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Erdős–Surányi sequences and trigonometric integrals

By LIAM BAKER (Stellenbosch) and STEPHAN WAGNER (Stellenbosch)

Abstract. We study representations of integers as sums of the form ±a1 ± a2 ±
· · ·±an, where a1, a2, . . . is a prescribed sequence of integers. Such a sequence is called an

Erdős–Surányi sequence if every integer can be written in this form for some n ∈ N and

choices of signs, in infinitely many ways. We study the number of representations of a

fixed integer, which can be written as a trigonometric integral, and obtain an asymptotic

formula under a rather general scheme due to Roth and Szekeres. Our approach, which

is based on Laplace’s method for approximating integrals, can also be easily extended

to find higher-order expansions. As a corollary, we settle a conjecture of Andrica and

Ionaşcu on the number of solutions to the signum equation ±1k ± 2k ± · · · ± nk = 0.

1. Introduction

1.1. Erdős–Surányi sequences and solutions to signum equations. A se-

quence of positive integers (an)∞n=1 is called an Erdős–Surányi sequence if every

integer can be written in the form ±a1±a2±· · ·±an for some n ∈ N and choices

of signs + and −, in infinitely many ways. Representations of this kind were

first studied systematically by Erdős and Surányi [13], who provided sufficient

conditions for a sequence of integers to have this property (that cover e.g. the

sequence of primes).

The sequence of k-th powers, which will be of particular interest to us, was

shown to be an Erdős–Surányi sequence by Mitek [16], and later, independently,

by Bleicher [6], who also discusses the behaviour of the minimal choice of n.
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Drimbe [11] showed that, generally, any sequence (p(n))∞n=1 where p(n) ∈ Q[n]

takes an integer value whenever n ∈ Z, and gcd{p(n) | n ∈ Z} = 1, is an Erdős–

Surányi sequence, and this result was rediscovered more recently by Yu [21] and

also generalised further by Boulanger and Chabert [7] (to the ring of algebraic

integers over a cyclotomic field), by Chen and Chen [8] (to weights other than

±1), and again by Chen and Chen [9] (who provided a necessary and sufficient

condition for arbitrary sequences of integers).

For an Erdős–Surányi sequence a = (an)∞n=1, the signum equation of a is

±a1± a2± · · · ± an = 0, and for a fixed n ∈ N, a solution to the signum equation

is a choice of + and − such that the equation holds. We denote the number of

solutions to the signum equation of a by Sa(n), and more generally the number

of representations of an integer k as ±a1 ± a2 ± · · · ± an by Sa(n, k). In [3], it is

shown that the number of solutions to the signum equation can be given by the

following integral formula:

Sa(n) =
2n

2π

∫ 2π

0

n∏
i=1

cos(ait) dt, (1)

which follows from expanding each cosine into a sum of exponentials, multiplying

out and using the fact that for m ∈ Z,
∫ 2π

0
exp(imt) dt equals 2π if m = 0, and 0 if

m 6= 0. From this, it can be easily seen that the number of representations of k as

±a1± a2± · · ·± an is given by Sa(n, k) = Sa′(n+ 1)/2 where a′ = (k, a1, a2, . . . ),

as was shown in [4].

Andrica and Tomescu [3] conjectured that the number of solutions to the

signum equation in the case ai = i is asymptotically equal to
√

6/π · n−3/22n,

which was recently proved by Sullivan [19]. The related question of representing

numbers as sums of the form
∑n
k=−n εkk with εk ∈ {0, 1} (and determining the

asymptotic number of representations) was also studied in several papers, see van

Lint [20], Entringer [12], Clark [10], and Louchard and Prodinger [15].

Prodinger [17] determined an asymptotic formula for the number of ways to

partition the set {1, 2, . . . , n} into two subsets of equal cardinality and sum (note

that representations of zero of the form 0 = ±1± 2± · · · ± n correspond exactly

to partitions of this type, where, however, the cardinalities are not necessarily

equal). The asymptotic behaviour of an integral similar to the one in (1) (but

with sines rather than cosines) was studied recently in [14].

A more general conjecture in the case an = nk was recently formulated by

Andrica and Ionaşcu [1], [2]: namely, that (for n ≡ 0, 3 mod 4)

Sa(n) ∼
√

2(2k + 1)

π
· 2n

nk+1/2
. (2)
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The main theorem of this paper establishes an asymptotic formula for sequences

(an)∞n=0 that belong to an analytic scheme due to Roth and Szekeres (see the

following section). The conjecture of Andrica and Ionaşcu will be included as

a special case. It will also follow that all these sequences are Erdős–Surányi

sequences.

1.2. Roth–Szekeres sequences. In [18], Roth and Szekeres investigated

partitions into elements of a sequence (an)∞n=0 satisfying the following conditions:

C1. an+1 ≥ an for sufficiently large n;

C2. s = lim
n→∞

log an
log n

exists and is positive;

C3. Jn = inf
(2an)−1<t≤1/2

∑n
i=1‖ait‖2

log n
→ ∞ as n → ∞, where ‖ · ‖ denotes the

distance from the nearest integer.

For brevity, we will call such sequences Roth–Szekeres sequences. Roth and

Szekeres themselves showed that the following classes of sequences are Roth–

Szekeres sequences:

(1) an = pn, the n-th prime number;

(2) an = f(n), where f is a polynomial with rational coefficients taking integer

values at integer places, such that gcd f(Z) = gcd{f(n) | n ∈ Z} = 1 (for

brevity, we will call such polynomials primitive);

(3) an = f(pn), pn is the n-th prime number and f is a polynomial with rational

coefficients taking integer values at integer places, such that gcd{nf(n) | n ∈
Z} = 1.

In particular, we see that if f is a primitive polynomial, then (f(n))∞n=0 is

both a Roth–Szekeres sequence and has been proved to be an Erdős–Surányi

sequence. In fact, a corollary to the main theorem of this paper shows that all

Roth–Szekeres sequences are indeed Erdős–Surányi sequences.

2. Main theorem and applications

2.1. Main theorem and sequences of applicability. For sequences that sat-

isfy conditions C1–C3, we are able to provide an asymptotic formula for the

integral in (1):
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Theorem 1. Let (an)∞n=1 be a Roth–Szekeres sequence. Then

∫ π/2

0

n∏
i=1

cos(ait) dt =
1

2

√
2π∑n
i=1 a

2
i

−
√

2π
∑n
i=1 a

4
i

8 (
∑n
i=1 a

2
i )

5/2
+O

(
n−s−5/2+ε

)
(3)

for any ε > 0.

As will become clear from the proof, it would be possible to derive further

terms of an asymptotic expansion.

Corollary 1. If a = (an)∞n=0 is a Roth–Szekeres sequence, then a is also an

Erdős–Surányi sequence.

Proof. Let k ∈ Z, and let a′ = (k, a1, a2, . . . ). Then for n ∈ N, the number
of representations of k as ±a1 ± a2 ± · · · ± an is

Sa(n, k)

=
2n

2π

∫ 2π

0

cos(kt)

n∏
i=1

cos(ait) dt =
2n+1

2π

∫ π

0

cos(kt)

n∏
i=1

cos(ait) dt

=
2n+1

2π

∫ π/2

0

cos(kt)

n∏
i=1

cos(ait) + cos(k(π − t))
n∏
i=1

cos(ai(π − t)) dt

=
2n+1

2π

(
1 + (−1)k+

∑n
i=1 ai

)∫ π/2

0

cos(kt)

n∏
i=1

cos(ait) dt

=
2n√
2π

(
1+(−1)k+

∑n
i=1 ai

)[ 1√
k2+

∑n
i=1 a

2
i

−
k4+

∑n
i=1 a

4
i

4
(
k2+

∑n
i=1 a

2
i

)
5/2

+O
(
n−s−5/2+ε

)]
(4)

for any ε > 0 by Theorem 1. Now, since a is a Roth–Szekeres sequence, we know

that
∑n
i=1‖ai/2‖2/ log n → ∞ as n → ∞ by Condition C3, and so in particular

there are infinitely many i ∈ N such that ai is odd. Hence there are infinitely

many n ∈ N such that k+
∑n
i=1 ai is even. For these n, Sa(n, k)→∞ as n→∞,

and hence a is an Erdős–Surányi sequence. �

The following proposition further expands the applicability of the main the-

orem:

Proposition 1.

(1) If S ⊂ N has the property that #{k ∈ S | k ≤ n} = O(log n) as n →
∞ and a = (an)∞n=1 is a Roth–Szekeres sequence, then the subsequence of

(an)∞n=1 consisting of all elements with indices not in S is also a Roth–

Szekeres sequence for the same value of s.
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(2) If a = (an)∞n=1 is a Roth–Szekeres sequence and is also a subsequence of a

sequence b = (bm)∞m=1 which satisfies conditions C1 and C2 (with a possibly

different value of s), then b = (bm)∞m=1 is also a Roth–Szekeres sequence (i.e.

also satisfies condition C3).

Proof. (1) Let a′ = (anm
)∞m=1 denote the subsequence of a with indices not

in S. It is obvious that a′ also satisfies condition C1. Moreover, for large m we

have m = #{k /∈ S | k ≤ nm} = nm + O(log nm), so limm→∞ log nm/ logm =

limm→∞ nm/m = 1; thus

s = lim
n→∞

log an/ log n = lim
m→∞

log anm/ log nm = lim
m→∞

log anm/ logm,

and so a′ also satisfies condition C2 with the same value of s. Finally,

inf
(2anm )−1<t≤1/2

∑m
i=1‖ani

t‖2

logm
≥ inf

(2anm )−1<t≤1/2

∑nm

i=1‖ait‖2 − (nm −m)

logm

= inf
(2anm )−1<t≤1/2

∑nm

i=1‖ait‖2 +O(log nm)

logm

= inf
(2anm )−1<t≤1/2

∑nm

i=1‖ait‖2

log nm
+O(1)→∞

as m→∞, and so a′ also satisfies condition C3.

(2) Suppose that

lim
n→∞

log an
log n

= s1 and lim
m→∞

log bm
logm

= s2,

and that a = (an)∞n=1 is the subsequence (bmn)∞n=1 of b. It remains to show that

b also satisfies Condition C3. Now, for all M ∈ N let n(M) be the smallest n ∈ N
such that mn ≥M (and thus an = bmn

≥ bM > bmn−1
). Then

s2
s1

= lim
m→∞

log bm
logm

(
lim
n→∞

log an
log n

)−1
= lim
n→∞

log bmn

logmn

(
lim
n→∞

log an
log n

)−1
= lim
n→∞

log n

logmn
,

and so limM→∞
logn(M)
logM = s2

s1
. Finally,

inf
(2bM )−1<t≤1/2

∑M
m=1‖bmt‖2

logM
≥ inf

(2an(M))−1<t≤1/2

∑M
m=1‖bmt‖2

logM

≥ inf
(2an(M))−1<t≤1/2

∑n(M)−1
k=1 ‖bmk

t‖2

logM
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≥ inf
(2an(M))−1<t≤1/2

(∑n(M)
k=1 ‖akt‖2

)
− 1

log n(M)
· log n(M)

logM

∼ s2
s1
· inf
(2an(M))−1<t≤1/2

(∑n(M)
k=1 ‖akt‖2

)
− 1

log n(M)
→∞

as M →∞, and so b also satisfies Condition C3. �

The first part of the proposition shows in particular that removing finitely

many elements from a Roth–Szekeres sequence still yields a Roth–Szekeres se-

quence (by similar arguments, this is also true if finitely many elements are added).

The second part shows, for instance, that sequences of the form an = bnsc for

arbitrary rational numbers s are also Roth–Szekeres sequences, since the sequence

of numbers of the form bnp/qc contains the sequence of all p-th powers as a sub-

sequence.

2.2. Applications of the main theorem to more specific sequences.

2.2.1. Polynomial-like sequences. As an application of Theorem 1, consider the

case when a = (an)∞n=0 has the asymptotic expansion an = αns+βns−1+O(ns−2)

for some real numbers α, β, s, where α > 0 and s > 0. Then

a2n = α2n2s + 2αβn2s−1 +O(n2s−2) and a4n = α4n4s +O
(
n4s−1

)
,

so we have that

n∑
i=1

a2i =
α2

2s+ 1
n2s+1 +

(
α2

2
+
αβ

s

)
n2s +O

(
n2s−1

)
and

n∑
i=1

a4i =
α4

4s+ 1
n4s+1 +O

(
n4s
)
.

If the sequence a also satisfies C3, then it follows by Theorem 1 that

∫ π/2

0

n∏
i=1

cos(ait) dt

=

√
2π(2s+ 1)

2αns+1/2

[
1− (2s+ 1)(s(3s+ 1)α+ (4s+ 1)β)

2s(4s+ 1)αn

]
+O

(
n−s−5/2+ε

)
for any ε > 0. In fact, in following the proof of Theorem 1 in Section 3 for this

sequence, we can see that ε may be set to zero.
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In the special case that a is the polynomial sequence an = ns, which is an

Erdős–Surányi sequence as remarked earlier, we obtain the following result:

Sa(n) =
(

1 + (−1)
∑n

i=1 i
s
)√2s+ 1

2π

2n

ns+1/2

[
1− (2s+ 1)(3s+ 1)

2(4s+ 1)n
+O

(
1

n2

)]
,

which in particular proves the asymptotic formula (2) conjectured by Andrica

and Ionaşcu.

If we only have the weaker property that an ∼ αns, it still follows that∫ π/2

0

n∏
i=1

cos(ait) dt ∼
√

2π(2s+ 1)

2αns+1/2
.

For example, if a is the sequence of square-free numbers, for which it is well

known that an ∼ π2n/6 (this is a Roth–Szekeres sequence, e.g. by part (2) of

Proposition 1 applied to the sequence of primes, which are all square-free), we get∫ π/2

0

n∏
i=1

cos(ait) dt ∼ 3
√

6

(πn)3/2
,

and a corresponding asymptotic formula for the number of solutions to the signum

equation.

2.2.2. Polynomials in primes. Let us also consider the case when f is a polyno-

mial satisfying the properties mentioned in Section 1.2, f(n) = αns + O
(
ns−1

)
,

and an = f(pn), where pn is the n-th prime number. We will use the following

standard lemma, whose proof is given for completeness:

Lemma 1. If q(x) =
∑s
i=0 cix

i is a polynomial with cs > 0, then

n∑
i=1

q(pi) ∼
cs

s+ 1
ns+1(log n)s.

Proof. We use the ideas described in Section 2.7 of [5]. Let π(x) be the

prime counting function, li(x) =
∫ x
2

dt/ log t be the logarithmic integral, and

define ε(x) = π(x)− li(x) which is o(t/ log t) by the prime number theorem. Then

we write the above sum as a Stieltjes integral, where b < 2:

n∑
i=1

q(pi) =
∑
p≤pn

q(p) =

∫ pn

b

q(t) dπ(t) =

∫ pn

b

q(t) d(li(t) + ε(t)).
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Now, we note that d(li(t)) = dt/ log t and perform integration by parts on∫ pn
b

q(t) dε(t), giving

n∑
i=1

q(pi) =

∫ pn

b

q(t) dt

log t
+ [q(t)ε(t)]pnb −

∫ pn

b

ε(t)q′(t) dt.

Letting b→ 2− and noting that ε(b)→ 0, this becomes

n∑
i=1

q(pi) =

∫ pn

2

q(t) dt

log t
+ q(pn)ε(pn)−

∫ pn

2

ε(t)q′(t) dt

=

s∑
i=0

ci

[∫ pn

2

ti dt

log t
+ pinε(pn)−

∫ pn

2

ε(t)iti−1 dt

]
.

In the i-th summand, the first integral is an example of an exponential integral and

has asymptotic expansion
pi+1
n

(i+1) log pn
(1 +O(1/ log pn)), whereas using the asymp-

totic bound on ε(t) it is easily seen that the other two terms are o(pi+1
n / log pn).

Hence, we have the desired asymptotic expansion, using the asymptotic formula

pn ∼ n log n that follows from the prime number theorem:

n∑
i=1

q(pi) ∼
cs

s+ 1

ps+1
n

log pn
∼ cs
s+ 1

ns+1(log n)s. �

Applying this lemma, we get that

n∑
i=1

a2i =

n∑
i=1

f(pn)2 ∼ α2

2s+ 1
n2s+1(log n)2s.

Thus Theorem 1 gives us∫ π/2

0

n∏
i=1

cos(ait) dt ∼ 1

2

√
2π

α2

2s+1n
2s+1(log n)2s

=

√
2π(2s+ 1)

2α

1

ns+1/2(log n)s
,

and so

Sa(n) ∼
√

2s+ 1√
2πα

2n+1

ns+1/2(log n)s
as n→∞ and

n∑
i=1

f(pn) is even.

Specifically, if a is the sequence of primes,

Sa(n) ∼
√

6

π

2n

n3/2 log n
as n→∞ for odd n,

which was conjectured in [2].
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3. Proof of the main theorem

To prove Theorem 1, we will require the following lemmas; in both of them,

we assume that the sequence a satisfies Condition C2.

Lemma 2. If b > 0, then
∑n
i=1 a

b
i = O

(
nbs+1+ε

)
and

(∑n
i=1 a

b
i

)−1
=

O
(
n−bs−1+ε

)
for any ε > 0. As corollaries, we have the following:

If b > d > 0 and c ∈ R, then

d

√∑n
i=1 a

d
i

(log n)c b

√∑n
i=1 a

b
i

→∞ as n→∞, and

d

√∑n
i=1 a

d
i

(log n)can
→∞ as n→∞. (5)

Proof. This follows immediately from the fact that for any δ > 0, is−δ <

ai < is+δ for sufficiently large i according to Condition C2. �

Lemma 3. If bn > 0 and b2n
∑n
i=1 a

2
i / log n → ∞ as n → ∞, then for any

m ≥ 0 and any fixed ` > 0, we have

∫ bn

0

πmtm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt

= 2(m−1)/2π−1Γ

(
m+ 1

2

)( n∑
i=1

a2i

)−(m+1)/2

+O
(
n−`

)
.

Proof.∫ bn

0

tm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt

=

∫ ∞
0

tm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt−

∫ ∞
bn

tm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt.

The first integral is (substituting u = (π2t2/2)
∑n
i=1 a

2
i )∫ ∞

0

tm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt

= 2(m−1)/2

(
π2

n∑
i=1

a2i

)−(m+1)/2 ∫ ∞
0

u(m−1)/2e−u du

= 2(m−1)/2π−m−1Γ

(
m+ 1

2

)( n∑
i=1

a2i

)−(m+1)/2

,
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and by a similar procedure the second integral can be written as follows:

∫ ∞
bn

tm exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt

= 2(m−1)/2π−m−1

(
n∑
i=1

a2i

)−(m+1)/2 ∫ ∞
xn

u(m−1)/2e−u du,

where xn = π2b2n
∑n
i=1 a

2
i /2 → ∞ as n → ∞. Now, for u sufficiently large,

u(m−1)/2 ≤ eu/2, so for n sufficiently large,

0 ≤
∫ ∞
xn

u(m−1)/2e−u du ≤
∫ ∞
xn

e−u/2 du = 2e−xn/2 = O
(
n−`

)
.

Here, the last estimate follows from the assumption made on bn, which implies

that xn/ log n→∞ as n→∞. This completes the proof. �

Now, we are ready to prove Theorem 1:

Proof of Theorem 1. We assume throughout that n is large and thus
that an is large positive, and is not less than ai for i < n. We rewrite the integral
in (3) as follows:

∫ π/2

0

n∏
i=1

cos(ait) dt = π

∫ 1/(2an)

0

n∏
i=1

cos(aiπt) dt+ π

∫ 1/2

1/(2an)

n∏
i=1

cos(aiπt) dt = I1 + I2.

The second integral, I2, can be estimated as follows, making use of the simple
inequality | cos(πx)| ≤ exp(−π2‖x‖2/2) that is valid for all real x:∣∣∣∣∣
∫ 1/2

1/(2an)

n∏
i=1

cos(aiπt) dt

∣∣∣∣∣ ≤
∫ 1/2

1/(2an)

n∏
i=1

| cos(aiπt)| dt

≤
∫ 1/2

1/(2an)

n∏
i=1

exp

(
−π

2

2
‖ait‖2

)
dt ≤

∫ 1/2

1/(2an)

exp

(
−π

2

2

n∑
i=1

‖ait‖2
)

dt

≤
∫ 1/2

1/(2an)

exp

(
−π

2

2
Jn logn

)
dt =

[
1

2
− 1

2an

]
exp

(
−π

2

2
Jn logn

)
<

1

2
n−π2Jn/2.

Since Jn →∞ as n→∞ by condition C3, it follows that

I2 = π

∫ 1/2

1/2an

n∏
i=1

cos(aiπt) dt = O(n−`) for any ` > 0. (6)

We now split up the first integral, I1, again:
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π

∫ 1/(2an)

0

n∏
i=1

cos(aiπt) dt=π

∫ bn

0

n∏
i=1

cos(aiπt) dt+π

∫ 1/(2an)

bn

n∏
i=1

cos(aiπt) dt=I3 + I4

where bn ∈ (0, 1/(2an)) will be chosen later. I4 can be estimated as before (note

that ‖ait‖ = ait for 0 ≤ t ≤ 1/(2an) ≤ 1/(2ai)):∣∣∣∣∣
∫ 1/2an

bn

n∏
i=1

cos(aiπt) dt

∣∣∣∣∣
≤
∫ 1/2an

bn

exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt <

∫ 1/2an

bn

exp

(
−π

2b2n
2

n∑
i=1

a2i

)
dt

<

∫ 1/2an

0

exp

(
−π

2b2n
2

n∑
i=1

a2i

)
dt =

1

2an
exp

(
−π

2b2n
2

n∑
i=1

a2i

)
.

We then have the following estimate:

I4 = O(n−`) for any ` > 0, provided that b2n

n∑
i=1

a2i / log n→∞ as n→∞. (7)

Now, for I3 we use the Taylor expansion

log cosx = −x
2

2
− x4

12
+O(x6),

which gives

n∏
i=1

cos(aiπt) = exp

(
−π

2t2

2

n∑
i=1

a2i −
π4t4

12

n∑
i=1

a4i +O

(
t6

n∑
i=1

a6i

))

= exp

(
−π

2t2

2

n∑
i=1

a2i

)1− π4t4

12

n∑
i=1

a4i +O

t6 n∑
i=1

a6i + t8

(
n∑
i=1

a4i

)2
 (8)

for |t| ≤ bn, provided that b4n
∑n
i=1 a

4
i → 0 and b6n

∑n
i=1 a

6
i → 0 as n → ∞ (in

fact, the former implies the latter by Lemma 2). Thus by Lemma 3,
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∫ bn

0

n∏
i=1

cos(aiπt) dt

=

∫ bn

0

exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt−

n∑
i=1

a4i

∫ bn

0

π4t4

12
exp

(
−−π

2t2

2

n∑
i=1

a2i

)
dt

+O

(
n∑
i=1

a6i

∫ bn

0

t6 exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt

)

+O

( n∑
i=1

a4i

)2 ∫ bn

0

t8 exp

(
−π

2t2

2

n∑
i=1

a2i

)
dt


=

1√
2π

Γ(1/2)

(
n∑
i=1

a2i

)−1/2
− 23/2

12π
Γ(5/2)

n∑
i=1

a4i

(
n∑
i=1

a2i

)−5/2

+O

 n∑
i=1

a6i

(
n∑
i=1

a2i

)−7/2
+

(
n∑
i=1

a4i

)2( n∑
i=1

a2i

)−9/2+O
(
n−`

)
for any ` > 0. Now, by Lemma 2, we have

n∑
i=1

a6i

(
n∑
i=1

a2i

)−7/2
= O

(
n−s−5/2+ε

)
and (

n∑
i=1

a4i

)2( n∑
i=1

a2i

)−9/2
= O

(
n−s−5/2+ε

)
for any ε > 0. Thus it follows that

I3 =
1

2

√
2π∑n
i=1 a

2
i

−
√

2π

8

∑n
i=1 a

4
i

(
∑n
i=1 a

2
i )

5/2
+O

(
n−s−5/2+ε

)
for any ε > 0. (9)

Finally, combining (6), (7) and (9), we arrive at the following second-order ap-

proximation for our initial integral:∫ π/2

0

n∏
i=1

cos(ait) dt = I3+I4+I2 =
1

2

√
2π∑n
i=1 a

2
i

−
√

2π
∑n
i=1 a

4
i

8 (
∑n
i=1 a

2
i )

5/2
+O
(
n−s−5/2+ε

)
for any ε > 0. The only issue which yet remains is the existence of a sequence

(bn)∞n=1 satisfying the conditions imposed on it in Lemma 3, (7) and (8). Using

Lemma 2, it is easy to see that bn = n−s−1/3 satisfies these conditions, and hence

our proof is complete. �
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