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in CM-fields
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To the memory of Professor A. Kertész

Abstract. This is a shortened and slightly modified English version of our paper

“Sur une classe des corps de nombres algébriques et ses applications”, published in this

journal in 1975; see Győry [10]. In that paper we studied an important class of number

fields, namely the totally imaginary quadratic extensions of totally real number fields.

We obtained among others some new norm inequalities and discriminant inequalities in

such number fields. That time several different names were used in the literature for these

number fields. This is the reason that the title of Győry [10] is not informative enough.

Probably it is partly due to this fact that the results of [10] are less known. Nowadays,

the name CM-field is generally accepted for the number fields under consideration.

The purpose of this paper is to better call the attention to our norm inequalities and

discriminant inequalities in CM-fields and to their applications.

1. Introduction

In 1975, we investigated in [10] some arithmetical properties of totally imagi-

nary quadratic extensions of totally real number fields. We collected some known

and proved some new characterizations of these fields, established some new norm

inequalities and discriminant inequalities in such fields, and presented some appli-

cations. At that time there was not yet a generally accepted name for this class of
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number fields. For example, they were called in [23] fields with “Einheitsdefekt”,

cf. also [22], [4], in [7] “allowed” fields, in [8], [9] and later in [24] “kronecke-

rien” (in English “Kroneckerian”) or “K-corps”, in [6], [3] and later in [5], [16]

J-fields∗, and in many works CM-fields, see, e.g., Shimura and Taniyama [26],

Shimura [25], Washington [27], Narkiewicz [19]. By now, the name CM-field

has become accepted.

With this shortened, English version of [10], we should like to make more

known the results of [10], especially the norm inequalities and discriminant in-

equalities. In Section 2, the characterizations of CM-fields from [10] are presented

without proof, in Sections 3, 4 and 5, the norm and discriminant inequalities are

restated with proofs. Some earlier and recent applications are also mentioned.

For other properties of CM-fields, we refer to Shimura and Taniyama [26],

Shimura [25], Győry [10], Washington [27], Narkiewicz [19], Okazaki [20],

and the references given there.

2. Characterizations of CM-fields

In this section we present those characterizations of CM-fields which were

published in Győry [10]. Some of them were already well-known, the others

were published in [10] for the first time.

For an algebraic number field K, denote by K0 its maximal real subfield,

and by Kψ or K its complex conjugate in C. Similarly, the complex conjugate of

α ∈ K will be denoted by αψ or α. If K is non-real and K = K, K is a quadratic

extension of K0.

We shall use the following notation. Let E
(r)
K/Q

(α) be the elementary symmet-

ric function of degree r of the conjugates of α ∈ K relative to K/Q. In particular,

E
(1)
K/Q

(α) = TrK/Q(α) and E
(n)
K/Q

(α) = NK/Q(α), where n denotes the degree of

K over Q. We note that E
(r)
K/Q

(α) ∈ Q for each r with 1 ≤ r ≤ n, and if α is

integer in K, then E
(r)
K/Q

(α) ∈ Z.

Theorem 1. For a non-real algebraic number field K of degree n, the following

assertions are equivalent:

(a) K is a totally imaginary quadratic extension of a totally real number field;

(b) Kψ = K and σψ = ψσ for each Q-isomorphism σ of K in C;

∗In some papers totally real number fields are also included in the definitions.
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(c) there exists an algebraic number field F ⊇ K such that the extensions F/Q
and F0/Q are normal;

(d) K = K and there exists a constant 0 < c ≤ 1 such that

|NK/Q(α)| ≥ cmin{|NK/Q(Reα)|, |NK/Q(i Imα)|}

for all α ∈ K;

(e) K = K, and for an r with 1 ≤ r < n and for all non-zero α ∈ K

E
(r)
K/Q

(αα) > 0;

(f) K = K, and for every unit ε in K, ε = ζε with a root of unity ζ ∈ K;

(g) K = K and [U : {V,U0}] ≤ 2, where U , U0 denote the unit groups of K and

K0 respectively, and V is the group of roots of unity in K.

We note that among the assertions (a),. . . ,(g) several implications were al-

ready known before Győry [10]. Namely, the implication (a)⇒(e) is trivial,

(a)⇔(b) was well-known. For (a)⇔(g), see [15], [23], [22], for (g)⇒(f) [23] and

[4], for (e)⇒(a) (with r = 1) [25], and for (c)⇒(d), see [7]. The implications

(e)⇒(b)⇒(c)⇒(a) and (d)⇒(f)⇒(g)⇒(a) were proved in Győry [10], which com-

pleted the proof of equivalence of (a),. . . ,(g).

For a latter characterization, see [2]. See also [18] and [21].

In Győry [10], (f) and (g) are considered in a more general case, for S-units,

where S is a finite set of places of K containing all infinite places, and each finite

place in S is “real” in the sense defined in [10].

The following consequence of Theorem 1 is frequently needed in applications.

For a proof, see Győry [10].

Corollary 1.1. Let Ki be a totally real number field or a totally imaginary

quadratic extension of a totally real number field for i = 1, . . . ,m. The subfields,

intersections and composits of these fields are also of this type.

3. Norm inequalities

Let K be a number field of degree n. As above, for α ∈ K we denote by

E
(r)
K/Q

(α) the elementary symmetric function of degree r of the conjugates of α

relative to K/Q. We recall that if K is a CM-field, then E
(r)
K/Q

(αα) > 0 for all

1 ≤ r ≤ n and for all non-zero α ∈ K.
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Theorem 2. Let K be a CM-field of degree n, and let α1, . . . , αk be non-zero

elements of K with k ≥ 2. Then{
E

(r)
K/Q

(α1α1 + · · ·+ αkαk)
}1/r

≥
k∑
i=1

{
E

(r)
K/Q

(αiαi)
}1/r

for r = 1, . . . , n. (1)

Further, equality holds if and only if r = 1 or αiαi = λiα1α1 with some λi ∈ Q,

i = 1, . . . , k.

Since E
(n)
K/Q

= NK/Q and NK/Q(αiαi) = N2
K/Q(αi) for i = 1, . . . , k, Theo-

rem 2 gives immediately the following.

Corollary 2.1. Under the assumptions of Theorem 2, we have{
NK/Q(α1α1 + · · ·+ αkαk)

}1/n
≥

k∑
i=1

{
N

2

K/Q(αi)
}1/n

.

Further, equality holds if and only if αiαi = λiα1α1 with some positive λi ∈ Q,

i = 1, . . . , k.

From this Corollary one can deduce the next theorem.

Theorem 3. Let K be a CM-field of degree n. Then, for all non-zero α ∈ K,{
N

2

K/Q(α)
}1/n

≥
{
N

2

K/Q(Reα)
}1/n

+
{
N

2

K/Q(i Imα)
}1/n

. (2)

The equality holds only if at least one of Reα = 0, i Imα = 0, or
(

Reα
i Imα

)2 ∈ Q
hold.

We present a consequence of Theorem 3.

Corollary 3.1. Let K be a CM-field, and let α, β be non-zero integers in K such

that α/β is not real and α+ β is real or purely imaginary. Then

NK/Q

(
α+ β

2

)
≤ NK/Q(αβ). (3)

The equality holds if and only if α/β is purely imaginary, and (i) α−α and β−β
are units when α+β is real, or (ii) α+α and β+β are units when α+β is purely

imaginary.

For the above α, β, (3) implies the inequality

NK/Q

(
α+ β

2

)
≤
N

2

K/Q(α) +N
2

K/Q(β)

2
.

The above norm inequalities were applied in Győry and Lovász [7], Győry

[11], and Aubry and Poulakis [1] to diophantine equations, and in Győry [8],

[9], [10], [12], [13], Schinzel [24], and Győry, Hajdu and Tijdeman [14] to

irreducible polynomials.
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4. Discriminant inequalities

For a non-rational algebraic number α, we denote by D(α) the discriminant

of α relative to the extension Q(α)/Q. Further, for number fields K, K ′ with

K ⊃ K ′ and K = K ′(α), DK/K′(α) will denote the discriminant of α relative to

the extension K/K ′. For K ′ = K, we put DK/K = 1.

Theorem 4. Let α be an algebraic number of degree n ≥ 2. Suppose that

K = Q(α) is a CM-field, and that the degrees k = [K ′ : Q] and ` = [K ′′ : Q] of

K ′ = Q(Reα) and K ′′ = Q(i Imα) are greater than 1. Then

|D(α)|2/n ≥ |D(Reα)(
n/k)

2

NK′/Q(DK/K′(α))|2/n

+ |D(i Imα)(
n/`)

2

NK′′/Q(DK/K′′(α))|2/n, (4)

and equality holds if and only if k = ` = 2.

The trivial cases k = 1 and ` = 1 are excluded. Then, for k = 1, we have

Reα ∈ Q and D(i Imα) = D(α), and, for ` = 1, i Imα = 0 and D(Reα) = D(α).

The next Corollary is an immediate consequence of Theorem 4.

Corollary 4.1. Under the assumptions of Theorem 4, we have

|D(α)|2/n ≥ |D(Reα)|2n/k2 + |D(i Imα)|2n/`2 ,

subject to the condition that α is an algebraic integer.

For an algebraic integer α satisfying the assumptions of Theorem 4, denote

by DK , DK′ and DK′′ the discriminant of K, K ′ and K ′′, respectively. Let I(α)

denote the index of α in the ring of integers OK of K, that is I(α) = [OK : Z[α]].

As is known, D(α) = I2(α)DK .

Corollary 4.2. Under the notation and assumptions of Theorem 4, suppose that

α, Reα and i Imα are algebraic integers. Then we have

|D(α)|2/n ≥ |DK |2/n
{
|DK′ |

2(n−k)

k2 + |DK′′ |
2(n−`)

`2

}
(5)

and

I(α)
4/n ≥ |DK′ |

2(n−k)

k2 + |DK′′ |
2(n−`)

`2 . (6)

The inequality (6) gives a lower bound for I(α). In particular, it follows that

I(α) ≥ |DK′ | if n ≥ 2k, and I(α) ≥ |DK′′ | if n ≥ 2`. But under the assumptions

of Corollary 4.2, we have |DK′ | ≥ 5 and |DK′′ | ≥ 3. This implies that in these

cases α cannot be a ring generator of OK over Z, i.e. {1, α, . . . , αn−1} cannot be

a power integral basis in OK .

Further consequences of Theorem 4 can be found in Győry [10].
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5. Proofs

To prove Theorem 2, we shall need the following lemma, due to Marcus

and Lopez [17]. For a = (a1, . . . , an) ∈ Rn, we denote by Er(a) the elementary

symmetric function of degree r of the coordinates of a.

Lemma. Let a1 = (a11, . . . , a1n), a2 = (a21, . . . , a2n) ∈ Rn with positive coordi-

nates. Then{
Er(a1 + a2)

}1/r
≥
{
Er(a1)

}1/r
+
{
Er(a2)

}1/r
, r = 1, . . . , n.

The equality holds only if r = 1 or a2 = λa1 with some positive real λ.

Proof. See Marcus and Lopez [17]. �

Proof of Theorem 2. If a1, . . . ,ak ∈ Rn with positive coordinates, the

Lemma implies {
Er(a1 + · · ·+ ak)

}1/r
≥

k∑
i=1

{
Er(ai)

}1/r
(7)

for r = 1, . . . , n. Further, in (7) equality holds if and only if r = 1 or ai = λia1

with some positive reals λi, i = 1, . . . , k.

Let K0 be the maximal real subfield of K. By Theorem 1, K0 is totally real.

Further, if αi ∈ K, it follows that αiαi ∈ K0 for i = 1, . . . , k. We infer that

(αiαi)σ =

(
αi + αi

2

)2

σ −
(
αi − αi

2

)2

σ, i = 1, . . . , k, (8)

for each Q-isomorphism σ of K in C. The αi+αi

2 is totally real, hence we have(
αi + αi

2

)2

σ =

[(
αi + αi

2

)
σ

]2
≥ 0, i = 1, . . . , k. (9)

Further, αi−αi

2 and its conjugates are purely imaginary, whence

−
(
αi − αi

2

)2

σ = −
[(

αi − αi
2

)
σ

]2
≥ 0, i = 1, . . . , k. (10)

Consequently, (8), (9) and (10) imply that αiαi is totally positive for i = 1, . . . , k.

Denoting by ai the vector whose coordinates are the conjugates of αiαi, we obtain

E
(r)
K/Q

(αiαi) > 0 for 1 ≤ r ≤ n and 1 ≤ i ≤ k. Further, (7) gives (1), where

equality holds if and only if r = 1 or(
αiαi
α1α1

)
σ =

(αiαi)σ

(α1α1)σ
= λi, i = 1, . . . k,

for all σ, whence αiαi = λiα1α1 with λi ∈ Q, i = 1, . . . , k. �
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Proof of Theorem 3. By assumption, K is a CM-field. Hence, if α is

a non-zero element of K, Reα is totally real, i Imα ∈ K, and, if i Imα 6= 0,

then its conjugates are all purely imaginary. We apply Corollary 2.1 with the

choice k = 2, α1 = Reα, and α2 = i Imα. Then α1α1 + α2α2 = αα, and

in view of NK/Q(αα) = N2
K/Q(α), we deduce (2). If Reα = 0 of i Imα = 0,

then clearly equality holds in (2). If Reα and i Imα are different from zero,

then by Corollary 2.1 equality holds if and only if α2α2 = λα1α1, that is if(
Reα
i Imα

)2
= −λ−1 ∈ Q. �

Proof of Corollary 3.1. Put γ := α + β. First suppose that γ is real.

Since, by assumption, α/β is not real, we have γ 6= 0 and neither α nor β is real.

Further, it follows that γ = α+ β and

2i Imαβ = αβ − αβ = (α+ β)β − (α+ β)β

= γβ − γβ = γ(β − β) = −2γi Imβ ∈ K.

Since α and β are non-zero integers in K, we infer that β − β = 2i Imβ is a

non-zero integer in K. Using Theorem 3, we deduce that

NK/Q(α+ β) = NK/Q(γ) ≤ NK/Q(γ · 2i Imβ) = NK/Q(2i Imαβ)

≤ NK/Q(2αβ) = NK/Q(2)NK/Q(αβ),

whence we get (3). Further, in this case equality holds if and only if Reαβ = 0

and 2i Imβ = β − β, as well as, by symmetry, α − α are units in K. But it is

easy to see that Reαβ = 0 if and only if α/β is purely imaginary, which proves

our assertion when γ is real.

Consider now the case when γ = α+β is purely imaginary. Then α+β = −γ,

and α/β being not real, we deduce that Reα 6= 0, Reβ 6= 0. Further, we have

2i Imαβ = αβ − αβ = (α+ β)β − (α+ β)β

= γβ + γβ = γ(β + β) = γ · 2 Reβ,

where 2 Reβ = β + β is integer in K. Using again Theorem 3, it follows that

NK/Q(α+ β) = NK/Q(γ) ≤ NK/Q(γ · 2 Reβ) = NK/Q(2i Imαβ)

≤ NK/Q(2αβ) = NK/Q(2)NK/Q(αβ),

which implies (3). Further, equality holds if and only if Reαβ = 0 and 2 Reβ =

β+β, as well as, similarly, α+α are units in K. But, as above, Reαβ = 0 if and

only if α/β is purely imaginary. This completes the proof. �
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For a non-rational algebraic number α, we denote by δ(α) the different of α

relative to the extension Q(α)/Q. If K, K ′ are number fields with K ⊃ K ′ and

K = K ′(α), δK/K′(α) will denote the different of α relative to K/K ′.

Proof of Theorem 4. Let ϕ1, . . . , ϕn be the distinct Q-isomorphisms of

K = Q(α) in C with αϕ1 = α. Then the different of α is

δ(α) = (α− αϕ2) · · · (α− αϕn),

and its discriminant

D(α) = DK/Q(α) = (−1)(
n
2)NK/Q(δ(α)). (11)

By Theorem 1, we have

2 Re(αϕj) = αϕj + αϕj = (α+ α)ϕj = 2(Reα)ϕj for j = 1, . . . , n,

and similarly for i Imα. Let L be the normal closure of K over Q, and let

[L : Q] = N . By Theorem 1 and Corollary 1.1, L is also a CM-field, and it follows

from (11) and Theorem 3 that

|D(α)|2/n = |D(α)|
2[L:K]

N = |NL/Q((α− αϕ2) · · · (α− αϕn))|2/N

=

n∏
j=2

|NL/Q(α− αϕj)|2/N ≥
n∏
j=2

{
|NL/Q(Reα− (Reα)ϕj)|2/N

+|NL/Q(i Imα− (i Imα)ϕj)|2/N
}
. (12)

Since Reα is real in K, its degree k over Q is less than n. Among the

numbers Reα, (Reα)ϕ2, . . . , (Reα)ϕn, k is distinct, and each of them occurs n/k
times (and similarly for i Imα, . . . , (i Imα)ϕn, with multiplicity n/`). Denote by

δ(Reα) the different of Reα, and consider the product of those terms NL/Q(Reα−
(Reα)ϕj), j = 2, . . . , n, which are different from zero in (12). Then we have∏

ϕj ;Reα 6=(Reα)ϕj

|NL/Q(Reα− (Reα)ϕj)| = |NL/Q(δ(Reα))
n/k|

= |NK′/Q(δ(Reα))|[L:K
′]nk = |D(Reα)|nN/k2 . (13)

Consider now in (12) the product of those terms NL/Q(i Imα − (i Imα)ϕj) for

which Reα = (Reα)ϕj , 2 ≤ j ≤ n. The number of these ϕ is n/k−1; suppose that

ϕ2, . . . , ϕn/k are these Q-isomorphisms. Since i Imα ∈ K and Q(i Imα,Reα) =
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K, we infer that i Imα is of degree n/k over K ′. But ϕ1, . . . , ϕn/k leave the ele-

ments of K ′ fixed, and (i Imα)ϕ1 = i Imα, . . . , (i Imα)ϕn/k are pairwise distinct.

Hence these numbers are the conjugates of i Imα over K ′. Therefore, we obtain

that

∏
ϕ;Reα=(Reα)ϕ

|NL/Q(i Imα− (i Imα)ϕ)| =
n/k∏
j=2

|NL/Q(i Imα− (i Imα)ϕj)|

= |NL/Q(δK/K′(i Imα))| = |NK′/Q(NL/K′(δK/K′(i Imα)))|

= |NK′/Q(NK/K′(δK/K′(i Imα))[L:K])|

= |NK′/Q(DK/K′(i Imα))|N/n. (14)

We repeat this procedure for i Imα and Reα as well. If there exists a ϕj such

that (Reα)ϕj 6= Reα and (i Imα)ϕj 6= i Imα, then it follows from (12), (13) and

(14) that

|D(α)|2/n ≥ |D(Reα)|
2n
k2 |NK′/Q(DK/K′(i Imα))|2/n

+ |D(i Imα)|
2n
`2 · |NK′′/Q(DK/K′′(Reα))|2/n.

Because DK/K′(i Imα) = DK/K′(α) and DK/K′′(Reα) = DK/K′′(α), in this case

(4) is proved.

It remains the case when, for each j, (Reα)ϕj = Reα or (i Imα)ϕj = i Imα.

But the number of Q-isomorphisms which leave Reα resp. i Imα fixed is n/k resp.
n/`. Consequently, the number of Q-ismorphisms leaving at least one of Reα and

i Imα fixed is at most n
k + n

` − 1, hence n ≤ n
k + n

` − 1, and so 1 + 1
n ≤

1
k + 1

` .

Since, by assumption, k, ` > 1, we arrived at a contradiction.

The above argument and Theorem 3 imply that in (4) equality occurs if

and only if (Reα)ϕj 6= Reα and (i Imα)ϕj 6= i Imα do not hold at the same

time only for one j, and if, for this j,
(

Re(α−αϕj)
i Im(α−αϕj)

)2
∈ Q. In this case, the

number of isomorphisms ϕj which leave at least one of Reα and i Imα fixed is

n− 1 ≤ n
k + n

` − 1, whence 1 ≤ 1
k + 1

` , and finally k = ` = 2, n = 4. Conversely,

suppose that α = Reα + i Imα, where Reα and i Imα are quadratic algebraic

numbers. Then K = Q(α) is a CM-field which satisfies the conditions of the

theorem with n = 4 and k = ` = 2. Further, it is easy to see that in (4) equality

holds. �

Proof of Corollary 4.2. Let DK/K′ and DK/K′′ denote the relative dis-

criminant ofK overK ′ andK ′′, respectively (with the convention thatDK/K =1).
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Then DK/K′ divides DK/K′(α), and DK/K′′ divides DK/K′′(α) in the ring of in-

tegers of K ′ resp. of K ′′, and DK′ | D(Reα), DK′′ | D(i Imα) in Z. In view of

the transitivity formula

DK = NK′/Q(DK/K′)D
[K:K′]
K′ = NK′′/Q(DK/K′′)D

[K:K′′]
K′′ ,

hence (4) implies (5), whence (6) immediately follows. �
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