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On a class of Finsler metrics with relatively isotropic
mean Landsberg curvature

By HONGMEI ZHU (Xinxiang)

Abstract. In this paper, we find an equation which characterizes a class of Finsler

metrics with relatively isotropic mean Landsberg curvature. Furthermore, we determine

the local structure of a class of Douglas metrics with relatively isotropic Landsberg

curvature.

1. Introduction

In Finsler geometry, there are several very important non-Riemannian quan-

tities, the simplest of them is the Cartan torsion C. There is another, more

sophisticated quantity which is determined by the Busemann–Hausdorff volume

form: the so-called distortion τ . The vertical differential of τ on each tangent

space gives rise to the mean Cartan torsion I = τykdx
k. C, τ and I are the

basic geometric data which characterize Riemannian metrics among Finsler met-

rics. Differentiating C along geodesics leads to the Landsberg curvature L. The

horizontal derivative of τ along geodesics is the so-called S-curvature S := τ|ky
k.

The horizontal derivative of I along geodesics is the mean Landsberg curvature

J := Iky
k. The Riemann curvature measures the shape of the space, while the

non-Riemannian quantities describe the change of the “color” on the space. Thus,

figuratively saying, Finsler spaces are “colorful” geometric spaces. It also turned
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out that the flag curvature is closely related to these non-Riemannian quantities

[3], [13], [14].

Recall that a Finsler metric is a Landsberg metric if L = 0. Landsberg metrics

can be generalized as follows. Let F be a Finsler metric on an n-dimensional

manifold M . We say that F has relatively isotropic Landsberg curvature if L +

cFC = 0, where c is a scalar function on M . We say that F has relatively

isotropic mean curvature if J + cF I = 0. By the definitions, if F has relatively

isotropic Landsberg curvature, it must have relatively isotropic mean Landsberg

curvature. The converse may not be true. Many known Finsler metrics satisfy

J + cF I = 0 (see [3], [5], [13]). X. Cheng and Z. Shen classify Randers metrics

of isotropic flag curvature satisfying J+cF I = 0 for some c [5]. Further, Cheng–

Mo–Shen characterize flag curvature of Finsler metrics of scalar flag curvature

with relatively isotropic mean Landsberg curvature [3]. In [4], Cheng–Wang–

Wang obtain a sufficient and necessary condition for an (α, β)-metric to be of

relatively isotropic mean Landsberg curvature. Recently, Cheng–Li–Zou have

studied conformally flat (α, β)-metrics with relatively isotropic mean Landsberg

curvature [2].

The following Randers metric F given by

F (x, y) :=

√
(1− ‖x‖2)‖y‖2 + 〈x, y〉2

1− ‖x‖2
+
〈x, y〉

1− ‖x‖2
(1)

is the Funk metric [7]. It is a projectively flat Finsler metric on Bn(1) with flag

curvature K = − 1
4 . The Randers metric (1) satisfies J ± 1

2F I = 0. In [13], for

Randers metrics, Shen showed that J + cF I = 0 if and only if L + cFC = 0.

Moreover, the Finsler metric (1) satisfies

F (Ax,Ay) = F (x, y), (2)

for all A ∈ O(n). A Finsler metric with this property is called spherically sym-

metric. Such metrics were first studied by Rutz in [12]. They can be locally

expressed on a ball Bn(δ) ⊂ Rn in the form

F (x, y) = ‖y‖φ
(
‖x‖, 〈x, y〉

‖y‖

)
,

where ‖ · ‖ stands for the Euclidean norm in Rn. Many known examples such

as Bryant metric and Chern–Shen metric [11], [16] belong to this class. More-

over, spherically symmetric Finsler metrics form an important class of generalized

(α, β)-metrics [15]. Hence, the researches on them offer references to study gener-

alized (α, β)-metrics. Recently, some works have been carried out on spherically
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symmetric Finsler metrics [9], [10], [11], [16], [18]. In this paper, we mainly study

spherically symmetric Finsler metrics with relatively isotropic mean Landsberg

curvature and prove the following

Theorem 1.1. Let F be a spherically symmetric Finsler metric on Bn(δ) ⊂

Rn, given by F (x, y) := ‖y‖φ(r, s) := ‖y‖φ
(
‖x‖, 〈x, y〉

‖y‖

)
. Then F is of relatively

isotropic mean Landsberg curvature if and only if

[(n− 2)ρ̃0 + 3Ξ](L2 − cρ1) + (r2 − s2)Ξ(L1 − cT ) = 0, (3)

where c is a scalar function,

ρ̃0 :=
1

φ(φ− sφs)
, ρ1 := (φ− sφs)φs − sφφss, (4)

T := 3φsφss + φφsss, Ξ :=
1

φ[φ− sφs + (r2 − s2)φss]
, (5)

L1 := φPsss + sQsss(φ− sφs) + 3φsPss + r2φsQsss, (6)

L2 := −sφPss + φs(P − sPs) + [sφ+ (r2 − s2)φs](Qs − sQss). (7)

Recall that a Finsler metric is called a Douglas metric if its Douglas cur-

vature vanishes. Douglas metrics form a rich class of Finsler metrics including

locally projectively flat Finsler metrics. In this paper, we obtain the following

classification theorem

Theorem 1.2. Let (Bn(δ), F ) be a non-Riemannian spherically symmetric

Douglas manifold. If F has relatively isotropic Landsberg curvature, then one of

the following holds:

(1) F is a Berwald metric;

(2) F is a Randers metric which is of the following form

F (x, y) :=
√
f(r)‖y‖2 + g(r)〈x, y〉2 + h(r)〈x, y〉, y ∈ TxBn(δ) ∼= Rn, (8)

where the smooth functions f , g and h satisfy

f [2(f + gr2)h′ − (2f ′ + g′r2)h] = rh(2f + rf ′)(g − h2), (9)

with r := ‖x‖.

Note that by (9), we can construct a lot of spherically symmetric Randers

metrics with isotropic S-curvature (see [8]). Taking

f(r) :=
ε

1 + εr2
, h(r) :=

√
1− ε2

1 + εr2
and g = h2,

we have the following
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Example 1.3. Consider the Randers metric F = α+ β on Rn defined by

α(x, y) :=

√
ε‖y‖2(1 + ε‖x‖2) + (1− ε2)〈x, y〉2

1 + ε‖x‖2
, β(x, y) :=

√
1− ε2〈x, y〉
1 + ε‖x‖2

,

where ε is an arbitrary constant with 0 < ε ≤ 1. Then F has relatively isotropic

Landsberg curvature and isotropic S-curvature.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M . The components

of the fundamental tensor of (M,F ) are

gij :=
1

2
[F 2]yiyj . (10)

Given a non-zero vector y = yi ∂
∂xi |x ∈ TxM , F induces an inner product on TxM

given by

gy(u, v) = giju
ivj ,

where

u = ui
∂

∂xi
, v = vj

∂

∂xj
∈ TxM.

Lemma 2.1 ([10]). If F is a spherically symmetric Finsler metric given by

F := ‖y‖φ(r, s), then

gij = ρδij + ρ0x
ixj + ρ1

(
xi
yj

u
+ xj

yi

u

)
+ ρ2

yi

u

yj

u
, (11)

where

ρ = φ(φ−sφs), ρ0 = φ2
s+φφss, ρ1 = (φ−sφs)φs−sφφss, ρ2 = −sρ1. (12)

The components of the inverse of (gij) are

gjk = ρ̃0δ
jk +

ρ̃1

u2
yjyk +

ρ̃2

u
(xjyk + xkyj) + ρ̃3x

jxk, (13)

where

ρ̃0 =
1

φ(φ− sφs)
, ρ̃1 = −sφ+ (r2 − s2)φs

φ
ρ̃2, (14)

ρ̃2 =
sφφss − (φ− sφs)φs

φ2(φ− sφs)[φ− sφs + (r2 − s2)φss]
, (15)

ρ̃3 = − φss
φ(φ− sφs)[φ− sφs + (r2 − s2)φss]

. (16)
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Let

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

. (17)

The symmetric trilinear form C := Cijkdx
i ⊗ dxj ⊗ dxk on TM is the Cartan

torsion of (M,F ). The mean Cartan torsion I = Iidx
i is defined by

Ii := gjkCijk. (18)

For a Finsler metric F , the geodesics are locally characterized by

ẍi(t) + 2Gi(x(t), ẋ(t)) = 0,

where the functions

Gi =
1

4
gil
{

[F 2]xkyly
k − [F 2]xl

}
(19)

are called the geodesic coefficients of F . A straightforward computation gives the

following result:

Lemma 2.2 ([9], [10], [18]). Let F be a spherically symmetric Finsler met-

ric on Bn(δ) ⊂ Rn given by F := ‖y‖φ(r, s). Let x1, · · · , xn be the standard

coordinates on Rn and let y =
∑
yi ∂
∂xi . Then the geodesic coefficients of F are

of the form:

Gi = u(Pyi + uQxi), (20)

where u := ‖y‖,

Q :=
1

2r

rφss − φr + sφrs
φ− sφs + (r2 − s2)φss

, r := ‖x‖, s :=
〈x, y〉
‖y‖

, (21)

and

P :=
rφs + sφr

2rφ
− Q

φ
[sφ+ (r2 − s2)φs]. (22)

The Landsberg curvature L = Lijkdx
i ⊗ dxj ⊗ dxk is a type (0, 3) tensor on

TM\{0} with components

Lijk := −1

2
FFym [Gm]yiyjyk (23)

If L = 0, then F is called a Landsberg metric. The mean Landsberg curvature

J = Jidx
i is defined by (cf. [13], [14])

Ji := gjkLijk. (24)
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If J = 0, then F is a weakly Landsberg metric. We say that F has relatively

isotropic Landsberg curvature if L+ cFC = 0, where c is a scalar function on M .

Finally, F has relatively isotropic mean Landsberg curvature if J + cF I = 0.

Recall that a Finsler metric F on a manifold M is called a Berwald metric if

Gi(x, y) = 1
2Γijk(x)ykyj , i.e., Gi is quadratic in y = yi ∂

∂xi |x. A Finsler metric is

called a Douglas metric if its geodesic coefficients satisfy

Gi =
1

2
Γijk(x)yjyk + P (x, y)yi,

which means that it is pointwise projectively related to a Berwald metric (for

details, see [1]).

For a spherically symmetric Finsler metric, Mo–Solórzano–Tenenblat

proved the following

Lemma 2.3 ([9]). A spherically symmetric Finsler metric on Bn(δ) ⊂ Rn

is a Douglas metric if and only if Q = f(r) + g(r)s2, where Q is given by (21).

Let γ be a geodesic of F with γ(0) = x and γ̇(0) = y. Define

S(x, y) =
d

dt
[τ(γ(t)), γ̇(t)]|t=0,

where τ is the distortion of F . The function S(x, y) is called the S-curvature of

(M,F ) [5], [13], [17]. A Finsler metric F is said to have isotropic S-curvature if

there is a scalar function κ on M such that

S = (n+ 1)κF. (25)

3. Proof of Theorem 1.1

Note first that

uyi =
yi

u
, syi =

1

u

(
xi − s

u
yi
)
. (26)

From (11) and (26) we get

∂gij
∂yk

= ρykδij+(ρ0)ykx
ixj+(ρ1)yk

(
xi
yj

u
+xj

yi

u

)
− ρ1

u3
(xiyj+xjyi)yk

+
ρ1

u
(xiδjk + xjδik) + (ρ2)yk

yiyj

u2
+
ρ2

u2
(yiδjk + yjδik)− 2ρ2

u4
yiyjyk. (27)
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By (12) we obtain

ρs = ρ1, (ρ0)s = T, (ρ1)s = −sT, (ρ2)s = −ρ1 + s2T, (28)

where

T := 3φsφss + φφsss. (29)

From (26)–(28) we get

∂gij
∂yk

=
1

u

[
ρ1

(
xk − s

u
yk
)
δij − sTxixj

yk

u
−(ρ1 − s2T )xi

yk

u

yj

u

]
(i→ j → k → i) +

T

u
xixjxk +

s(3ρ1 − s2T )

u4
yiyjyk, (30)

where i→ j → k → i denotes cyclic permutation. By (30), the Cartan torsion of

a spherically symmetric Finsler metric is

Cijk =
1

2

∂gij
∂yk

=
1

2u

{[
ρ1

(
xk− s

u
yk
)
δij − sTxixj

yk

u
−(ρ1−s2T )xi

yk

u

yj

u

]

(i→ j → k → i) + Txixjxk + s(3ρ1 − s2T )
yi

u

yj

u

yk

u

}
. (31)

It follows from (13), (18) and (31) that

Ii = gjkCijk

=
1

2u

{
[(n+ 1)ρ̃0 + 3(r2 − s2)ρ̃3]ρ1 + (r2 − s2)[ρ̃0 + (r2 − s2)ρ̃3]T

}(
xi− s

u
yi
)

=
1

2u

{
(n− 2)ρ̃0ρ1 + [3ρ1 + (r2 − s2)T ]Ξ

}(
xi− s

u
yi
)
,

where we used (16) and the first equality of (4). Moreover, Ξ is given by the

second equality of (5). Therefore, we have the following

Proposition 3.1. For a spherically symmetric Finsler metric given by F (x, y)

:= ‖y‖φ(r, s), where r := ‖x‖ and s := 〈x,y〉
‖y‖ , the mean Cartan torsion can be

expressed as

Ii =
1

2u

{
(n− 2)ρ̃0ρ1 + [3ρ1 + (r2 − s2)T ]Ξ

}(
xi − s

u
yi
)
, (32)

where ρ̃0, ρ1, T and Ξ are given by (14), (12), (29) and (5), respectively.
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Corollary 3.2. A spherically symmetric Finsler metric is a Riemannian

metric if and only if

(n− 2)ρ̃0ρ1 + [3ρ1 + (r2 − s2)T ]Ξ = 0.

In [10], the Landsberg curvature of a spherically symmetric Finsler metric

has already been calculated:

Lijk = −φ
2

{[
L2

(
xj − s

u
yj
)
δki − sL1x

ixk
yj

u
+ (s2L1 − L2)xj

yk

u

yi

u

]

(i→ j → k → i) + L1x
ixjxk + s(3L2 − s2L1)

yi

u

yj

u

yk

u

}
, (33)

where L1 and L2 are given by (6) and (7), respectively. From (13), (24) and (33)

we obtain the mean Landsberg curvature of spherically symmetric Finsler metrics

as

Ji = −φ
2

{
(n− 2)ρ̃0L2 + [3L2 + (r2 − s2)L1]Ξ

}(
xi − s

u
yi
)
. (34)

Proof of Theorem 1.1. By definition, we know that F is of relatively

isotropic mean Landsberg curvature if and only if J + cFI = 0. Thus, applying

(32) and (34), we conclude the proof . �

In the two-dimensional case, Theorem 1.1 becomes simpler and we have the

following corollary.

Corollary 3.3. A spherically symmetric Finsler metric on B2(δ) ⊂ R2 is of

relatively isotropic Landsberg curvature if and only if

3(L2 − cρ1) + (r2 − s2)(L1 − cT ) = 0, (35)

where L1 and L2 are given by (6) and (7), respectively.

Proof. Theorem 1.1 tells us that a two-dimensional Finsler metric has rel-

atively isotropic Landsberg curvature if and only if

Ξ
[
3(L2 − cρ1) + (r2 − s2)(L1 − cT )

]
= 0,

where Ξ is given by the second equality of (5). Since Ξ nowhere vanishes, (35)

follows. �
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4. Spherically symmetric Finsler metrics of relatively

isotropic Landsberg curvature

In this section, we classify a class of spherically symmetric Finsler metrics

with relatively isotropic Landsberg curvature.

From (31) and (33) we obtain

Lijk + cFCijk =−φ
2

{[
(L2−cρ1)

(
xj− s

u
yj
)
δki−s(L1−cT )xixj

yk

u

+
[
s2(L1−cT )−(L2 − cρ1)

]
xj
yk

u

yi

u

]
(i→ j → k → i)

+(L1−cT )xixjxk+s[3(L2−cρ1)−s2(L1−cT )]
yi

u

yj

u

yk

u

}
, (36)

where ρ1, T , L1 and L2 are given by the second equality of (4), the first equality

of (5), (6) and (7), respectively.

By (36), F has relatively isotropic Landsberg curvature, i.e., there exists a

scalar function c on M such that L+ cFC = 0, if and only if φ satisfies

L1 = cT, L2 = cρ1. (37)

Plugging T , L1 and L2 into (37), we conclude the following result:

Proposition 4.1. A spherically symmetric Finsler metric on Bn(δ) ⊂ Rn

is of relatively isotropic Landsberg curvature if and only if the following system

of equations holds:

−sφ(Pss−cφss)+φs[P−sPs−c(φ−sφs)]+[sφ+(r2−s2)φs](Qs−sQss) = 0, (38)

φ(Psss − cφsss) + 3φs(Pss − cφss) + [sφ+ (r2 − s2)φs]Qsss = 0. (39)

By solving (38) and (39), we will get:

Lemma 4.2. A spherically symmetric Finsler metric on Bn(δ) ⊂ Rn has

relatively isotropic Landsberg curvature if and only if there exist functions ti(r),

i ∈ {0, 1, 2, 3}, such that the geodesic coefficients of F are of the form Gi =

u(Pyi + uQxi), where

P = c(x)φ+ t1(r)s+
t2(r)

√
r2 − s2

r2
(40)

and

Q = t0(r)s2 − t2(r)s
√
r2 − s2

r4
+ t3(r). (41)
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Proof. First we prove the necessity. Let

Φ := P − sPs − c(φ− sφs), Π := sφ+ (r2 − s2)φs. (42)

Differentiating (42) with respect to s, yields

Φs = −s(Pss − cφss), Πs = φ− sφs + (r2 − s2)φss. (43)

Moreover,

Φss = −(Pss − cφss)− s(Psss − cφsss). (44)

By (42) and (43), Eq. (38) is changed to the following:

(φΦ)s + Π(Qs − sQss) = 0. (45)

Differentiating (45) with respect to s, yields

(φΦ)ss = −Πs(Qs − sQss) + sΠQsss. (46)

By (44) and the first equality of (42) and (43), we find that

(φΦ)ss = (φsΦ + φΦs)s

= φssΦ + 2φsΦs + φΦss

= −φ[Pss − cφss + s(Psss − cφsss)]− 2sφs(Pss − cφss) + φssΦ. (47)

It follows from (46) and (47) that

Πs(Qs − sQss) = sΠQsss − (φΦ)ss

= sΠQsss + φ[Pss − cφss + s(Psss − cφsss)]
+ 2sφs(Pss − cφss)− φssΦ. (48)

Plugging (39) into (48), yields

Πs(Qs − sQss) = (φ− sφs)(Pss − cφss)− φssΦ

= −φ− sφs
s

Φs − φssΦ. (49)

Note that Π is nowhere zero. Plugging (45) into (49), we obtain

Π

(
φssΦ +

φ− sφs
s

Φs

)
−Πs(φsΦ + φΦs) = 0. (50)
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I) Φ = 0

In this case, P−sPs−c(φ−sφs) = 0. It is easy to obtain that P = cφ+t1(r)s.

Moreover, from Eq. (38), we have Qs − sQss = 0, where we have used Π 6= 0. It

is easy to see that Q = t0(r)s2 + t3(r).

II) Φ 6= 0 (nowhere 0)

Multiplying both sides of (50) by 1
Φ , (50) changes to the following:

[
(φ− sφs)Π− sΠsφ

]Φs
Φ

= s(Πsφs −Πφss). (51)

Inserting the second equality in (42) and (43) into (51), we obtain

[
(φ− sφs)φs − sφφss

] [
(r2 − s2)

Φs
Φ
− s
]

= 0. (52)

1) (φ− sφs)φs − sφφss = 0

Substituting η = φ2, the above equation reduces to ηs − sηss = 0. It is

easy to see that η = a(r) + b(r)s2, i.e., φ =
√
a(r) + b(r)s2. The corresponding

spherically symmetric Finsler metric is a Riemannian metric. At the same time,

plugging φ into (21) and (22), it is easy to verify that

P = t1(r)s, Q = t0(r)s2 + t3(r),

where

t0(r) := − 2a′b− ab′

4ar(a+ br2)
, t1(r) :=

a′

2ar
, t3(r) := − a′ − 2br

4r(a+ br2)
.

2) (φ− sφs)φs − sφφss 6= 0

In this case
Φs
Φ

=
s

r2 − s2
. From this, we obtain Φ =

t2(r)√
r2 − s2

. Hence, by

the first equality of (42), we have

P − cφ− s(Ps − cφs) =
t2(r)√
r2 − s2

. (53)

By solving (53), we find that

P = cφ+ t1(r)s+
t2(r)

√
r2 − s2

r2
. (54)
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Plugging (54) into (38) yields

Π

[
Qs − sQss +

t2(r)

(r2 − s2)
3
2

]
= 0. (55)

Since Π 6= 0, it follows that

Qs − sQss = − t2(r)

(r2 − s2)
3
2

. (56)

By solving (56), we obtain its solution

Q = t0(r)s2 − t2(r)s
√
r2 − s2

r4
+ t3(r). (57)

Conversely, it is easy to verify that (40) and (41) satisfy (38) and (39), so,

the sufficiency also holds. �

Remark. It is difficult to classify all of the spherically symmetric Finsler

metrics with relatively isotropic Landsberg curvature by (54) and (57). However,

we believe that all the regular spherically symmetric Finsler metrics with relatively

isotropic Landsberg curvature are either Berwald metrics or Randers metrics.

Let us consider a spherically symmetric Douglas metric F . By Lemma 2.3

and Lemma 4.2, F has relatively isotropic Landsberg curvature if and only if

there exist functions ti(r), i = {0, 1, 3}, such that the geodesic coefficients of F

are of the form Gi = u(Pyi + uQxi), where

P = c(x)φ+ t1(r)s (58)

and

Q = t0(r)s2 + t3(r). (59)

By (22) and (21), we have

sφr + rφs
2rφ

− (t0s
2 + t3)

sφ+ (r2 − s2)φs
φ

= cφ+ t1s, (60)

rφss − (φr − sφrs)
2r
[
φ− sφs + (r2 − s2)φss

] = t0s
2 + t3. (61)

Equations (60) and (61) are equivalent to

r
[
1− 2(r2 − s2)(t0s

2 + t3)
]
φs + sφr − 2rs(t0s

2 + t1 + t3)φ− 2crφ2 = 0 (62)
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and

r
[
1− 2(r2 − s2)(t0s

2 + t3)
]
φss − φr + sφrs − 2r(t0s

2 + t3)(φ− sφs) = 0. (63)

Differentiating (62) with respect to s yields

r
[
1− 2(r2 − s2)(t0s

2 + t3)
]
φss + φr + sφrs + 2rs

(
3t0s

2 + t3 − t1 − 2t0r
2
)
φs

− 2r
(
3t0s

2 + t3 + t1
)
φ− 4crφφs = 0. (64)

From (64)–(63) we get

φr − rs
[
2t0(r2 − s2) + t1

]
φs − r(2t0s2 + t1)φ− 2crφφs = 0. (65)

From (62)–(65)×s, we obtain[
1− 2r2t3 + (t1 + 2t3)s2

]
φs − s(t1 + 2t3)φ− 2cφ2 + 2csφφs = 0. (66)

Note that (66) is equivalent to(
1− 2r2t3 + (t1 + 2t3)s2

φ2

)
s

+

(
4cs

φ

)
s

= 0. (67)

Case 1. c 6= 0

1) 1− 2r2t3 + (t1 + 2t3)s2 6= 0

Integrating (67) yields

φ =
2cs+

√
(1− 2r2t3)σ +

[
4c2 + σ(t1 + 2t3)

]
s2

σ
, (68)

where σ is any non-zero smooth function. Then the corresponding spherically

symmetric Finsler metric is a Randers metric.

2) 1− 2r2t3 + (t1 + 2t3)s2 = 0

In this case (67) reduces to ( sφ )2 = 0, and it is easy to obtain that φ =
s

a(r) . Hence, the corresponding spherically symmetric Finsler metric is a Kropina

metric, which is singular. Here we omit this case since the Finsler metric is

assumed to be regular.
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Case 2. c = 0

Then the geodesic coefficients of F are

Gi = uPyi + u2Qxi

= t1(r)usyi + u2
[
t0(r)s2 + t3(r)

]
xi

= t1(r)〈x, y〉yi + t0(r)〈x, y〉2xi + t3(r)|y|2xi. (69)

From (69), it is easy to see that the functions Gi are quadratic in y = yi
∂

∂xi
|x.

Hence F is a Berwald metric. Next, we find explicitly the function φ.

It is easy to see that (66) reduces to[
1− 2r2t3 + (t1 + 2t3)s2

]
φs − s(t1 + 2t3)φ = 0. (70)

i) 1− 2r2t3 + (t1 + 2t3)s2 6= 0

By (70) we obtain

φ = σ(r)
√

1− 2r2t3 + (t1 + 2t3)s2, (71)

where σ is any positive smooth function. Hence, in this case, the corresponding

spherically symmetric Finsler metric is a Riemannian metric.

ii) 1− 2r2t3 + (t1 + 2t3)s2 = 0

Note that φ > 0 and s 6= 0. In this case, (70) is equivalent to

t1 + 2t3 = 0, 1− 2r2t3 + (t1 + 2t3)s2 = 0. (72)

It follows from (72) that

t1 = − 1

r2
, t3 =

1

2r2
. (73)

In this case, (65) implies that (62) holds. By the above caculations, it is easy to

see that (62) and (65) imply (63). Therefore, we only need to solve (65). Plugging

(73) into (65) yields

φr + rs[
1

r2
− 2(r2 − s2)t0]φs = r

(
− 1

r2
+ 2t0s

2

)
φ. (74)

The characteristic equation of the PDE (74) is

dr

1
=

ds

rs[ 1
r2 − 2(r2 − s2)t0]

=
dφ

r(− 1
r2 + 2t0s2)φ

. (75)
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It follows that

s2

e
∫

2
r (1−2r4t0)dr + 4s2

∫
t0e

∫
2
r (1−2r4t0)drdr

= a1 and ln
s

φ
− 2

∫
1− r4t0

r
dr = a2

are independent integrals of (75). Hence the solution of (74) is

φ = f

(
s2

e
∫

2
r (1−2r4t0)dr + 4s2

∫
t0e

∫
2
r (1−2r4t0)drdr

)
e−2

∫ 1−r4t0
r drs, (76)

where f(·) is any continuously differentiable positive function. So, we have the

following theorem:

Theorem 4.3. If a non-Riemannian spherically symmetric Douglas metric

F on Bn(δ) ⊂ Rn has relatively isotropic Landsberg curvature, then one of the

following holds:

(1) F is a Berwald metric given by (76);

(2) F is a Randers metric.

Proof of Theorem 1.2. Under the conditions, from Theorem 4.3, we ob-

tain that F is either a Berwald metric or a Randers metric given by (8). If F

is a Randers metric, then from Lemma 5.1 in [8], we know that F is a Douglas

metric. Since F has relatively isotropic Landsberg curvature, then it follows from

Theorem 1.1 in [6] that F has isotropic mean Berwald curvature. Combining this

with Theorem 1.1 in [5], F is of isotropic S-curvature. By Theorem 5.2 in [8], we

obtain that f , g and h satisfy (9). �
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