
Publ. Math. Debrecen

90/1-2 (2017), 11–32

DOI: 10.5486/PMD.2017.7328

Completely continuous commutator of Marcinkiewicz integral

By JIECHENG CHEN (Jinhua) and GUOEN HU (Zhengzhou)

Abstract. Let MΩ be the higher-dimensional Marcinkiewicz integral introduced

by Stein. In this paper, by Fourier transform estimates, approximation and a sufficient

condition for strongly pre-compact set in Lp(L2[1, 2], l2; Rn), the authors proved that if

b ∈ CMO(Rn) and Ω ∈ L(lnL)
3
2 (Sn−1), then for p ∈ (1, ∞), the commutator generated

by b and MΩ is a completely continuous operator on Lp(Rn).

1. Introduction

As an analogy to the classical Littlewood–Paley g-function, Marcinkie-

wicz [20] introduced the operator defined by

M(f)(x) =

(∫ π

0

|F (x+ t)− F (x− t)− 2F (x)|2

t3
dt

) 1
2

,

where F (x) =
∫ x

0
f(t)dt. This operator is now called the Marcinkiewicz inte-

gral. Zygmund [26] proved that M is bounded on Lp([0, 2π]) for p ∈ (1, ∞).

Stein [21] generalized the Marcinkiewicz operator to the case of higher dimen-

sion. Let Ω be homogeneous of degree zero, integrable and have mean value zero

on the unit sphere Sn−1. Define the Marcinkiewicz integral operator MΩ by

MΩ(f)(x) =

(∫ ∞
0

|FΩ,tf(x)|2 dt

t3

) 1
2

, (1.1)
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where

FΩ,tf(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy

for f ∈ S(Rn). This operator has been studied by many authors (see [1],

[6], [12], [13], and the related references therein). Stein [21] proved that if

Ω ∈ Lipα(Sn−1) with α ∈ (0, 1], then MΩ is bounded on Lp(Rn) for p ∈ (1, 2].

Benedek, Calderón and Panzon showed that the Lp(Rn) (p ∈ (1, ∞)) bound-

edness of MΩ holds true under the condition that Ω ∈ C1(Sn−1). Using the

one-dimensional result and Riesz transforms similarly as in the case of singular

integrals (see [4]) and interpolation, Walsh [24] proved that for p ∈ (1, ∞),

Ω ∈ L(lnL)1/r(ln lnL)2(1−2/r′)(Sn−1) is a sufficient condition such that MΩ is

bounded on Lp(Rn), where r = min {p, p′} and p′ = p/(p − 1). Ding, Fan

and Pan [12] proved that if Ω ∈ H1(Sn−1) (the Hardy space on Sn−1), then

MΩ is bounded on Lp(Rn) for all p ∈ (1, ∞); Al-Salmam et al. [1] proved that

Ω ∈ L(lnL)
1
2 (Sn−1) is a sufficient condition such thatMΩ is bounded on Lp(Rn)

for all p ∈ (1, ∞).

The commutator ofMΩ is also of interest and has been considered by many

authors. Let b ∈ BMO(Rn), the commutator generated by MΩ and b is defined

by

MΩ,bf(x) =

(∫ ∞
0

∣∣∣ ∫
|x−y|≤t

(
b(x)− b(y)

) Ω(x− y)

|x− y|n−1
f(y)dy

∣∣∣2 dt
t3

) 1
2

. (1.2)

Torchinsky and Wang [22] showed that if Ω ∈ Lipα(Sn−1) (α ∈ (0, 1]),

then MΩ,b is bounded on Lp(Rn) with bound C‖b‖BMO(Rn) for all p ∈ (1, ∞).

Hu and Yan [19] proved that Ω ∈ L(lnL)
3
2 (Sn−1) is a sufficient condition such

that MΩ, b is bounded on L2(Rn). Chen and Lu [5] improved the result in [19]

and showed that if Ω ∈ L(lnL)
3
2 (Sn−1), then MΩ, b is bounded on Lp(Rn) with

bound C‖b‖BMO(Rn) for all p ∈ (1, ∞).

Let CMO(Rn) be the closure of C∞0 (Rn) in the BMO(Rn) topology, which

coincides with VMO(Rn), the space of functions of vanishing mean oscillation

introduced by Coifman and Weiss [11], see also [3]. Uchiyama [23] proved that

if S is a Calderón–Zygmund operator, and b ∈ BMO(Rn), then the commutator

of S defined by

[b, S]f(x) = b(x)Sf(x)− S(bf)(x)

is a compact operator on Lp(Rn) (p ∈ (1, ∞)) if and only if b ∈ CMO(Rn). Chen,

Ding and Wang [8] considered the compactness ofMΩ, b on Lp(Rn), and proved

that if Ω satisfies certain regularity condition of Dini type, then for p ∈ (1, ∞),



Marcinkiewicz integral 13

MΩ, b is compact on Lp(Rn) if and only if b ∈ CMO(Rn). The purpose of this

paper is to prove that, in order to guarantee the compactness ofMΩ, b on Lp(Rn),

the regularity condition of Ω is superfluous. To formulate our main result, we first

recall some definitions.

Definition 1.1. Let X be a normed linear space and X ∗ be its dual space,

{xk} ⊂ X and x ∈ X . If for all f ∈ X ∗,

lim
k→∞

|f(xk)− f(x)| = 0,

then {xk} is said to converge to x weakly, or xk ⇀ x.

Definition 1.2. Let X , Y be two Banach spaces and S be a bounded operator

from X to Y.

(i) If for each bounded set G ⊂ X , SG = {Sx : x ∈ G} is a strongly pre-compact

set in Y, then S is called a compact operator from X to Y;

(ii) if for {xk} ⊂ X and x ∈ X ,

xk ⇀ x in X ⇒ ‖Sxk − Sx‖Y → 0,

then S is said to be a completely continuous operator.

It is well known that if X is a reflexive space and S is completely continuous

from X to Y, then S is also compact from X to Y. On the other hand, if S is

a linear compact operator from X to Y, then S is also a completely continuous

operator. However, if S is not linear, then the compactness of S does not imply

that S is completely continuous. For example, the operator

Sx = ‖x‖l2

is compact from l2 to R, but not completely continuous.

The main result in this paper can be stated as follows.

Theorem 1.1. Let Ω be homogeneous of degree zero and have mean value

zero on Sn−1. Suppose that Ω ∈ L(lnL)3/2(Sn−1). Then for b ∈ CMO(Rn) and

p ∈ (1, ∞), MΩ, b is completely continuous on Lp(Rn).

Remark 1.1. Recently, Chen and Hu [7] considered the compactness of the

commutator of homogeneous singular integral operators defined by

TΩf(x) = p. v.

∫
Rn

Ω(x− y)

|x− y|n
f(y)dy,
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here Ω is homogeneous of degree zero, integrable on Sn−1 and has mean value

zero. Using the idea of approximating TΩ by a sequence of operators with smooth

kernels, Chen and Hu considered the compactness of the commutator of TΩ when

Ω satisfies

sup
ζ∈Sn−1

∫
Sn−1

|Ω(η)|
(

ln
1

|η · ζ|

)θ
dη <∞ (1.3)

for some θ > 2. It should be pointed out that this idea comes from Watson’s

paper [25]. In this paper, we will also employ the idea of Watson. However, the

operators M and MΩ, b are not linear, the proof of Theorem 1.1 involves much

more technical problems, such as an appropriate sufficient condition of strongly

pre-compact sets in space Lp(L2[1, 2], l2; Rn) (see Lemma 3.4 below), and the

argument in this paper is more complicated.

We make some conventions. In what follows, C always denotes a positive

constant that is independent of the main parameters involved, but whose value

may differ from line to line. We use the symbol A . B to denote that there exists

a positive constant C such that A ≤ CB. For a set E ⊂ Rn, χE denotes its

characteristic function. Let M be the Hardy–Littlewood maximal operator. For

r ∈ (0, ∞), we use Mr to denote the operator Mrf(x) =
(
M(|f |r)(x)

)1/r
.

2. Approximation

Let Ω be homogeneous of degree zero, integrable on Sn−1. For t ∈ [1, 2] and

j ∈ Z, set

Kj
t (x) =

1

2j
Ω(x)

|x|n−1
χ{2j−1t<|x|≤2jt}(x). (2.1)

As it was proved in [15], there exists a constant α ∈ (0, 1) such that for t ∈ [1, 2]

and ξ ∈ Rn\{0},

|K̂j
t (ξ)| . ‖Ω‖L∞(Sn−1) min {1, |2jξ|−α}. (2.2)

Moreover, if
∫
Sn−1 Ω(x′)dx′ = 0, then

|K̂j
t (ξ)| . ‖Ω‖L1(Sn−1) min {1, |2jξ|}. (2.3)

Let

M̃Ωf(x) =

(∫ 2

1

∑
j∈Z

∣∣Fjf(x, t)
∣∣2dt

) 1
2

,
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with

Fjf(x, t) =

∫
Rn

Kj
t (x− y)f(y)dy.

For b ∈ BMO(Rn), let M̃Ω, b be the commutator of M̃Ω defined by

M̃Ω, bf(x) =

(∫ 2

1

∑
j∈Z

∣∣Fj, bf(x, t)
∣∣2dt

) 1
2

,

with

Fj, bf(x, t) =

∫
Rn

(
b(x)− b(y)

)
Kj
t (x− y)f(y)dy.

A trivial computation leads to that

MΩf(x) ≈ M̃Ωf(x), MΩ, bf(x) ≈ M̃Ω, bf(x). (2.4)

Let φ ∈ C∞0 (Rn) be a nonnegative function such that
∫
Rn φ(x)dx = 1,

suppφ ⊂ {x : |x| ≤ 1/4}. For l ∈ Z, let φl(y) = 2−nlφ(2−ly). It is easy to

verify that for any β ∈ (0, 1),

|φ̂l(ξ)− 1| . min {1, |2lξ|β}. (2.5)

Let

F ljf(x, t) =

∫
Rn

Kj
t ∗ φj−l(x− y)f(y) dy.

Define the operator M̃l
Ω by

M̃l
Ωf(x) =

(∫ 2

1

∑
j∈Z

∣∣F ljf(x, t)
∣∣2dt

) 1
2

(2.6)

For b ∈ BMO(Rn), let M̃l
Ω, b be the commutator of M̃l

Ω, that is,

M̃l
Ω, bf(x) =

(∫ 2

1

∑
j∈Z

∣∣F lj, bf(x, t)
∣∣2dt

) 1
2

, (2.7)

with

F lj, bf(x, t) =

∫
Rn

(
b(x)− b(y)

)
Kj
t ∗ φj−l(x− y)f(y) dy.

For j ∈ Z and l ∈ N, let

Ul, j; t(y) = Kj
t ∗ φl−j(y)−Kj

t (y).
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Let E0 = {x′ ∈ Sn−1 : |Ω(x′)| ≤ 2} and Ed = {x′ ∈ Sn−1 : 2d < |Ω(x′)| ≤
2d+1} for d ∈ N. Denote by Ωd the restriction of Ω to Ed, namely, Ωd(x

′) =

Ω(x′)χEd
(x′). Set

Ul, j; d, t(y) = Kj
d, t ∗ φl−j(y)−Kj

d, t(y),

with

Kj
d, t(y) =

1

2j
Ωd(x)

|x|n−1
χ{2j−1t<|x|≤2jt}(x).

Lemma 2.1. Let Ω be homogeneous of degree zero and Ω ∈ L1(Sn−1). Then

for p ∈ (1, ∞),

∥∥∥(∑
l∈Z
|Ul, j; t ∗ fl(x)|2

) 1
2
∥∥∥
Lp(Rn)

. ‖Ω‖L1(Sn−1)

∥∥∥(∑
l∈Z
|fl|2

) 1
2
∥∥∥
Lp(Rn)

.

For the proof of Lemma 2.1, see [19].

Lemma 2.2. Let Ω be homogeneous of degree zero and have mean value

zero, M̃l
Ω be the operator defined by (2.6). Suppose that Ω ∈ L lnL(Sn−1), then

for l ∈ N and p ∈ (1, ∞),

‖M̃Ωf − M̃l
Ωf‖Lp(Rn) . ‖f‖Lp(Rn). (2.8)

Proof. It is obvious that

∣∣M̃Ωf(x)− M̃l
Ωf(x)

∣∣ ≤ (∫ 2

1

∑
j

∣∣Ul, j; t ∗ f(x)
∣∣2dt

) 1
2

.

Let ψ ∈ C∞0 (Rn) be a radial function such that suppψ ⊂ {1/4 ≤ |ξ| ≤ 4} and∑
i∈Z

ψ(2−iξ) = 1, |ξ| 6= 0.

Define the multiplier operator Si by

Ŝif(ξ) = ψ(2−iξ)f̂(ξ).

Let

D1f(x) =

0∑
m=−∞

(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2

,
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D2f(x) =

∞∑
d=1

∞∑
m=Nd

(∫ 2

1

∑
j

∣∣∣Ul,j;d,t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2

and

D3f(x) =

∞∑
d=1

Nd∑
m=1

(∫ 2

1

∑
j∈Z

∣∣∣Ul, j; d, t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2

.

It then follows that for f ∈ S(Rn),∥∥∥∥(∫ 2

1

∑
j

∣∣Ul, j; t ∗ f(x)
∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

≤
3∑
i=1

‖Dif‖Lp(Rn).

We now estimate the term D1. By Fourier transform estimate, we know that∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥2

L2(Rn)

=

∫ 2

1

∫
Rn

∑
j∈Z

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dxdt

=

∫ 2

1

∑
j∈Z

∫
Rn

|K̂j
t (ξ)|2|φ̂j−l(ξ)− 1|2|ψ(2−m+jξ)|2|f̂(ξ)|2dξdt

. ‖Ω‖L1(Sn−1)

∑
j∈Z

∫
Rn

|2j−lξ|2|ψ(2−m+jξ)|2|f̂(ξ)|2dξ

≤ 22m2−2l‖Ω‖2L1(Sn−1)‖f‖
2
Lp(Rn). (2.9)

On the other hand, for p ∈ (2, ∞), applying the Minkowski inequality and

Lemma 2.1, we have that∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥2

Lp(Rn)

≤
∫ 2

1

(∫
Rn

(∑
j∈Z

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2) p

2

dx

) 2
p

dt

≤ ‖Ω‖2L1(Sn−1)‖f‖
2
Lp(Rn). (2.10)

To estimate ∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)
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for p ∈ (1, 2), we consider the mapping F defined by

F : {hj(x)}j∈Z −→ {Ul, j; t ∗ hj(x)}.

Note that for any t ∈ (1, 2),∣∣Ul, j; t ∗ hj(x)
∣∣ .MMΩhj(x) +MΩhj(x),

with MΩ the maximal operator defined by

MΩh(x) = sup
r>0

1

|B(x, r)|

∫
B(x, r)

|Ω(x− y)||f(y)|dy.

It is well known that MΩ is bounded on Lp(Rn) with bound C‖Ω‖L1(Sn−1) for all

p ∈ (1, ∞). A straightforward computation then tells us that for p0 ∈ (1, ∞)∫
Rn

∫ 2

1

∑
j∈Z

∣∣Ul, j; t ∗ hj(x)
∣∣p0dtdx . ‖Ω‖p0L1(Sn−1)

∫
Rn

∑
j∈Z
|hj(x)|p0dx. (2.11)

Also, we have that

sup
j∈Z

sup
t∈[1, 2]

∣∣Ul, j; t ∗ hj(x)
∣∣ . ‖Ω‖L1(Sn−1) sup

j∈Z
|hj(x)|,

which implies that for p1 ∈ (1, ∞),∥∥∥ sup
j∈Z

sup
t∈[1, 2]

∣∣Ul, j; t ∗ hj∣∣∥∥∥
Lp1 (Rn)

. ‖Ω‖L1(Sn−1)

∥∥∥ sup
j∈Z
|hj |
∥∥∥
Lp1 (Rn)

. (2.12)

For p ∈ (1, 2), interpolating the inequalities (2.11) and (2.12) (with p0 ∈ (1, 2),

p1 ∈ (2, ∞) and 1/p = 1/2 + (2− p0)/(2p1)) leads to that∥∥∥∥(∫ 2

1

∑
j∈Z

∣∣Ul, j; t ∗ hj∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. ‖Ω‖L1(Sn−1)

∥∥∥(∑
j∈Z
|hj |2

) 1
2
∥∥∥
Lp(Rn)

,

and so∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. ‖Ω‖L1(Sn−1)

∥∥∥(∑
j∈Z
|Sm−jf |2

) 1
2
∥∥∥
Lp(Rn)

. ‖Ω‖L1(Sn−1)‖f‖Lp(Rn).
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This, along with (2.10), states that for p ∈ (1, ∞),∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. ‖Ω‖L1(Sn−1)‖f‖Lp(Rn). (2.13)

Interpolating the inequalities (2.9) and (2.13) gives us that for p ∈ (1, ∞),∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. 2tpm‖Ω‖L1(Sn−1)‖f‖Lp(Rn),

with tp ∈ (0, 1) a constant depending only on p. Therefore,

‖D1f‖Lp(Rn) . ‖Ω‖L1(Sn−1)‖f‖Lp(Rn).

We turn our attention to the term D2. Again by the Plancherel theorem and

the Fourier transform estimates (2.2) and (2.5), we have that∥∥∥∥(∫ 2

1

∑
j∈Z

∣∣∣Ul, j; d, t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥2

L2(Rn)

=

∫ 2

1

∑
j∈Z

∫
Rn

|K̂j
t (ξ)|2|φ̂j−l(ξ)− 1|2|ψ(2−m+jξ)|2|f̂(ξ)|2dξdt

. ‖Ωd‖2L∞(Sn−1)

∑
j∈Z

∫
Rn

|2jξ|−2α|2j−lξ|αψ(2−m+jξ)|2|f̂(ξ)|2dξ

. ‖Ωd‖2L∞(Sn−1)2
−lα2−mα‖f‖2L2(Rn). (2.14)

As in the inequality (2.13), we have that for p ∈ (1, ∞),∥∥∥∥(∫ 2

1

∑
j∈Z

∣∣∣Ul, j; d, t∗(Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥2

Lp(Rn)

. ‖Ωd‖2L1(Sn−1)‖f‖
2
Lp(Rn). (2.15)

Interpolating the inequalities (2.14) and (2.15) then gives that∥∥∥∥(∫ 2

1

∑
j∈Z

∣∣∣Ul, j; d, t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. ‖Ωd‖L∞(Sn−1)2
−mδp‖f‖Lp(Rn).

This in turn implies that

‖D2f‖Lp(Rn) .
∞∑
d=1

2d
∞∑

m=Nd

2−mδp‖f‖Lp(Rn) . ‖f‖Lp(Rn),



20 Jiecheng Chen and Guoen Hu

if we choose N ∈ N such that N > 2δp.

It remains to consider the term D3. Again as (2.13), we have that for p ∈
(1, ∞),∥∥∥∥(∫ 2

1

∑
j

∣∣∣Ul, j; d, t ∗ (Sm−jf)(x)
∣∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. ‖Ωd‖L1(Rn)‖f‖Lp(Rn).

This, in turn implies that

‖D3f‖Lp(Rn) .
∞∑
d=1

2d
Nd∑
m=1

‖Ωd‖L1(Sn−1)‖f‖Lp(Rn) . ‖f‖Lp(Rn).

Combining the estimates for D1, D2 and D3 leads to (2.8). �

The following result shows that {M̃l
Ω}l∈N approximate to M̃Ω properly, and

will be useful in the proof of Theorem 1.1.

Theorem 2.1. Let Ω be homogeneous of degree zero and have mean value

zero. Suppose that Ω ∈ L(lnL)γ(Sn−1) for some γ ∈ (1, ∞), then for l ∈ N and

p ∈ (1, ∞),

‖M̃Ωf − M̃l
Ωf‖Lp(Rn) . l

−δp‖f‖Lp(Rn),

with δp a constant depending only on p and n.

Proof. By the estimates in [17], we know that if Ω satisfies (1.3) for some

θ ∈ (0, ∞), then, for ξ ∈ Rn\{0}, j ∈ Z and t ∈ [1, 2],

|K̂j
t (ξ)| . ln−θ(|2jξ|).

For each ξ ∈ Rn\{0} and l ∈ N, let j0 be the integer such that 2l/2−1 < |2j0ξ| ≤
2l/2. A trivial computation involving the Fourier transform estimates (2.1)–(2.3)

leads to that∑
j∈Z

∣∣K̂j
t (ξ)φ̂(2j−lξ)− K̂j

t (ξ)
∣∣2 . ∑

j∈Z: j≤j0

|2j−lξ|2 +
∑

j∈Z: j>j0

ln−2γ(|2jξ|) . l−2θ+1.

This, via the Plancherel theorem, leads to∥∥M̃Ωf − M̃l
Ωf
∥∥
L2(Rn)

. l−θ+
1
2 ‖f‖L2(Rn). (2.16)

On the other hand, it was pointed out in [18] that, if Ω ∈ L(lnL)γ(Sn−1) for

γ ∈ (1, ∞), then Ω satisfies (1.3) for θ ∈ (1, γ). Therefore, by interpolating the

inequalities (2.8) and (2.16), we know that under the hypothesis of Theorem 2.1,∥∥M̃Ωf − M̃l
Ωf
∥∥
Lp(Rn)

. l−γ+1/2+ε‖f‖Lp(Rn),

with ε ∈ (0, γ − 1/2). This completes the proof of Theorem 2.1. �
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3. Proof of Theorem 1.1

To prove Theorem 1.1, we will use some lemmas.

Lemma 3.1. Let Ω be homogeneous of degree zero and belong to L1(Sn−1),

Kj
t be defined as in (2.1). Then for l ∈ N, s ∈ (1, ∞], j0 ∈ Z− and y ∈ Rn with

|y| < 2j0−4,

∑
j>j0

∑
k∈Z

2kn/s
(∫

2k<|x|≤2k+1

∣∣Kj
t ∗ φj−l(x+ y)−Kj

t ∗ φj−l(x)
∣∣s′dx) 1

s′

. 2l(n+1)2−j0 |y|.

Proof. We follow the argument used in [25] (see also [7]), with suitable

modification. Observe that suppKj
t ∗ φj−l ⊂ {x : 2j−2 ≤ |x| ≤ 2j+2}, and

‖φj−l(·+ y)− φj−l(·)‖Ls′ (Rn) . 2(j−l)n/s2j−l|y|.

Thus, for all k ∈ N,

∑
j∈Z

2k
n
s

(∫
2k<|x|≤2k+1

|Kj
t ∗ φj−l(x+ y)−Kl

t ∗ φl−j(x)|s
′
dx

) 1
s′

.
∑

j∈Z:|j−k|≤3

2kn/s‖Kj
t ‖L1(Rn)‖φj−l(·+ y)− φj−l(·)‖Ls′ (Rn) . 2l(n+1)s |y|

2k
.

This, in turn, leads to that

∑
j>j0

∑
k∈Z

2kn/s
(∫

2k<|x|≤2k+1

∣∣Kj
t ∗ φj−l(x+ y)−Kj

t ∗ φj−l(x)
∣∣s′dx) 1

s′

=
∑

k>j0−3

∑
j∈Z

2
kn
s

(∫
2k<|x|≤2k+1

∣∣Kj
Ω ∗ φj−l(x+ y)−Kj

Ω ∗ φj−l(x)
∣∣s′dx) 1

s′

. 2l(n+1)2−j0 |y|,

and completes the proof of Lemma 3.1. �

For t ∈ [1, 2] and j ∈ Z, let Kj
t be defined as in (2.1), φ and φl (with l ∈ Z) be

as in Section 2. By Lemma 2.2 and the Lp(Rn) boundedness ofMΩ, we see that

if Ω is homogeneous of degree zero, has mean value zero and Ω ∈ L lnL(Sn−1),
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then for p ∈ (1, ∞), M̃l
Ω is bounded on Lp(Rn) with bound independent of l. For

j0 ∈ Z, define the operator M̃l, j0
Ω by

M̃l, j0
Ω f(x) =

(∫ 2

1

∑
j∈Z:j>j0

∣∣∣∣ ∫
Rn

Kj
t ∗ φj−l(x− y)f(y)dy

∣∣∣∣2dt

) 1
2

,

and the commutator M̃l, j0
Ω, b by

M̃l, j0
Ω, bf(x) =

(∫ 2

1

∑
j∈Z:j>j0

∣∣∣∣ ∫
Rn

(
b(x)− b(y)

)
Kj
t ∗ φj−l(x− y)f(y)dy

∣∣∣∣2dt

) 1
2

,

with b ∈ BMO(Rn).

Lemma 3.2. Let Ω be homogeneous of degree zero and have mean value

zero. Suppose that Ω ∈ L(lnL)γ(Sn−1) for some γ ∈ (1, ∞), then for p ∈ (1, ∞),

l ∈ N and j0 ∈ Z, M̃l, j0
Ω is bounded on Lp(Rn) with bound independent of

l and j0.

Proof. Let p ∈ (1, ∞) and l ∈ Z. By Theorem 2.1, it follows that M̃l
Ω is

bounded on Lp(Rn) with bounded independent of l. Observe that

M̃l, j0
Ω f(x) . M̃l

Ωf(x) +N l, j0
Ω f(x),

with

N l, j0
Ω f(x) =

(∫ 2

1

∑
j≤j0

|F ljf(x, t)|2
) 1

2

.

Thus, it suffices to prove that N l, j0
Ω is bounded on Lp with bound independent

of j0 and l. To this aim, we first note that if supp f ⊂ Q for a cube Q having

side length 2j0 , then suppN l, j0
Ω f ⊂ 20

√
nQ. On the other hand, if {Qk}k is a

sequence of cubes with disjoint interiors and having side length 2j0 , then the cubes

{20
√
nQk} have bounded overlaps. Thus, we may assume that supp f ⊂ Q, with

Q a cube centered at h ∈ Rn and having side length 2j0 . For such a f ∈ Lp(Rn),

we see that if x ∈ 20
√
nQ, then∫ 2

1

∑
j>j0+20n

|F ljf(x, t)|2dt = 0.

Therefore, for x ∈ 20
√
nQ,

N l, j0
Ω f(x) ≤M̃l

Ωf(x)+

(∫ 2

1

∑
j0<j≤j0+20n

|F ljf(x, t)|2dt

) 1
2

.M̃l
Ωf(x)+MΩMf(x).

The desired Lp(Rn) boundedness of M̃l, j0
Ω then follows directly. �
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Lemma 3.3. Let Ω be homogeneous of degree zero and integrable on Sn−1.

Then for b ∈ C∞0 (Rn), l ∈ N, j0 ∈ Z− and p ∈ (1, ∞),∥∥M̃l, j0
Ω, bf − M̃

l
Ω, bf

∥∥
Lp(Rn)

. 2j0‖f‖Lp(Rn).

Proof. Let b ∈ C∞0 (Rn) with ‖∇b‖L∞(Rn) = 1. By the fact that suppKj
Ω ∗

φj−l ⊂ {x : 2j−2 ≤ |x| ≤ 2j+2}, it is easy to verify that

∑
j≤j0

∫
Rn

∣∣Kj
t ∗ φj−l(x− y)

∣∣|x− y||f(y)|dy

.
∑
j≤j0

∑
k∈Z

2k
∫

2k<|x−y|≤2k+1

∣∣Kj
t ∗ φj−l(x− y)

∣∣|f(y)|dy

.
∑
j≤j0

∑
|k−j|≤3

2k
∫

2k<|x−y|≤2k+1

∣∣Kj
t ∗ φj−l(x− y)

∣∣|f(y)|dy . 2j0MΩMf(x).

Thus,∣∣∣M̃l, j0
Ω, bf(x)− M̃l

Ω, bf(x)
∣∣∣2

≤
∑
j<j0

∫ 2

1

∣∣∣∣ ∫
Rn

(
b(x)− b(y)

)
Kj
t ∗ φj−l(x− y)f(y)

∣∣∣∣2dt

.
∫ 2

1

(∑
j≤j0

∫
Rn

|x− y|
∣∣Kj

t ∗ φj−l(x− y)f(y)|dy
)2

dt . {2j0MΩMf(x)}2.

The desired conclusion now follows immediately. �

Let p, r ∈ [1, ∞), q ∈ [1, ∞], Lp(Lq([1, 2]), lr; Rn) be the space of sequences

of functions defined by

Lp(Lq([1, 2]), lr; Rn) =
{
~f = {fk}k∈Z : ‖~f‖Lp(Lq([1, 2]), lr;Rn) <∞

}
,

with

‖~f‖Lp(Lq([1, 2]), lr;Rn) =

∥∥∥∥(∫ 2

1

(∑
k∈Z
|fk(x, t)|r

) q
r

dt

) 1
q
∥∥∥∥
Lp(Rn)

.

With usual addition and scalar multiplication, Lp(Lq([1, 2]), lr; Rn) is a Banach

space.

Lemma 3.4. Let p ∈ (1, ∞), G ⊂ Lp(L2([1, 2]), l2; Rn). Suppose that G
satisfies the following five conditions:
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(a) G is bounded, that is, there exists a constant C such that for all ~f ∈ G,

‖~f‖Lp(L2([1, 2]), l2;Rn) ≤ C;

(b) for each fixed ε > 0, there exists a constant A > 0, such that for all ~f =

{fk}k∈Z ∈ G,

∥∥∥∥(∫ 2

1

∑
k∈Z
|fk(·, t)|2dt

) 1
2

χ{|·|>A}(·)
∥∥∥∥
Lp(Rn)

< ε;

(c) for each fixed ε > 0 and N ∈ N, there exists a constant % > 0, such that for

all ~f = {fk}k∈Z ∈ G,

∥∥∥∥ sup
|h|≤%

(∫ 2

1

∑
|k|≤N

|fk(x, t)− fk(x+ h, t)|2dt

) 1
2
∥∥∥∥
Lp(Rn)

< ε;

(d) for each fixed ε > 0 and N ∈ N, there exists a constant σ ∈ (0, 1/2) such

that for all ~f = {fk}k∈Z ∈ G,

∥∥∥∥ sup
|s|≤σ

(∫ 2

1

∑
|k|≤N

|fk(·, t+ s)− fk(·, t)|2dt

) 1
2
∥∥∥∥
Lp(Rn)

< ε,

(e) for each fixed D > 0 and ε > 0, there exists N ∈ N such that for all

{fk}k∈Z ∈ G,

∥∥∥∥(∫ 2

1

∑
|k|>N

|fk(·, t)|2dt

) 1
2

χB(0, D)

∥∥∥∥
Lp(Rn)

< ε.

Then G is a strongly pre-compact set in Lp(L2([1, 2]), l2; Rn).

Proof. We employ the argument used in the proof of [9, Theorem 5], with

some refined modifications. We claim that for each fixed ε > 0, there exists

a δ = δε > 0, and a mapping Φε on Lp(L2([1, 2]), l2; Rn), such that Φε(G) =

{Φε(~f) : ~f ∈ G} is a strong pre-compact set in Lp(L2([1, 2]), l2; Rn), and for any
~f , ~g ∈ G,

‖Φε(~f)− Φε(~g)‖Lp(L2([1, 2]), l2;Rn) < δ ⇒ ‖~f − ~g‖Lp(L2([1, 2]), l2;Rn) < 9ε.

If we can prove this, then by Lemma 6 in [9], we see that G is a strongly pre-

compact set in Lp(L2[1, 2], l2; Rn).
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Now let ε > 0. We choose A > 1 large enough as in assumption (b), N ∈ N
such that for all {fk}k∈Z ∈ G,∥∥∥∥(∫ 2

1

∑
|k|>N

|fk(·, t)|2dt

) 1
2

χB(0, 2A)

∥∥∥∥
Lp(Rn)

< ε.

Let % ∈ (0, 1/2) be small enough as in assumption (c), and σ ∈ (0, 1/2) be

small enough such that (d) holds true. Let Q be the largest cube centered at

the origin such that 2Q ⊂ B(0, %), Q1, . . . , QJ be J copies of Q such that they

are non-overlapping, and B(0, A) ⊂ ∪Jj=1Qj ⊂ B(0, 2A), I1, . . . , IL ⊂ [1, 2]

be non-overlapping intervals with the same length |I|, such that |s − t| ≤ σ for

all s, t ∈ Ij (j = 1, . . . , L) and ∪Nj=1Ij = [1, 2]. Define the mapping Φε on

Lp(L2([1, 2]), l2; Rn) by

Φε(~f)(x, t) =

{
. . . , 0, . . . , 0,

J∑
i=1

L∑
j=1

mQi×Ij (f−N )χQi×Ij (x, t),

J∑
i=1

L∑
j=1

mQi×Ij (f−N+1)χQi×Ij (x, t), . . . ,

J∑
i=1

L∑
j=1

mQi×Ij (fN )χQi×Ij (x, t), 0, . . . ,

}
,

where, and in the following,

mQi×Ij (fk) =
1

|Qi|
1

|Ij |

∫
Qi×Ij

fk(x, t)dxdt.

Note that

|mQi×Ij (fk)| ≤
(

1

|Qi||Ij |

∫
Ij

∫
Qi

|fk(y, t)|2 dydt

) 1
2

.

For ~f = {fk}k∈Z and p ∈ [2, ∞), we have that by the Hölder inequality,

‖Φε(~f)‖pLp(L2([1, 2]),l2;Rn) = |Q|1−
p
2 |I|1−

p
2

J∑
i=1

L∑
j=1

(∫
Ij

∫
Qi

∑
k∈Z
|fk(y, t)|2dydt

) p
2

≤
J∑
i=1

L∑
j=1

∫
Ij

∫
Qi

(∑
k∈Z
|fk(y, t)|2

) p
2

dydt ≤ ‖~f‖pLp(L2([1, 2]), l2,Rn).

On the other hand, we have that

sup
−N≤k≤N

sup
t∈[1, 2]

∣∣∣ J∑
i=1

L∑
j=1

mQi×Ij (fk)χQi×Ij (x, t)
∣∣∣ . sup

k∈Z
sup
t∈[1, 2]

|fk(x, t)|,
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which implies that for p1 ∈ (1, ∞),

‖Φε(~f)‖Lp1 (L∞([1, 2]), l∞;Rn) . ‖~f‖Lp1 (L∞([1, 2]), l∞;Rn). (3.1)

We also have that for p0 ∈ (1, ∞),

|mQi×Ij (fk)| ≤
(

1

|Qi||Ij |

∫
Ij

∫
Qi

|fk(y, t)|p0 dydt

) 1
p0

,

and so

‖Φε(~f)‖Lp0 (Lp0 ([1, 2]), lp0 ;Rn) . ‖~f‖Lp0 (Lp0 ([1, 2]), lp0 ;Rn). (3.2)

By interpolation, we deduce from (3.1) and (3.2) that for any p ∈ (1, 2),

‖Φε(~f)‖Lp(L2([1, 2]), l2;Rn) . ‖~f‖pLp(L2([1, 2]), l2,Rn).

Thus, Φε(G) = {Φε(~f) : ~f ∈ G} is a strongly pre-compact set in Lp(L2([1, 2]),

l2;Rn). Denote D = ∪Ji=1Qi. Write∥∥~fχD − Φε(~f)
∥∥
Lp(L2([1, 2]), l2;Rn)

≤
∥∥∥∥(∫ 2

1

∑
|k|≤N

∣∣fk(·, t)χD −
J∑
i=1

L∑
j=1

mQi×Ij (fk)χQi×Ij (·, t)
∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

+

∥∥∥∥(∫ 2

1

∑
|k|>N

∣∣fk(·, t)
∣∣2) 1

2

χB(0, 2A)

∥∥∥∥
Lp(Rn)

.

Let

E =

∥∥∥∥ sup
|h|≤%

(∫ 2

1

∑
|k|≤N

|fk(·, t)− fk(·+ h, t)|2dt

) 1
2
∥∥∥∥p
Lp(Rn)

,

F =

∥∥∥∥ sup
|s|≤σ

(∫ 2

1

∑
|k|≤N

|fk(·, t)− fk(·, t+ s)|2dt

) 1
2
∥∥∥∥p
Lp(Rn)

.

Noting that for x ∈ Qi with 1 ≤ i ≤ J ,{∫ 2

1

∑
|k|≤N

∣∣fk(x, t)χD −
J∑
i=1

L∑
j=1

mQi×Ij (fk)χQi×Ij (x, t)
∣∣2dt

} 1
2

. |Q|− 1
2 |I|− 1

2

{ L∑
j=1

∫
Ij

∫
Qi

∫
Ij

∑
|k|≤N

∣∣fk(x, t)− fk(y, s)
∣∣2 dy dsdt

} 1
2
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. |Q|− 1
2

{∫
2Q

∫ 2

1

∑
|k|≤N

|fk(x, s)− fk(x+ h, s)|2dsdh

} 1
2

+ |I|− 1
2

{ L∑
j=1

∫
Ij

∫
Ij

∑
|k|≤N

|fk(x, t)− fk(x, s)|2dtds

} 1
2

,

we then get that

J∑
i=1

∫
Qi

{∫ 2

1

( ∑
|k|≤N

∣∣fk(x, t)−
J∑
l=1

mQl
(fk)χQl

(x)
∣∣2 )dt

} p
2

dx . E + F.

It then follows from the assumption (b) that for all ~f ∈ G,

‖~f − Φε(~f)‖Lp(L2([1, 2]), l2;Rn)

≤
∥∥~fχD−Φε(~f)

∥∥
Lp(L2([1, 2]), l2;Rn)

+

∥∥∥∥(∫ 2

1

∑
k∈Z
|fk(·, t)|2dt

) 1
2

χ{|·|>A}(·)
∥∥∥∥
Lp(Rn)

<3ε.

Note that

‖~f − ~g‖Lp(L2([1, 2]), l2;Rn)

≤ ‖~f − Φε(~f)‖Lp(L2([1, 2]), l2;Rn) + ‖Φε(~f)− Φε(~g)‖Lp(L2([1, 2]), l2;Rn)

+ ‖~g − Φε(~g)‖Lp(L2([1, 2]), l2;Rn).

Our claim then follows directly. This completes the proof of Lemma 3.4. �

For b ∈ BMO(Rn), set

F lj, bf(x, t) =

∫
Rn

(
b(x)− b(y)

)
Kj
t ∗ φj−l(x− y)f(y) dy.

Proof of Theorem 1.1. Let j0 ∈ Z−, b ∈ C∞0 (Rn) with supp b ⊂ B(0, R),

p ∈ (1, ∞) and δ ∈ (0, 1). Without loss of generality, we may assume that

‖b‖L∞(Rn) + ‖∇b‖L∞(Rn) = 1. We claim that

(i) for each fixed ε > 0, there exists a constant A > 0 such that

∥∥∥∥(∫ 2

1

∑
j∈Z
|F lj, bf(x, t)|2dt

) 1
2

χ{|·|>A}(·)
∥∥∥∥
Lp(Rn)

< ε‖f‖Lp(Rn);
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(ii) for s ∈ (1, ∞),(∫ 2

1

∑
j>j0

|F lj, bf(x, t)− F lj, bf(x+ h, t)|2dt

) 1
2

. 2−j0 |h|
(
M̃l, j0

Ω f(x) + 2l(n+1)Msf(x)
)

;

(iii) for each ε > 0 and N ∈ N, there exists a constant σ ∈ (0, 1/2) such that

∥∥∥∥ sup
|s|≤σ

(∫ 2

1

∑
|j|≤N

|F lj, bf(x, s+ t)− F lj, bf(x, t)|2dt

) 1
2
∥∥∥∥
Lp(Rn)

< ε‖f‖Lp(Rn);

(iv) for each fixed D > 0 and ε > 0, there exists N ∈ N such that

∥∥∥∥(∫ 2

1

∑
j>N

|F lj, bf(·, t)|2dt

) 1
2

χB(0, D)

∥∥∥∥
Lp(Rn)

< ε‖f‖Lp(Rn).

We now prove claim (i). Let t ∈ [1, 2]. For each fixed x ∈ Rn with |x| > 4R,

observe that suppKj
t ∗ φj−l ⊂ {2j−2 ≤ |x| ≤ 2j+2}, and

∫
|z|<R

∣∣Kj
t ∗ φj−l(x −

z)
∣∣dz 6= 0 only if 2j ≈ |x|. A trivial computation leads to that∫
|z|<R

∣∣Kj
t ∗ φj−l(x− z)

∣∣dz
.

(∫
|z|<R

∣∣Kj
t ∗ φj−l(x− z)

∣∣2dz

) 1
2

R
n
2 .

(∫
|x|
2 ≤|z|<2|x|

∣∣Kj
t ∗ φj−l(z)

∣∣2dz

) 1
2

R
n
2

. ‖Kj
t ‖L1(Sn−1)‖φj−l‖L2(Rn)R

n
2 . 2nl/2|x|−n

2R
n
2 .

On the other hand, we have that

∑
j∈Z

(∫
|y|<R

|Kj
t ∗ φj−l(x− y)||f(y)|sdy

) 1
s

=
∑

j∈Z: 2j≈|x|

(∫
|x|/2≤|y−x|≤2|x|

|Kj
t ∗ φj−l(x− y)||f(y)|sdy

) 1
s

.
(
MΩM(|f |s)(x)

) 1
s

.

Another application of the Hölder inequality then yields∑
j∈Z
|F lj, bf(x, t)

∣∣2 .
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.
∑
j∈Z

(∫
|y|<R

|Kj
t ∗ φj−l(x−y)||f(y)|sdy

) 2
s

×
(∫
|y|<R

|Kj
t ∗ φj−l(x−y)|dy

) 2
s′

. 2
nl
s′ |x|− n

s′R
n
s′
(
MΩM(|f |s)(x)

) 2
s

.

This, in turn implies our claim (i).

We turn our attention to claim (ii). Write

|F lj, bf(x, t)− F lj, bf(x+ h, t)| ≤ |b(x)− b(x+ h)||F ljf(x, t)|+ Jljf(x, t),

with

Jljf(x, t) =

∣∣∣∣ ∫
Rn

(
Kj
t ∗φj−l(x−y)−Kj

t ∗φj−l(x+h−y)
)(
b(x+h)−b(y)

)
f(y)dy

∣∣∣∣.
It follows from Lemma 3.1 that(∑
j>j0

|Jljf(x, t)|2
) 1

2

.
∑
j>j0

∫
Rn

∣∣Kj
t ∗ φj−l(x− y)−Kj

t ∗ φj−l(x+ h− y)
∣∣|f(y)|dy

.2l(n+1)|h|2−j0Msf(x).

Therefore,(∫ 2

1

∑
j>j0

|F lj, bf(x, t)− F lj, bf(x+ h, t)|2dt

) 1
2

. |h|M̃l, j0
Ω f(x) + 2l(n+1)2−j0 |h|Msf(x). (3.3)

The claim (ii) now follows from the (3.3) and Lemma 3.2.

We now verify claim (iii). For each fixed σ ∈ (0, 1/2) and t ∈ [1, 2], let

U jt, σ(z) =
1

2j
|Ω(z)|
|z|n−1

χ{2j(t−σ)≤|z|≤2jt} +
1

2j
|Ω(z)|
|z|n−1

χ{2j+1t≤|z|≤2j+1(t+σ)},

and

Gjl, t, σf(x) =

∫
Rn

(
U jt, σ ∗ |φl−j |

)
(x− y)|f(y)|dy.

Note that

‖U jt, σ ∗ |φl−j |‖L1(Rn) . σ.

By the Young inequality, it is obvious that for p1 ∈ (1, ∞),∥∥∥ sup
|j|≤N

sup
t∈[1, 2]

|Gjl, t, σf |
∥∥∥
Lp1 (Rn)

. σ‖f‖Lp1 (Rn), (3.4)
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and for p0 ∈ (1, ∞),∫
Rn

∫ 2

1

∑
|j|≤N

∣∣Gjl, t, σf(x)
∣∣p0dtdx . Nσp0‖f‖p0Lp0 (Rn). (3.5)

We get from (3.4) and (3.5) that for p ∈ (1, 2),∥∥∥∥(∫ 2

1

∑
|j|≤N

∣∣Gjl, t, σf(x)
∣∣2dt

) 1
2
∥∥∥∥
Lp(Rn)

. Nσ‖f‖Lp(Rn). (3.6)

On the other hand, for p ∈ [2, ∞), we obtain from the Minkowski inequality and

the Young inequality that∥∥∥∥(∫ 2

1

∑
|j|≤N

|Gjl, t, σf(x)|2dt

) 1
2
∥∥∥∥2

Lp(Rn)

.

{∫
Rn

(∫ 2

1

( ∑
|j|≤N

∫
Rn

(
U jl, t, σ ∗ |φl−j |

)
(x− y)|f(y)|dy

)2

dt

) p
2

dx

} 2
p

.
∫ 2

1

{ ∑
|j|≤N

(∫
Rn

(∫
Rn

(
U jl, t, σ ∗ |φl−j |

)
(x− y)|f(y)|dy

)p
dx

) 1
p
}2

dt

. (2Nσ)2‖f‖2Lp(Rn). (3.7)

Since

sup
|s|≤σ

|F lj, bf(x, t)− F lj, bf(x, t+ s)| ≤ Gjl, t, σf(x),

our claim (iii) now follows from (3.6) and (3.7) immediately if we choose σ =

ε/(2N).

It remains to prove (iv). Let D > 0 and N ∈ N such that 2N−2 > D. Then

for j > N and x ∈ Rn with |x| ≤ D,∫
Rn

∣∣Kj
t ∗ φj−l(x− y)f(y)

∣∣dy =

∫
Rn

∣∣Kj
t ∗ φj−l(x− y)f(y)

∣∣χ{|y|≤2j+3}(y)dy

.
∫
|y|≤2j+3

|f(y)|dy‖Kj
t ‖L1(Rn)‖φj−l‖L∞(Rn) . 2nl2−

nj
p ‖f‖Lp(Rn).

Therefore,∥∥∥∥(∫ 2

1

∑
j>N

∣∣F lj, bf(·, t)|2dt

) 1
2

χB(0, D)

∥∥∥∥
Lp(Rn)

. 2nl
(
D

2N

)n
p

‖f‖Lp(Rn).
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We can now conclude the proof of Theorem 1.1. Let p ∈ (1, ∞). Our claims

(i)–(iv), via Lemma 3.2 and Lemma 3.4, prove that for b ∈ C∞0 (Rn), l ∈ N and

j0 ∈ Z−, the operator F lj0 defined by

F lj0 : f(x)→ {. . . , 0, . . . , F lj0, bf(x, t), F lj0+1, bf(x, t), . . . }

is compact, and completely continuous from Lp(Rn) to Lp(L2([1, 2]), l2; Rn).

Thus, M̃l, j0
Ω, b is completely continuous on Lp(Rn). This, via Lemma 3.3 and

Theorem 2.1, shows that for b ∈ C∞0 (Rn), M̃Ω, b is completely continuous on

Lp(Rn). Note that∣∣MΩ, bfk(x)−MΩ, bf(x)
∣∣ .MΩ, b(fk − f)(x) . M̃Ω, b(fk − f)(x).

Thus, for b ∈ C∞0 (Rn),MΩ, b is completely continuous on Lp(Rn). Recalling that

when Ω ∈ L(lnL)
3
2 (Sn−1),MΩ, b is bounded on Lp(Rn) with bound C‖b‖BMO(Rn)

(see [5]), we finally obtain that for b ∈ CMO(Rn),MΩ, b is completely continuous

on Lp(Rn). �
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