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An elementary proof for the time-monotonicity
of the solutions of linear parabolic equations

By T. PFEIL (Budapest)

In Banach spaces, POLACIK [12] has recently investigated the mono-
tonicity properties with respect to the time variable of solutions of semi-
linear parabolic problems of form

w4+ Au = f(u)
u(0) = uy,

where A is a sectorial operator, f is smooth enough and the domain of the
fractional power A% is strongly ordered for some «. Later MIERCZYNSKI
8] generalized Polagik’s result for C'! strongly monotone semiflows. They
proved that under certain conditions the set of points near the equilib-
rium point having not eventually strongly monotone trajectories lie on a
manifold of co-dimension one.

Both the above mentioned papers include the case of the present paper
as certain linear parabolic equations are treated here using the technique
of [11] to obtain a new elementary proof.

Let n € NT, Q C R™ be a bounded domain, 99 belonging to the
Holder class C2T for some positive o, and L the following symmetric
second order linear differential operator

Lu := Z Oi(aijaju) + du,
i,7=1

where a;; € C1TY(Q), a;; = aji, i,j = 1,...,n; d € C*(Q), d < 0 and
suppose that L is uniformly elliptic in €2, i.e. there exists a positive number
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k such that for every ( € R"
KICP <D aiiGi;.
i,j=1
Let @ := (0,+00) x Q, I" := [0, +00) x 02 and Qg := {0} x Q.
It is well-known [7] that there exists a sequence of solutions of the
classical eigenvalue problem
Lw+Aw=0 1in{
(1) w = 0 on 0f2
w € C*(Q)
Denote the sequence of eigenvalues by Ag, & € Nt (let them form a
monotone nondecreasing sequence) and the corresponding eigenfunctions
normed in L?(Q) by wy.
Let ¢ € L?(Q) be a given function. We examine the generalized
solution of the initial-boundary value problem
Oou—Lu=0 1inQ
u | r= 0
u |90: %
ue HHQ)

where ¢(0,z) := p(x) for x € Q. For the definition of H>!(Q) see e.g.
[14]. Let

(2)

&k ::/gowk, ke Nt.
Q

We recall that there exists a unique weak solution of (2),
o0

u(t,x) = nge_kktwk(x% (ta IE) €Q
k=1

(convergence is understood in the norm of H%!(Q)) and it is smooth in
Q\ Qo (see e.g. [14]). If p € C?t*(Q) then u € C1Ho/2:2+2(Q) [3].

Results of NARASIMHAN [10] and FRIEDMAN [3] claim a solution of
the classical initial-boundary value problem corresponding to (2) with ¢ €
C(Q2) tends to zero uniformly in €2 as t tends to infinity.

Under weaker conditions on the coefficients of L and 02 we have
proved [11] for any ¢ € L?(Q) and fixed z € Q the monotonicity of the
function ¢ — w(t,z) for ¢ large enough. Moreover, we have shown that for
any compact subset K of €2 there exists a positive number 7" such that for
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every x € K the function t — (¢, z) is monotone in [T, +00) provided the
first Fourier coefficient of ¢ is not equal to zero.

Now under the given stronger conditions which ensure the existence
of eigenfunctions in the classical sense we prove the same result instead of
a compact subset for the whole 2.

Due to the theorem of KREIN and RuTMmAN ([2], [6]) the principal
eigenvalue \; of L is simple and the corresponding eigenfunction w; does
not vanish in {2, thus it can be chosen a positive function in ).

Theorem 1. Let u be the (unique) weak solution of the initial-boundary
value problem (2) with the conditions given previously. Suppose that the
first Fourier coefficient & of ¢ is not equal to zero. Then there exists a
positive number T such that for every x € ) the function t — u(t,z),
t > T is strictly decreasing if & > 0, and strictly increasing if &, < 0.

PROOF. Theorem 3 in [11] gives the following estimate for the maxi-
mum of the absolute value of wy:

(3) max|wy| < M*A;, keNT,
Q

where M™* and s* are appropriate positive constants independent of k.
Therefore we have

(4) Oou(t,z) =
At —(A2—A1)t - —(Ag—A2)t | wk(x)
e w1 () <€1>\1 +e kzﬁgk)\ke w1($)) )

where (¢,2) € Q.
First, we examine term

wi ()

(5)

Under our assumptions the outward normal derivative of w; does not
vanish on 0 (see e.g. [4] or [13]), thus there exists a positive ¢ such that

(6) d,wy; < —e on IN.

For every y € 9§1 let us take an open, convex neighbourhood U, C R"
such that in a system of coordinates chosen appropriately U, N 0f is the
graph of a function belonging to the C?T class. We can take U, such
that d,w; < —¢g/2 is valid in U, N since w; € CY(Q). In addition we
may assume for every z € U, N () the existence of a point 8, € 02 such
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that the direction (3, — x coincides with the outward normal direction at
B (e.g. let min{|f —z| : B € 02} be attained at (3,). From the open cover

oac |J U,
yeIN
we can select a finite cover {Uy,, ..., Uy, }. Let K be the following compact
set:
N
K=o\ JU,.
i=1

With § := min{w; (z) : x € K} we have

M*
6)\2 for x € K.

IN

(™) ‘ wile)

w1 ()

Now we will examine term (5) near the boundary. Due to the homo-
geneous Dirichlet boundary condition we can write

N
foerQﬂ(UUZ),

=1

Oy wi ()
dywy (7756)

‘ wy(z)
wi(z)

_ ‘wk(w) — wi(Bz)
w1 (x) — wi(Bz)

where 3, € 012, the direction 3, —x coincides with the outward normal di-
rection v, and 7, is an appropriate point in the segment (0., ). Therefore,
by using (6) we have

wi ()
w1 ()

® |

N
2 2
< = d < = 5 in QN U, |.
< Zmax|gradwn| < S unlory i (U )

=1

LADYZENSKAJA and URAL’CEVA [7] proved boundedness in C1()-
norm for the solution of the generalized elliptic boundary value problem
under certain conditions. By using their proof we have obtained a bound in
C1(Q)-norm for the solution wy, of the eigenvalue problem (1) depending
on the eigenvalue A\x. In the Appendix we have shown the existence of
positive numbers N* and r* such that

(9) Jwiller@) < N*A, keNT,

(For the details see Theorem 2.)
By using estimates (7), (8) and (9) we obtain

’w’“(x) <C), keN', z€Q

wy ()
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where C := max{%, Ag } and o := max{r*, s*}.

Finally we examine the series in (4) as it was done in [11].

(10) io: Epdpe ArmA2)t, wi (z)

pt w1 ()

for (t,z) € Q. The series on the right-hand side of (10) admits a finite
sum for every t € R* due to the following estimate for the eigenvalues \j:

(11) C1k?/™ < A, < Cok?/™, ke NT

(C1 and Cy are appropriate positive constants, see e.g. [9], [14]). Moreover,
it is easy to see that both series in (10) have an upper bound independent
of t (see [11]), thus the function

<Ol Pl emn
k=2

Fios e 02ME ST g e On ot wg(z)
k=2 wi(7)

tends to zero uniformly in 2 as ¢ — 4o00. For this reason there exists a
positive number T such that

sign{dou(t,x)} = sign{—& A1} for (t,z) € (T, +00) x Q.

Theorem 1 is proved.

Appendix

Here we prove formula (9), i.e. we give an upper bound for the C*(Q)-
norm of the eigenfunctions wy, of (1) depending on the eigenvalue A\x. The
proof was obtained by complementing the proof of Theorem 15.1 in [7].

Theorem 2. There exist positive numbers N*,r* € RT such that for
the eigenfunctions wy, of (1) normed in L?(Q)

(12) lwllcr@) < N*AL,  keNY
holds (or, equivalently ||w||c1(q) < Nk” for some N, € RT).

PRrROOF. Let p > n. According to LADYZENSKAJA and URAL'CEVA
there exists a positive constant K7 such that

(13) [Wliwzr@) < K (ILv]lLe@) + Iv]lLe)

for arbitrary v € W2?(Q) N W, *(Q) (see [7], formula (11.8) in part III).
Applying this a priori estimate to wy we obtain

(14)  |Jwillwzr) < Ki(Ae + 1) Jwk| ne) < Kodkl|lwel ey, k€ NT
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for an appropriate positive number Ko.

‘According to the Sobolev imbedding theorem (see e.g. [1]) W*?(Q) C
C1(Q) for p > n, and there exists a positive number K3 such that for every
ke Nt

(15) lwiller@) < Ksllwkllwze@)-

From (14) and (15) we obtain the following inequality with some positive
constant Ky:

”wk”cl(fz) < K4)\kHwkHLP(Q), ke NT.

The LP(£2)-norm of wy, can trivially be estimated by using the maxi-
mum norm of wy:

|lwillLe o) < meS(Q)l/pmgXWkL ke NT.

Finally we use (3), i.e. the estimate for the maximum norm of wy to
get
|will e < KsAy , keNT

with appropriate positive constants K5 and s*, which leads to
lwillory < KaKsAp T, ke NT.

Applying estimate (11) we find a bound depending on k for some N,
reR*:
Jwillorqy < NE,  keNT,

Theorem 2 is proved.

Remark 1. Supposing some more smoothness on 0€2, results of KOSHE-
LEV [5] could have been used instead of (13). As a special case, his pa-
per gives conditions for the existence in W?2P(Q) of the solution of (1),
and gives a bound for the W?2P(Q)-norm of the solution depending on its
LP(2)-norm.
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referring him to the results obtained in strongly ordered Banach spaces.
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