ∈ R,
(3)
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and from (2) and (3) it follows that

x∆(y, y) + 2y∆(x, y) = 0, ∀x, y ∈ R. (4)

Replacing x by yx in (4), we get

yx∆(y, y) + 2y∆(y, y)x+ 2yα(y)D(x, y) = 0, ∀x, y ∈ R. (5)

Using (1) and (4) in (5), one has

y2∆(x, y)− yα(y)D(x, y) = 0, ∀x, y ∈ R. (6)

ut

Lemma 2. Let R be a prime ring of characteristic different from two, D a

symmetric biderivation of R and δ the trace of D. If xδ(x) = 0 for any x ∈ R,

then D = 0.

Proof. Firstly, we consider the case when R is commutative. Then, by our

hypothesis, for any 0 6= x ∈ R it follows δ(x) = 0, and by linearizing this relation

we get D(x, y) = 0 for any x, y ∈ R.

Therefore, in all that follows we assume that R is not commutative.

Replacing x with xy in (4) and using (1), we get 2yD(xy, y) = 0, that is

yD(x, y)y + yxD(y, y) = 0, ∀x, y ∈ R. (7)

Using (4), in (7) it follows that

yD(x, y)y − 2y2D(x, y) = 0, ∀x, y ∈ R. (8)

Hence, for any x0 ∈ R, the map F (y) = D(x0, y), for all y ∈ R, is a derivation

of R such that

yF (y)y − 2y2F (y) = 0, ∀y ∈ R. (9)

If F = 0 for any x0 ∈ R, then D(x, y) = 0 for all x, y ∈ R and we are done.

Let x0 ∈ R be such that the related F is not zero. We prove that in this case a

contradiction follows.

By Kharchenko’s theorem in [9], if F is outer, we have the contradiction

yty − 2y2t = 0 for all y, t ∈ R. Then we may assume that there exists an el-

ement p ∈ Q such that F (y) = [p, y], for any y ∈ R, moreover, p /∈ C. Thus

y[q, y]y − 2y2[q, y] is a non-trivial generalized polynomial identity for R. By [12],
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Q is a primitive ring having nonzero socle with the field C as its associated divi-

sion ring. By [8, p. 75] Q is isomorphic to a dense subring of the ring of linear

transformations of a vector space V over C, containing nonzero linear transfor-

mations of finite rank. Since R is not commutative, dimC V ≥ 2. Moreover,

since p /∈ C, there exists v ∈ V such that {v, pv} is not linearly dependent over C.

By the density of R, there exists r ∈ R such that rv = 0 and rpv = pv. Therefore,

the following contradiction occurs:

0 = (r[q, r]r − 2r2[q, r])v = 2pv 6= 0. �

Lemma 3. Let R be a prime ring of characteristic different from two, D a

symmetric biderivation of R, ∆ a symmetric generalized biderivation of R, asso-

ciated with the symmetric biderivation D, and δ the trace of ∆. If xδ(x) = 0 for

any x ∈ R, then ∆ = 0.

Proof. For any x0 ∈ R, we consider again the following additive maps on R:

F (y) = ∆(x0, y), ∀y ∈ R and f(y) = D(x0, y), ∀y ∈ R.

Here F is a generalized derivation of R with associated derivation f . Moreover,

by (6) we have that

y2F (y)− y2f(y) = 0, ∀y ∈ R. (10)

Since there exists a ∈ Q such that F (y) = ay+ f(y), for all y ∈ R, then y2ay = 0

and a = 0 follows. Therefore, ∆(x0, y) = D(x0, y), for all y ∈ R. Repeating

this process for any x0 ∈ R, it follows that ∆(x, y) = D(x, y), for all x, y ∈ R,

that is ∆ is a symmetric biderivation of R. Thus the conclusion follows from

Lemma 2. ut

Proof of Theorem 1. By the same argument as in Lemma 2, we may

assume that R is not commutative.

We start from relation (6), that is

y2∆(x, y)− yα(y)D(x, y) = 0, ∀x, y ∈ R.

Again we fix x0 ∈ R and introduce the following additive maps on R:

F (y) = ∆(x0, y), ∀y ∈ R and f(y) = D(x0, y), ∀y ∈ R.

Notice that F is a generalized skew derivation of R with associated automor-

phism α and associated skew derivation f . Moreover, by (6) we have that

y2F (y)− yα(y)f(y) = 0, ∀y ∈ R. (11)
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By Fact 1, there exists a ∈ Q such that F (y) = ay + f(y), for all y ∈ R, so that

y2(ay + f(y))− yα(y)f(y) = 0, ∀y ∈ R. (12)

Note that if f = 0, then y2ay = 0 and a = 0 follow: in this case F = 0.

Consider f 6= 0. If f is an outer skew derivation of R, then by (12) it follows

that R satisfies

y2(ay + t)− yα(y)t = 0, ∀y ∈ R, (13)

in particular, y2t− yα(y)t = 0, and by the primeness of R we get y2− yα(y) = 0,

for all y ∈ R.

In case α is an outer automorphism of R, then we get the contradiction

y2− yt= 0 for any y, t ∈ R. Therefore, there exists an invertible element q ∈ Q
such that α(y) = qyq−1 and

y2 − yqyq−1 = 0, ∀y ∈ R. (14)

Firstly, we assume that q /∈ C = Z(Q), so that (14) is a non-trivial generalized

polynomial identity for R. By [12], Q is a primitive ring having nonzero socle

with the field C as its associated division ring. By [8, p. 75], Q is isomorphic to

a dense subring of the ring of linear transformations of a vector space V over C,

containing nonzero linear transformations of finite rank. Since R is not commu-

tative, dimC V ≥ 2, so that Q contains some non-trivial idempotent elements, say

e2 = e ∈ Q. For any x ∈ R, replacing y by ex(1− e) in (14,), we get ex(1− e)qex
(1− e)q−1 = 0, that is eq(1− e) = 0. Thus the contradiction q ∈ C follows.

The previous argument says that if f is outer, then α is the identity map.

Let now f be inner, that is there exists b ∈ Q such that f(x) = bx− α(x)b,

for all x ∈ R. Hence (12) reduces to

y2(ay + by − α(y)b)− yα(y)(by − α(y)b) = 0, ∀y ∈ R. (15)

If α is outer, then (15) implies that

y2(ay + by − tb)− yt(by − tb) = 0, ∀y, t ∈ R. (16)

As above, since R satisfies a generalized polynomial identity, Q is a primitive ring

and it is isomorphic to a dense subring of the ring of linear transformations of a

vector space V over C, containing nonzero linear transformations of finite rank.

As above dimC V ≥ 2, then Q contains some non-trivial idempotent elements, say

e2 = e ∈ Q. Replacing y by ex(1− e) in (16) and right multiplying by e, we get
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ex(1− e)t2be = 0, for all x, t ∈ R, that is be = 0. Analogously, for y = (1− e)xe
in (16), we have b(1− e) = 0, therefore, b = 0. Thus, by (16) it follows y2ay = 0

for all y ∈ R, i.e. a = 0 and F = 0.

Finally, we consider the case when there exists an invertible element q ∈ Q
such that α(y) = qyq−1 and

y2(ay + by − qyq−1b)− yqyq−1(by − qyq−1b) = 0, ∀y ∈ R. (17)

If q−1b ∈ C, then f = 0 and as above a = 0 and F = 0. Moreover, if q ∈ C, then

α is the identity map. We consider here both q−1b /∈ C and q /∈ C and prove that

a contradiction follows.

Once again R satisfies a non-trivial generalized polynomial identity. As

above, we may assume that Q is isomorphic to a dense subring of the ring of

linear transformations of a vector space V over C, with dimC V ≥ 2.

If dimC V = k is finite, then Q = Mk(C), the ring of k × k matrices over C,

with k ≥ 2. Assume firstly that C is infinite. Since both q−1b /∈ C and q /∈ C,

then, by [6, Lemma 1.5], there exists an invertible matrix P ∈ Mk(C) such that

each matrix u = Pq−1bP−1 and v = PqP−1 has all non-zero entries. Moreover,

by (17) it is easy to see that

y2(ay + by − vyu)− yvyuy + yvy2u = 0, ∀y ∈ R. (18)

Let y = eij for any i 6= j, the usual matrix unit with 1 in the (i, j)-entry and zero

elsewhere, then eijveijueij = 0, which is a contradiction.

Now let E be an infinite field which is an extension of the field C and let

R = Mt(E) ∼= R⊗C E. Consider the generalized polynomial

Ψ(y) = y2(ay + by − qyq−1b)− yqyq−1(by − qyq−1b),

which is a generalized polynomial identity for R. Moreover, it is homogeneous of

degree 3 in the indeterminate y. Hence, the complete linearization of Ψ(y) is a

multilinear generalized polynomial Θ(y, z). Moreover, Θ(y, y) = 3Ψ(y). Clearly,

the multilinear polynomial Θ(y, y) is a generalized polynomial identity for R

and R too. Since char(C) 6= 3, we obtain Ψ(r) = 0 for all r ∈ R, and the

conclusion follows from the above argument.

Let now dimC V = ∞. Recall that if an element r ∈ R centralizes the

non-zero ideal H = soc(RC), then r ∈ C.

Hence, we may assume there exist r1, r2 ∈ H = soc(RC) such that [q, r1] 6= 0

and [q−1b, r2] 6= 0, and prove that a number of contradictions follows.

By Litoff’s Theorem [8, Page 90], there exists e2 = e ∈ H such that
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• r1, r2 ∈ eRe;
• ar1, r1a, ar2, r2a ∈ eRe;
• br1, r1b, br2, r2b ∈ eRe;
• qr1, r1q, qr2, r2q ∈ eRe;
• q−1br1, r1q

−1b, q−1br2, r2q
−1b ∈ eRe;

where eRe ∼= Mm(C), the matrix ring over the extended centroid C. Note that

eRe satisfies (17). By the above matrix case, we have that one of the following

assertions holds:

(1) eqe ∈ C, which contradicts with the choice of r1 ∈ H;

(2) eq−1be ∈ C, which contradicts with the choice of r2 ∈ H.

All the previous arguments imply that either F (y) = ∆(x0, y) = 0 for all y ∈ R,

or α is the identity map. Repeating this process for all x0 ∈ R, it follows that

∆(x, y) = 0 for all x, y ∈ R, unless α is the identity map.

In the latter case, ∆ is a generalized symmetric biderivation associated with

the symmetric biderivation D. Thus, by Lemma 3 we are done.

4. The proof of Theorem 2

Lemma 4. Let R be a prime ring of characteristic different from two, D a

symmetric skew biderivation of R, associated with the automorphism α of R,

∆ : R × R −→ R be the symmetric generalized skew biderivation associated

with α and D and δ the trace of ∆. If α(x)δ(x) = 0 for any x ∈ R, then

α(x)δ(y) + 2α(y)∆(x, y) = 0, for all x, y ∈ R.

Proof. We start from α(x)δ(x) = 0 for any x ∈ R, that is

α(x)∆(x, x) = 0, ∀x ∈ R. (19)

The linearization of (19) gives us

α(x)δ(y) + 2α(x)∆(x, y) + α(y)δ(x) + 2α(y)∆(x, y) = 0, ∀x, y ∈ R. (20)

Substituting −x for x in (20) we have

α(x)δ(y) + 2α(y)∆(x, y) = 0, ∀x, y ∈ R. (21)

�
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Lemma 5. Let R be a prime ring of characteristic different from two, D a

symmetric skew biderivation of R, associated with the automorphism α of R, and

δ the trace of D. If α(x)δ(x) = 0 for any x ∈ R, then D = 0.

Proof. If R is commutative, then for any 0 6= x ∈ R it follows that δ(x) = 0,

and linearizing this relation we get D(x, y) = 0 for any x, y ∈ R. Thus we may

assume in the sequel that R is not commutative.

We fix x0 ∈ R, by (21) we have that

α(y)δ(x0) + 2α(x0)∆(y, x0) = 0, ∀y ∈ R. (22)

Here we denote b = δ(x0), c = 2α(x0) and introduce the following additive map

on R:

f(y) = D(y, x0), ∀y ∈ R.

Notice that f is a skew derivation of R with associated automorphism α. There-

fore, by (22)

α(y)b+ cf(y) = 0, ∀y ∈ R. (23)

If f = 0, then b = 0 follows from (23). Assume that f 6= 0 is outer, then by (23)

it follows that α(y)b + cz = 0, for all y, z ∈ R. In particular α(y)b = 0, for any

y ∈ R, that is b = 0 again. Let now f(x) = vx − α(x)v for any x ∈ R and for a

fixed element 0 6= v ∈ Q. Hence R satisfies

α(y)b+ cvy − cα(y)v = 0, ∀y ∈ R. (24)

If α is outer, then (24) implies that R satisfies zb+ cvy − czv = 0. In particular

cvy = 0 for any y ∈ R, i.e. cv = 0. Thus zb− czv = 0, for any z ∈ R. Replacing z

with vz, we get vzb = 0 for all z ∈ R, and since v 6= 0 it follows that b = 0.

Consider now the case when there exists an invertible element q ∈ Q such

that α(y) = qyq−1 and

qyq−1b+ cvy − cqyq−1v = 0, ∀y ∈ R. (25)

Notice that since f 6= 0, q−1v /∈ C. Moreover, if c ∈ C, then α(x0) ∈ C, and by

our main assumption it follows that b = δ(x0) = 0. Thus, we may also assume

that c /∈ C. In light of this, (25) is a non-trivial generalized polynomial identity

for R. As above, we may assume that Q is isomorphic to a dense subring of the

ring of linear transformations of a vector space V over C, with dimC V =≥ 2.

If dimC V = k is finite, then Q = Mk(C), the ring of k × k matrices over C,

with k ≥ 2. Assume firstly that C is infinite. Left multiplying (25) by q−1, we

have that

yq−1b+ q−1cvy − q−1cqyq−1v = 0, ∀y ∈ R. (26)
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Since both q−1v /∈ C and q−1cq /∈ C, by [6, Lemma 1.5], there exists an invertible

matrix P ∈ Mk(C) such that each matrix u = Pq−1vP−1 and w = Pq−1cqP−1

has all non-zero entries. Denote b = Pq−1bP−1, v = Pq−1cvP−1, then by (26) it

is easy to see that

yb+ vy − wyu = 0, ∀y ∈ R. (27)

For y = eij (i 6= j) in relation (27), both left and right multiplying by eij , we get

eijweijueij = 0, which is a contradiction, since u and w have all non-zero entries.

Now let E be an infinite field which is an extension of the field C and let

R = Mt(E) ∼= R⊗C E. Consider the generalized polynomial

Ψ(y) = yq−1b+ q−1cvy − q−1cqyq−1v

which is a generalized polynomial identity for R. Moreover, it is a linear identity

in the indeterminate y. Hence Ψ(y) is a generalized polynomial identity for R

too, and the conclusion follows from the above argument.

Let now dimC V = ∞. We may assume there exist r1, r2 ∈ H = soc(RC)

such that [c, r1] 6= 0 and [q−1v, r2] 6= 0 and prove that a number of contradictions

follows.

By Litoff’s Theorem [8, Page 90], there exists e2 = e ∈ H such that

• r1, r2 ∈ eRe;
• cr1, r1c, cr2, r2c ∈ eRe;
• q−1br1, r1q

−1b, q−1br2, r2q
−1b ∈ eRe;

• q−1vr1, r1q
−1v, q−1vr2, r2q

−1v ∈ eRe;
• q−1cqr1, r1q

−1cq, q−1cqr2, r2q
−1cq ∈ eRe;

• q−1cvr1, r1q
−1cv, q−1cvr2, r2q

−1cv ∈ eRe;
where eRe ∼= Mm(C), the matrix ring over the extended centroid C. Note that

eRe satisfies (26). By the above matrix case, we have that one of the following

assertions hold:

(1) ece ∈ C, which contradicts with the choice of r1 ∈ H;

(2) eq−1ve ∈ C, which contradicts with the choice of r2 ∈ H.

All the previous arguments imply that b = δ(x0) = 0. Repeating this process for

all x0 ∈ R, it follows that D(x, x) = 0 for all x ∈ R. Finally, by linearizing this

relation, we have that D(x, y) = 0, for all x, y ∈ R. ut

Proof of Theorem 2. Replacing x with yx in relation (21) and using

again (21), it follows

α(y2)

(
∆(x, y)−D(x, y)

)
= 0, ∀x, y ∈ R. (28)



Symmetric generalized skew biderivations. . . 461

As above, we fix x0 ∈ R and introduce the following additive maps on R:

F (y) = ∆(x0, y), ∀y ∈ R and f(y) = D(x0, y), ∀y ∈ R.

Notice that F is a generalized skew derivation of R with associated automor-

phism α and associated skew derivation f . Moreover, by (28) we have that

α(y2)

(
F (y)− f(y)

)
= 0, ∀y ∈ R. (29)

By Fact 1, there exists a ∈ Q such that F (x) = ax+ f(x), for all x ∈ R, so that

α(y2)ay = 0, for all y ∈ R. Easy computations show that in this case a = 0,

that is F = f , in other words ∆(x0, y) = D(x0, y) for any y ∈ R. Repeating this

process for all x0 ∈ R, it follows that ∆(x, y) = D(x, y) for any x, y ∈ R, then ∆

is symmetric skew biderivation of R and the conclusion follows from Lemma 5.

5. The proof of Theorem 3

We premit the following easy result on symmetric biadditive maps, which

will be useful in the sequel. Notice that in the next Lemma, the hypothesis on

the primeness of the ring R is not needed. Moreover, the involved symmetric

biadditive maps are not requested to be neither biderivations, nor generalized

biderivations, nor generalized skew biderivations:

Lemma 6. Let R be a ring of characteristic different from two and three,

∆1,∆2 : R × R −→ R two symmetric biadditive maps of R, δ1 the trace of ∆1,

and δ2 the trace of ∆2. Assume that for any y ∈ R either δ1(y) = 0 or δ2(y) = 0.

Then either ∆1 = 0 or ∆2 = 0.

Proof. We remark that if δ1(y) = 0 for all y ∈ R, then

0 = δ1(x+ y) = δ1(x) + δ1(y) + 2∆1(x, y) = 2∆1(x, y), ∀x, y ∈ R

that is ∆1 = 0. Analogously, if δ2(y) = 0 for all y ∈ R, then ∆2 = 0.

We now assume that both δ1 6= 0 and δ2 6= 0 and prove that a number of

contradictions follows. In other words, we suppose there exists x, y ∈ R such

that δ1(x) 6= 0 and δ2(y) 6= 0, so that, by the hypothesis of the present Lemma,

δ2(x) = 0 and δ1(y) = 0. We divide the argument into two cases:

Case 1. δ1(x+ y) = 0.
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In this case

δ1(x) + 2∆1(x, y) = 0. (30)

Moreover, if δ1(x− y) = 0, then

δ1(x)− 2∆1(x, y) = 0 (31)

and comparing (31) with (30), we have the contradiction δ1(x) = 0. Similarly, if

δ1(x− 2y) = 0, then

δ1(x)− 4∆1(x, y) = 0 (32)

and comparing (32) with (30) we have again the contradiction δ1(x) = 0.

Thus both δ1(x − y) 6= 0 and δ1(x − 2y) 6= 0, that is δ2(x − y) = 0 and

δ2(x− 2y) = 0, that is, respectively,

δ2(y)− 2∆2(x, y) = 0 (33)

and

4δ2(y)− 4∆2(x, y) = 0. (34)

Once again comparing (33) with (34), we get the contradiction δ2(y) = 0.

Case 2. δ1(x+ y) 6= 0.

In this case

0 = δ2(x+ y) = δ2(y) + 2∆2(x, y) = 0. (35)

Moreover, if δ2(x− y) = 0, then

δ2(y)− 2∆2(x, y) = 0, (36)

and comparing (36) with (35), we have δ2(y) = 0, which is a contradiction.

Similarly, if δ2(x− 2y) = 0, then

4δ2(y)− 4∆2(x, y) = 0, (37)

and comparing (37) with (35) we have again δ2(y) = 0, a contradiction.

On the other hand, in case both δ2(x − y) 6= 0 and δ2(x − 2y) 6= 0, then

δ1(x−y) = 0 and δ1(x− 2y) = 0, that is, respectively, δ1(x)− 2∆1(x, y) = 0 and

δ1(x)− 4∆1(x, y) = 0, thus the contradiction δ1(x) = 0 follows. ut
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Proof of Theorem 3. By our assumption,

δ1(x)δ2(x) = 0, ∀x ∈ R. (38)

Firstly, we fix some element x0 ∈ R such that δ1(x0) ∈ Z(R). Then, by (38),

either δ1(x0) = 0 or δ2(x0) = 0. Analogously, if δ2(x0) ∈ Z(R), then either

δ1(x0) = 0 or δ2(x0) = 0.

Hence, if we suppose that for any x ∈ R either δ1(x) ∈ Z(R) or δ2(x) ∈ Z(R),

then we have that for any x ∈ R either δ1(x) = 0 or δ2(x) = 0, and the conclusion

follows from Lemma 6.

Now we assume that there exists y0 ∈ R such that 0 6= δ1(y0) /∈ Z(R) and

0 6= δ2(y0) /∈ Z(R). In (38) replace x by y0 + x, then

δ1(x)δ2(y0) + δ1(y0)δ2(x) + 2δ1(x)∆2(x, y0) + 2δ1(y0)∆2(x, y0) + 2∆1(x, y0)δ2(x)

+ 2∆1(x, y0)δ2(y0) + 4∆1(x, y0)∆2(x, y0) = 0, ∀x ∈ R. (39)

On the other hand, replacing x by y0 − x in (38), we also have

δ1(x)δ2(y0) + δ1(y0)δ2(x)− 2δ1(x)∆2(x, y0)− 2δ1(y0)∆2(x, y0)− 2∆1(x, y0)δ2(x)

− 2∆1(x, y0)δ2(y0) + 4∆1(x, y0)∆2(x, y0) = 0, ∀x ∈ R. (40)

By comparing (39) with (40), we get

δ1(x)δ2(y0) + δ1(y0)δ2(x) + 4∆1(x, y0)∆2(x, y0) = 0, ∀x ∈ R. (41)

Substituting x with x+ y0 in (41), using both (38) and (41), and since char(R) 6=
2, 3, it follows that

δ1(y0)∆2(x, y0) + ∆1(x, y0)δ2(y0) = 0, ∀x ∈ R. (42)

Here we introduce the following notations:

F1(x) = ∆1(x, y0), ∀x ∈ R, f1(x) = D1(x, y0), ∀x ∈ R
F2(x) = ∆2(x, y0), ∀x ∈ R, f2(x) = D2(x, y0), ∀x ∈ R

0 6= δ1(y0) = a /∈ Z(R), 0 6= δ2(y0) = b /∈ Z(R). (43)

Notice that F1, F2 are generalized skew derivations of R with associated automor-

phism α and associated skew derivations f1, f2 respectively. Moreover, by (42)

we have that

aF2(x) + F1(x)b = 0, ∀x ∈ R. (44)

Application of [4, Theorem 1 and Corollary 1] implies that there exists an invert-

ible element s ∈ Q such that α(x) = sxs−1, for all x ∈ R, and one of the following

holds:
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(1) F1(x) = [a, sxs−1]s, F2(x) = s[b, x] for any x ∈ R, with s−1asb ∈ C;

(2) there exists η ∈ C such that F1(x) = sx+ η[a, sxs−1]s, F2(x) = sx+ ηs[b, x]

for any x ∈ R, with as+ sb = 0 and ηs−1asb− b ∈ C.

Case 1. F1(x) = [a, sxs−1]s, F2(x) = s[b, x] for any x ∈ R, with s−1asb ∈ C.

For any x, t ∈ R we have that

F1(xt) = [a, sxts−1]s = asxt− sxts−1as, (45)

and also

F1(xt) = F1(x)t+ sxs−1f1(t) = asxt− sxs−1ast+ sxs−1f1(t). (46)

By (45) and (46) we get s−1f1(t) = [s−1as, t], that is

f1(t) = s[s−1as, t],∀t ∈ R. (47)

Moreover,

F2(xt) = s[b, xt] = s[b, x]t+ sx[b, t] (48)

and also

F2(xt) = F2(x)t+ sxs−1f2(t) = s[b, x]t+ sxs−1f2(t). (49)

By (48) and (49) we get s−1f2(t) = [b, t], that is

f2(t) = s[b, t],∀t ∈ R. (50)

Using (49) and (50), it follows that

af2(x) + f1(x)b = 0,∀x ∈ R. (51)

We recall that, by Fact 1, there exist c1, c2 ∈ Q such that F1(x) = c1x + f1(x)

and F2(x) = c2x + f2(x), for any x ∈ R. Then, by (44) and (51) one has

ac2x + c1xb = 0, for all x ∈ R. Since 0 6= b /∈ C, we have c1 = ac2 = 0. Denote

d1 the trace of D1, hence

F1(x) = f1(x), ∆1(x, y0) = D1(x, y0), d1(x) = δ1(x), ∀x ∈ R,

and

δ1(y0)F2(x) = δ1(y0)f2(x) = δ1(y0)D2(x, y0), ∀x ∈ R.

Thus (44) reduces to

aD2(x, y0) +D1(x, y0)b = 0,∀x ∈ R. (52)
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Replacing in (52) x by xt and using again (52), we get

D1(x, y0)[b, t] + [a, α(x)]D2(t, y0) = 0,∀x, t ∈ R. (53)

Now we substitute x with zx in (53) and use again (53), then

D1(z, y0)x[b, t] + [a, α(z)]α(x)D2(t, y0) = 0,∀x, t, z ∈ R. (54)

Since α(x) = sxs−1, by replacing x with xs in (54), we have

D1(z, y0)xs[b, t] + [a, szs−1]sxD2(t, y0) = 0,∀x, t, z ∈ R. (55)

Here we remark that

D2(t, y0) = f2(t) = s[b, t] and D1(z, y0) = F1(z) = [a, szs−1]s,

therefore, we may write (55):

2[a, szs−1]sxs[b, t] = 0,∀x, t, z ∈ R.

By the primeness of R it follows that: either [a, szs−1]s = 0 for all z ∈ R, which

implies a ∈ C; or s[b, t] = 0, for all t ∈ R, that is b ∈ C. In any case, we have a

contradiction.

Case 2. There exists η ∈ C such that F1(x) = sx + η[a, sxs−1]s, F2(x) =

sx + ηs[b, x] for any x ∈ R, with as + sb = 0 and ηs−1asb − b ∈ C. Note that

b /∈ C implies η 6= 0. Moreover, it is easy to see that ηb2 + b = λ ∈ C and also

that bs−1b = 0 (since ab = 0).

For any x, t ∈ R, we have that

F1(xt) = sxt+ η[a, sxts−1]s = sxt+ ηasxt− ηsxts−1as (56)

and also

F1(xt) = F1(x)t+ sxs−1f1(t) = sxt+ η[a, sxs−1]st+ sxs−1f1(t). (57)

Comparing (56) and (57), we get

sx

(
−ηts−1as+ ηs−1ast− s−1f1(t)

)
= 0

and by the primeness of R, and since as = −sb, it follows

f1(t) = ηs[t, b], ∀t ∈ R. (58)
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Moreover,

F2(xt) = sxt+ ηs[b, xt] = sxt+ ηs[b, x]t+ ηsx[b, t] (59)

and also

F2(xt) = F2(x)t+ sxs−1f2(t) = (qx+ ηs[b, x])t+ sxs−1f2(t). (60)

By (59) and (60) we get sx(η[b, t]− s−1f2(t)), and, by the primeness of R,

f2(t) = ηs[b, t], ∀t ∈ R. (61)

We note that f1 = −f2. As above, there exists c1 ∈ Q such that F1(x) =

c1x + f1(x) = c1x + ηs[x, b], for all x ∈ R. Thus we may write c1x + ηs[x, b] =

F1(x) = sx+ η[a, sxs−1]s, and by computations it follows c1 = s.

In other words, we obtain that F1(x) = sx + f1(x) = sx + ηs[x, b] and

F2(x) = sx− f1(x) = sx− ηs[x, b], for any x ∈ R. According to (43), this means

that D2(x, y0) = −D1(x, y0), for any x ∈ R. By (42)

a∆2(xz, y0) + ∆1(xz, y0)b = 0, ∀x, z ∈ R, (62)

so that, since D2 = −D1,

a∆2(x, y0)z−asxs−1D1(z, y0)+∆1(x, y0)zb+sxs−1D1(z, y0)b=0, ∀x, z ∈ R. (63)

Using (42) in (63), we have

−asxs−1D1(z, y0) + ∆1(x, y0)[z, b] + sxs−1D1(z, y0)b = 0, ∀x, z ∈ R (64)

and right multiplying by s−1b, left multiplying by bs−2, and since as = −sb and

bs−1b = 0, it follows that

bs−2∆1(x, y0)bzs−1b = 0, ∀x, z ∈ R. (65)

By the primeness of R, either s−1b = 0, that is b = 0, which is a contradiction,

or bs−2∆1(x, y0)b = 0, for any x ∈ R. In this last case

0 = bs−2

(
sx+ ηs[x, b]

)
bzs−1b = ηbs−1xb2, ∀x ∈ R, (66)

which implies b2 = 0. Thus, right multiplying (42) by b, one has

a∆2(x, y0)b = 0, ∀x ∈ R, (67)

that is

0 = a

(
sx− ηs[x, b]

)
b = −sbxb, ∀x ∈ R, (68)

which implies again the contradiction b = 0.

As consequence of Theorem 3, we also have the following:

Corollary 1. Let R be a prime ring of characteristic different from two and

three, ∆1,∆2 : R × R −→ R two symmetric generalized skew biderivations. If

∆1(x, y)∆2(x, y) = 0 for any x, y ∈ R, then either ∆1 = 0 or ∆2 = 0.
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[1] N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006),

371–380.
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