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Consistent invertibility and perturbations for property (ω)

By QIAOLING XIN (Tianjin, Beijing) and LINING JIANG (Beijing)

Abstract. An operator T ∈ B(H) is said to be “consistent in invertibility” pro-

vided that for each S ∈ B(H), TS and ST are either both or neither invertible. Using

the induced spectrum, the paper investigates the permanence of property (ω) under

some commuting perturbations, which extends the corresponding results in P. Aiena

et al. (2007) [3]. In addition, the stability of property (ω) of the operators which are the

products of finitely normal operators is considered.

1. Introduction

Throughout this paper, H means an infinite-dimensional complex Hilbert

space, and B(H) the algebra of all bounded linear operators on H. For T ∈ B(H),

let T ∗, N(T ), R(T ), σ(T ) and σp(T ) denote the adjoint, the null space, the range,

the spectrum and the point spectrum of T , respectively. Set n(T ) = dimN(T ) and

d(T ) = dimH/R(T ) = codimR(T ). An operator T ∈ B(H) is called upper semi-

Fredholm if n(T ) <∞ and R(T ) is closed, while T is called lower semi-Fredholm

if d(T ) <∞. If both n(T ) and d(T ) are finite, T is a Fredholm operator. If T is

upper (lower) semi-Fredholm, the index of T is denoted by

ind(T ) = n(T )− d(T ).

The operator T is Weyl if it is Fredholm of index zero. Recall that T is said

to be bounded below if it is injective and has closed range. Define W+(H) =
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{T ∈ B(H) : T is upper semi-Fredholm and ind(T ) ≤ 0}. The Weyl essential

approximate point spectrum σaw(T ) and the approximate point spectrum σa(T )

are defined by: σaw(T ) = {λ ∈ C : T − λI /∈ W+(H)} and σa(T ) = {λ ∈ C :

T − λI is not bounded below}, respectively.

The ascent of T is defined as

p = p(T ) = inf{n ∈ N : N(Tn) = N(Tn+1)}.

If {n ∈ N : N(Tn) = N(Tn+1)} = ∅, we think p as ∞. Furthermore, the descent

of T is defined as

q = q(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)},

and if {n ∈ N : R(Tn) = R(Tn+1)} = ∅, then we think q as ∞.

As we have known, if p(T ) and q(T ) are both finite, then p(T ) = q(T ). If T is

Fredholm with p(T ) = q(T ) < ∞, we call it a Browder operator. And then the

Browder spectrum σb(T ) of T is defined as

σb(T ) = {λ ∈ C : T − λI is not Browder}.

We recall that an operator R ∈ B(H) is said to be Riesz if R−λI is Fredholm for

all λ ∈ C \ {0}. Browder spectra and Weyl essential approximate point spectra

are invariant under commuting Riesz perturbations (see [11]), i.e., if R is a Riesz

operator such that TR = RT , then σb(T ) = σb(T +R) and σaw(T ) = σaw(T +R).

Definition 1.1. An operator T ∈ B(H) is said to satisfy property (ω) if

σa(T ) \ σaw(T ) = π00(T ),

where π00(T ) = {λ ∈ isoσ(T ) : 0 < n(T − λI) < ∞}, and isoσ(T ) denotes the

set of isolated points of σ(T ).

Definition 1.2. We call an operator T ∈ B(H) consistent in invertibility

(abbrev. CI) provided there is implication, for arbitrary S ∈ B(H), ST ∈ G if

and only if TS ∈ G, where G = {T ∈ B(H) : T−1 ∈ B(H)}.

Curiously, this notion is already in Weyl’s paper [12]; it was discussed com-

prehensively on Hilbert spaces by Gong and Han [9], and on Banach spaces and

in Calkin algebras by Djordjević [8]. Also by σCI(T ) we denote

σCI(T ) = {λ ∈ C : T − λI is not CI},

and call it CI spectrum of T . Note that the CI spectrum need be neither closed

nor nonempty (see [7]).
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Recall that an “isoloid” operator is one of which the isolated points of the

spectrum are all eigenvalues, while an “a-isoloid” operator is one of which the

isolated points of its approximate point spectrum are all eigenvalues.

Property (ω), a variant of Weyl’s theorem [12] introduced by V. Rakoc̆e-

vic̀ in [10], has been studied in more recent papers, [1], [2] and [5]. This paper is

a continuation of a previous paper of Cao and the author [6], where the stability

of generalized property (ω) under certain classes of perturbations is studied. This

paper is also inspired by [1], [3], [4]. One of their main results in [3] is as follows:

Theorem 1.1. Suppose that T ∈ B(H) is a-isoloid, and K is a finite rank

operator commuting with T such that σa(T ) = σa(T + K). If T satisfies prop-

erty (ω), then T +K satisfies property (ω).

However, the condition σa(T ) = σa(T +K) is not necessary.

In this paper, using the CI spectrum, we give the necessary and sufficient

conditions for the stability of property (ω) under perturbations by finite rank

operators, nilpotent operators and Riesz operators, which generalize Theorem 1.1.

2. Property (ω) and perturbations

In order to study the stability of property (ω), let us begin with a lemma,

the proof of which can be found in [6].

Lemma 2.1. Let T ∈ B(H). If K ∈ B(H) is a finite rank operator which

commutes with T , then

isoσ(T +K) ⊆ isoσ(T ) ∪ ρ(T ).

We turn to a variant of the essential approximate point spectrum. Let

ρ1(T ) =
{
λ ∈ C : n(T − λI) <∞ and there exists ε > 0 such that

T − µI ∈W+(H), N(T − µI) ⊆
∞⋂

n=1

R[(T − µI)n] if 0 < |µ− λ| < ε
}

and let σ1(T ) = C \ ρ1(T ). Then σ1(T ) ⊆ σaw(T ) ⊆ σb(T ) ⊆ σ(T ).

Theorem 2.1. Suppose that T ∈ B(H) satisfies property (ω). If K is a finite

rank operator commuting with T , then T +K is isoloid and satisfies property (ω)

if and only if σb(T ) ∩ σa(T +K) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )].
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Proof. First, we will prove the necessary. Suppose that T + K is isoloid

and satisfies property (ω). The inclusion

σb(T ) ∩ σa(T +K) ⊇ σ1(T ) ∪ [σCI(T ) ∩ σa(T )]

is easily to prove.

For the reverse inclusion, let λ0 /∈ σ1(T )∪[σCI(T )∩σa(T )], then n(T−λ0I) <

∞, and there exists ε > 0 such that T − λI ∈W+(H) and

N(T − λI) ⊆
∞⋂

n=1

R[(T − λI)n]

if 0 < |λ − λ0| < ε. Since property (ω) holds for T , T − λI is bounded below if

0 < |λ− λ0| < ε. There are two cases to be considered.

Case 1. Suppose λ0 /∈ σCI(T ), then T−λI is invertible if 0 < |λ−λ0| is small

enough. This means that λ0 ∈ isoσ(T )∪ρ(T ). Thus λ0 ∈ isoσ(T+K)∪ρ(T+K).

But since T +K is isoloid and n(T −λ0I) <∞ implies n(T +K−λ0I) <∞, λ0 ∈
π00(T +K). The fact that property (ω) holds for T +K tells us that T +K−λ0I
is Browder, then T − λ0I is Browder, which means that λ0 /∈ σb(T )∩ σa(T +K).

Case 2. If λ0 /∈ σa(T ), then λ0 /∈ σa(T +K) or λ0 ∈ σa(T +K)\σaw(T +K).

We may suppose that λ0 ∈ σa(T + K) \ σaw(T + K). Since property (ω) holds

for T +K, T +K − λ0I is Browder. Then T − λ0I is Browder. Again, we prove

that λ0 /∈ σb(T ) ∩ σa(T +K).

Conversely, assume that

σb(T ) ∩ σa(T +K) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )].

Let λ0 ∈ σa(T + K) \ σaw(T + K). Then T − λ0I ∈ W+(H). If λ0 ∈ σa(T ),

using the fact that property (ω) holds for T , we know that T − λ0I is Browder.

This induces that T + K − λ0I is Browder. In the case that λ /∈ σa(T ), we get

that λ0 /∈ σ1(T ) ∪ [σCI(T ) ∩ σa(T )]. Thus λ0 /∈ σb(T ) ∩ σa(T + K). But since

λ0 ∈ σa(T + K), we know λ0 /∈ σb(T ). This induces that T − λ0I is Browder.

Again, we have that T +K − λ0I is Browder.

Now, we prove that λ0 ∈ π00(T +K). For the converse, let λ0 ∈ π00(T +K).

Using Lemma 2.1, λ0 ∈ isoσ(T ) ∪ ρ(T ). Without loss of generality, one can

suppose that λ0 ∈ isoσ(T ). The fact that K is finite rank tells that n(T −λ0I) <

∞. Now, we can see that λ0 /∈ σ1(T ) ∪ [σCI(T ) ∩ σa(T )]. Then T − λ0I is

Browder, and hence T +K −λ0I is also Browder, which means that λ0 ∈ σa(T +

K) \ σaw(T +K).
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In the following, we will prove that T+K is isoloid. Indeed, set λ0 ∈ isoσ(T+

K) but N(T +K − λ0I) = {0}, then λ0 ∈ isoσ(T ) ∪ ρ(T ) and n(T − λ0I) <∞.

This shows that λ0 /∈ σ1(T ) ∪ [σCI(T ) ∩ σa(T )]. Thus T + K − λ0I is bounded

below or T − λ0I is Browder. In each case, we may get that T + K − λ0I is

invertible. It is in contradiction to the fact that λ0 ∈ isoσ(T + K). This says

that T +K is isoloid. �

Example 1. Let T ∈ B(`2) and K = 0 ∈ B(`2) be defined by:

T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ).

Clearly, KT = TK, and

σb(T ) ∩ σa(T +K) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )] = {λ ∈ C : |λ| = 1}.

According to Theorem 2.1, one can get that T + K satisfies property (ω) and is

isoloid.

Using Theorem 2.1, we will give another proof of Theorem 1.1.

Corollary 2.1. Suppose that T ∈ B(H) is a-isoloid, and K is a finite rank

operator commuting with T such that σa(T ) = σa(T + K). If T satisfies prop-

erty (ω), then T +K satisfies property (ω).

Proof. It suffices to prove that

σb(T ) ∩ σa(T +K) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )].

Since T is a-isoloid and property (ω) holds for T , we can get that σb(T ) =

σ1(T ) ∪ σCI(T ). Then

σb(T ) ∩ σa(T +K) = σb(T ) ∩ σa(T ) = [σ1(T ) ∪ σCI(T )] ∩ σa(T )

= [σ1(T ) ∪ σCI(T )] ∩ [σ1(T ) ∪ σa(T )]

= σ1(T ) ∪ [σCI(T ) ∩ σa(T )]. �

Recall that T is finite-isoloid if isoσ(T ) ⊆ {λ ∈ C : 0 < n(T − λI) <∞}.

Corollary 2.2. Suppose that T is finite-isoloid and satisfies property (ω).

If K is a compact operator commuting with T , then T +K is isoloid and satisfies

property (ω) if and only if

σb(T ) ∩ σa(T +K) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )].
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Corollary 2.3. Suppose that T satisfies property (ω). If K is a finite rank

operator commuting with T , then T +K is finite-isoloid and satisfies property (ω)

if and only if

σb(T ) ∩ σa(T +K) = [σ1(T ) ∩ acc σ(T )] ∪ [σCI(T ) ∩ σa(T )].

Let H(T ) be the class of all complex-valued functions which are analytic on

a neighborhood of σ(T ), and are not constant on any component of σ(T ). Let

σSF+
(T ) = {λ ∈ C : T − λI is not upper semi-Fredholm}.

Corollary 2.4. Suppose that T is isoloid and satisfies property (ω). If K is

a finite rank operator commuting with T , then the following statements are equiv-

alent:

(1) for any f ∈ H(T ), f(T ) + K satisfies property (ω) and σa(f(T ) + K) =

σ(f(T ) +K);

(2) for any f ∈ H(T ), f(σ1(T )) = σ1(f(T )) and σb(T ) = σ1(T );

(3) for any λ ∈ C \ σSF+
(T ), ind(T − λI) ≥ 0;

(4) σCI(T ) ∩ ρa(T ) = ∅.

Proof. (1) =⇒ (2). First, we shall prove that σb(T ) = σ1(T ). We only

need to prove that σb(T ) ⊆ σ1(T ). Let λ0 /∈ σ1(T ), then n(T − λ0I) < ∞,

T − λI ∈W+(H) and

N(T − λI) ⊆
∞⋂

n=1

R[(T − λI)n],

if 0 < |λ − λ0| is sufficiently small. Since property (ω) holds for T , T − λI is

bounded below. Then T +K − λI is bounded below or T +K − λI is Browder.

From the fact that σ(T +K) = σa(T +K), we know that T +K−λI is invertible

or Browder. Therefore, T −λI is invertible. This shows that λ0 ∈ isoσ(T )∪ρ(T ).

Then T − λ0I is Browder, since T is isoloid and satisfies property (ω), which

means that λ0 /∈ σb(T ). Now, we have that

f(σ1(T )) = f(σb(T )) = σb(f(T )) ⊇ σ1(f(T )).

For the converse inclusion, let µ0 /∈ σ1(f(T )). Then dimN(f(T )−µ0I) <∞,

and there exists ε > 0 such that f(T )− µI ∈W+(H) and

N(f(T )− µI) ⊆
∞⋂

n=1

R[(f(T )− µI)n],
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if 0 < |µ−µ0| < ε. Thus f(T )−µI+K ∈W+(H). This shows that f(T )−µI+K

is bounded below or µ ∈ σa(f(T ) + K) \ σaw(f(T ) + K). We may get that

f(T )− µI +K is invertible or Browder, hence f(T )− µI is Browder. But since

N(f(T )− µI) ⊆
∞⋂

n=1

R[(f(T )− µI)n],

the operator f(T )− µI is invertible. This proves that µ0 ∈ isoσ(f(T )).

Set

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Then λi ∈ isoσ(T ) ∪ ρ(T ). Since

N [f(T )− µ0I] ⊇ N [(T − λiI)ni ]

and

n(f(T )− µ0I) <∞,

it follows that n(T − λiI) < ∞ for every λi, 1 ≤ i ≤ k. Therefore, λi /∈ σ1(T ),

and we prove that f(σ1(T )) ⊆ σ1(f(T )).

(2) =⇒ (3). If λ0 ∈ C\σSF+
(T ) such that ind(T −λ0I) < 0, then λ0 /∈ σa(T )

or λ0 ∈ σa(T ) \ σaw(T ). Thus T − λ0I is Browder. It is a contradiction.

(3) =⇒ (4). If λ0 ∈ σCI(T ) ∩ ρa(T ), then ind(T − λ0I) < 0. It is in

contradiction to the fact that ind(T − λI) ≥ 0 for any λ ∈ C \ σSF+
(T ).

(4) =⇒ (1). Suppose that σCI(T ) ∩ ρa(T ) = ∅. Then σ(T ) = σa(T ), and

using the fact that property (ω) holds for T , ind(T − λI) ≥ 0 for any λ ∈
C \ σSF+

(T ). We claim that for any f ∈ H(T ), f(T ) is isoloid and property (ω)

holds for f(T ).

Indeed, let µ0 ∈ σa(f(T )) \ σaw(f(T )), suppose that

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Then T − λiI is Weyl. Since property (ω)

holds for T , T − λiI is Browder. Then f(T )− µ0I is Browder. This proves that

µ0 ∈ π00(f(T )).

If µ0 ∈ π00(f(T )), let

f(T )− µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Without loss of generality, we may suppose

that λi ∈ σ(T ). Then λi ∈ π00(T ), and hence T − λiI is Browder, since T
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satisfies property (ω). We now get that µ0 ∈ σa(f(T )) \ σaw(f(T )). This proves

that property (ω) holds for f(T ).

Since isoσ(f(T )) ⊆ f(isoσ(T )) and T is isoloid, we get that f(T ) is isoloid.

By σ(T ) = σa(T ), we know that σa(f(T )) = σ(f(T )). We can prove that

σa(f(T ) +K) ⊇ σa(f(T )) ∩ σb(f(T )) = σ(f(T )) ∩ σb(f(T )) = σb(f(T )),

and

σb(f(T )) = σ1(f(T )) ∪ σCI(f(T )) = σ1(f(T )) ∪ [σCI(f(T )) ∩ σ(f(T ))]

= σ1(f(T )) ∪ [σCI(f(T )) ∩ σa(f(T ))].

Thus

σb(f(T )) ∩ σa(f(T ) +K) = σb(f(T )) = σ1(f(T )) ∪ [σCI(f(T )) ∩ σa(f(T ))].

By Theorem 2.1, f(T ) +K is isoloid, and property(ω) holds for f(T ) +K. Since

σa(f(T ) +K) ⊇ σb(f(T ))(= σb(f(T ) +K)),

we know that

σ(f(T ) +K) = σa(f(T ) +K).

This completes the proof. �

In the sequel, we shall consider nilpotent perturbations of operators satisfying

property (ω). It is easy to check that if N is a nilpotent operator commuting

with T , then σ(T ) = σ(T +N) and σa(T ) = σa(T +N). One can see that:

Theorem 2.2. Suppose that N ∈ B(H) is a nilpotent operator that com-

mutes with T ∈ B(H). Then T + N is isoloid and satisfies property (ω) if and

only if T is isoloid and satisfies property (ω).

If N is a nilpotent operator commuting with T , we get that

σaw(T ) = σaw(T +N).

Similar to the proof of Corollary 2.4, we get:

Corollary 2.5. Suppose that T is isoloid and satisfies property (ω). If N is

a nilpotent operator commuting with T , then the following statements are equiv-

alent:

(1) for any f ∈ H(T ), f(T ) +N is isoloid and satisfies property (ω);
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(2) for any pair λ, µ ∈ C \ σSF+(T ), ind(T − λI) ind(T − µI) ≥ 0, and σa(T ) =

σaw(T ) or σ(T ) = σa(T );

(3) for any f ∈ H(T ), f(T ) is isoloid and satisfies property (ω);

(4) for any f ∈ H(T ), f(σ1(T )) ⊆ σ1(f(T )), σa(T ) = σaw(T ) or σ(T ) = σa(T ).

For the stability of property (ω) for quasi-nilpotent operators or Riesz oper-

ators, one can obtain:

Theorem 2.3. Suppose that T ∈ B(H) satisfies property (ω). If K ∈
B(H) is a Riesz operator commuting with T , then T +K is isoloid and satisfies

property (ω) if and only if σb(T )∩σa(T +K) = [σ1(T )∩acc σ(T +K)]∪ [σCI(T )∩
σa(T )] ∪ {λ ∈ C : n(T +K − λI) =∞}.

As an application, we shall consider the stability of property (ω) for the

operators which are the products of finitely many normal operators. In what

follows, H will be a fixed separable complex Hilbert space. It is well known

that T ∈ B(H) is the product of finitely many normal operators if and only if

dimN(T ) = dimN(T ∗) or R(T ) is not closed [13]. If T ∈ B(H) is the product of

finitely many normal operators and T is a semi-Fredholm operator, T must be a

Weyl operator.

Theorem 2.4. Suppose that T ∈ B(H) is isoloid and satisfies property (ω).

If T − λI is the product of finitely many normal operators for any λ ∈ C, then

for any finite rank operator K ∈ B(H) commuting with T , T +K is isoloid and

satisfies property (ω).

Proof. Since T − λI is the product of finitely many normal operators for

any λ ∈ C, it follows that σ(T ) = σa(T ). Then

σ1(T ) ∪ [σCI(T ) ∩ σa(T )] = σ1(T ) ∪ σCI(T ).

Using the fact that T is isoloid and satisfies property (ω), we can get that σa(T +

K) ⊇ σa(T ) ∩ σb(T ) = σb(T ) and σb(T ) = σ1(T ) ∪ σCI(T ). Thus

σb(T ) ∩ σa(T +K) = σb(T ) = σ1(T ) ∪ σCI(T ) = σ1(T ) ∪ [σCI(T ) ∩ σa(T )].

By Theorem 2.1, T +K is isoloid and satisfies property (ω). �

Remark 2.1. (1) In Theorem 2.4, “property (ω) holds for T + K for any

finite rank operator K ∈ B(H) commuting with T” cannot induce that “T − λI
is the product of finitely many normal operators for any λ ∈ C”. For example,

let T ∈ B(`2) be defined by

T (x1, x2, x3, · · · ) = (x2, x3, x4, · · · ),

then T is isoloid and satisfies property (ω). Also, for any finite rank operator K
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commuting with T , T + K satisfies property (ω). But we can see that for any

|λ| < 1, T − λI is not the product of finitely many normal operators.

(2) We can prove that: if both T and T ∗ are isoloid and satisfy property (ω),

then, for any λ ∈ C and for any finite rank operator K ∈ B(H) commuting with

T , T + K − λI is the product of finitely many normal operators if and only if

σCI(T ) = ∅.
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