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Completely continuous commutator of Marcinkiewicz integral

By JIECHENG CHEN (Jinhua) and GUOEN HU (Zhengzhou)

Abstract. Let Mg be the higher-dimensional Marcinkiewicz integral introduced
by Stein. In this paper, by Fourier transform estimates, approximation and a sufficient
condition for strongly pre-compact set in L?(L>[1, 2], I?; R™), the authors proved that if
be CMO(R™) and Q2 € L(In L)% (S™™1), then for p € (1, o0), the commutator generated
by b and Mg is a completely continuous operator on L?(R"™).

1. Introduction

As an analogy to the classical Littlewood—Paley g-function, MARCINKIE-
wicz [20] introduced the operator defined by

M(P)E) = (/O’T |F(z+t) — F(z —t) — 2F(z)|? dt>%’

3

where F(z) = [; f(t)dt. This operator is now called the Marcinkiewicz inte-
gral. ZYGMUND [26] proved that M is bounded on L”([0, 27]) for p € (1, c0).
STEIN [21] generalized the Marcinkiewicz operator to the case of higher dimen-
sion. Let Q2 be homogeneous of degree zero, integrable and have mean value zero
on the unit sphere S"~1. Define the Marcinkiewicz integral operator Mg by

3

Ma(f)(z) = (/Ooo IFn,tf(w)|2dt>é, (1.1)
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where

Qz —y)
R = [ i

for f € S(R™). This operator has been studied by many authors (see [1],
[6], [12], [13], and the related references therein). STEIN [21] proved that if
Q € Lip, (5™~ !) with a € (0, 1], then Mg is bounded on LP(R") for p € (1, 2].
Benedek, Calderén and Panzon showed that the LP(R™) (p € (1, 00)) bound-
edness of Mg holds true under the condition that Q € C*(S™~1!). Using the
one-dimensional result and Riesz transforms similarly as in the case of singular
integrals (see [4]) and interpolation, WALSH [24] proved that for p € (1, o0),
Q € L(nL)Y/"(Inln L)2(=2/7)(§7=1) is a sufficient condition such that Mg is
bounded on LP(R™), where r = min{p, p'} and p’ = p/(p — 1). DING, FAN
and PAN [12] proved that if Q € H'(S"~!) (the Hardy space on S"~!), then
Mg is bounded on LP(R™) for all p € (1, 00); AL-SALMAM et al. [1] proved that
Qe L(nL)z(S" 1) is a sufficient condition such that Mg, is bounded on L?(R™)
for all p € (1, o0).

The commutator of Mg is also of interest and has been considered by many
authors. Let b € BMO(R"), the commutator generated by Mg and b is defined
by

Moty = ([T [ o o) g rwa] ) Lo

x—y|nt 3

TORCHINSKY and WANG [22] showed that if Q € Lip,(S"™!) (o € (0, 1]),
then Mgq is bounded on LP(R™) with bound C||b||gmorn) for all p € (1, c0).
HU and YAN [19] proved that Q € L(In L)2(S™1) is a sufficient condition such
that Mg p is bounded on L?(R™). CHEN and LU [5] improved the result in [19]
and showed that if Q € L(In L)% (S"~!), then Mgq_; is bounded on LP(R™) with
bound C|[b||gmorn) for all p € (1, o).

Let CMO(R™) be the closure of C§°(R™) in the BMO(R™) topology, which
coincides with VMO(R™), the space of functions of vanishing mean oscillation
introduced by CorFMAN and WEISS [11], see also [3]. UCHIYAMA [23] proved that
if S is a Calderén—Zygmund operator, and b € BMO(R"™), then the commutator
of S defined by

[b, S1f(x) = b(x)Sf(x) — S(bf)(x)

is a compact operator on LP(R™) (p € (1, 00)) if and only if b € CMO(R"). CHEN,
DiNG and WANG [8] considered the compactness of Mg, on LP(R™), and proved
that if  satisfies certain regularity condition of Dini type, then for p € (1, o),



Marcinkiewicz integral 13

Mg, is compact on LP(R™) if and only if b € CMO(R"™). The purpose of this
paper is to prove that, in order to guarantee the compactness of Mg j, on LP(R™),
the regularity condition of € is superfluous. To formulate our main result, we first
recall some definitions.

Definition 1.1. Let X be a normed linear space and X'* be its dual space,
{zx} C X and z € X. If for all f € X*,

T |7(ay) — f(2)] =0,

then {zx} is said to converge to x weakly, or z; — x.
Definition 1.2. Let X', ) be two Banach spaces and S be a bounded operator
from X to Y.

(i) If for each bounded set G C X, SG = {Sz : x« € G} is a strongly pre-compact
set in ), then S is called a compact operator from X to Y;

(ii) if for {ap} C X and x € X,
xp — 2 in X = || Sz, — Sz||y — 0,

then S is said to be a completely continuous operator.

It is well known that if X is a reflexive space and S is completely continuous
from X to ), then S is also compact from X to ). On the other hand, if S is
a linear compact operator from X to ), then S is also a completely continuous
operator. However, if S is not linear, then the compactness of S does not imply
that S is completely continuous. For example, the operator

Sz = ||zl
is compact from [ to R, but not completely continuous.
The main result in this paper can be stated as follows.

Theorem 1.1. Let 2 be homogeneous of degree zero and have mean value
zero on S"~1. Suppose that Q € L(In L)3/2(S"~1). Then for b € CMO(R") and
p € (1, 00), Mq, is completely continuous on LP(R™).

Remark 1.1. Recently, CHEN and Hu [7] considered the compactness of the
commutator of homogeneous singular integral operators defined by

TQf(x)=p-V-/ Mf(y)dy,

n |z =yl
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here  is homogeneous of degree zero, integrable on S"~! and has mean value
zero. Using the idea of approximating Tq by a sequence of operators with smooth
kernels, Chen and Hu considered the compactness of the commutator of T, when

Q) satisfies p
1
sup / |Q2(n)| (ln ) dn < oo (1.3)
¢cesn—1Jgn-1 - |

for some 6 > 2. It should be pointed out that this idea comes from WATSON’s
paper [25]. In this paper, we will also employ the idea of Watson. However, the

operators M and Mg ; are not linear, the proof of Theorem 1.1 involves much
more technical problems, such as an appropriate sufficient condition of strongly
pre-compact sets in space LP(L?[1, 2], I?; R") (see Lemma 3.4 below), and the
argument in this paper is more complicated.

We make some conventions. In what follows, C always denotes a positive
constant that is independent of the main parameters involved, but whose value
may differ from line to line. We use the symbol A < B to denote that there exists
a positive constant C such that A < C'B. For a set E C R™, yg denotes its
characteristic function. Let M be the Hardy-Littlewood maximal operator. For
r € (0, c0), we use M, to denote the operator M, f(z) = (M(|f|’")(3[;))1/7

2. Approximation
Let © be homogeneous of degree zero, integrable on S"~1. For t € [1, 2] and
J €7, set

: 1 Qz
Kg(x) = 2j|a:|(7L_)1X{2-7—1t<|w§2-7t}(x)' (2.1)

As it was proved in [15], there exists a constant « € (0, 1) such that for ¢ € [1, 2]
and & € R™\{0},

K7 ()] S 1|9 (sn-1) min {1, [27¢[}. (2.2)
Moreover, if [q,_, Q(z’)dz’ = 0, then
K7 ()] S 19|z 571y min {1, [27]}. (2.3)

Let

Fias) = ([ S1rsto o)

jez
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with

Fif(z, t) = - K] (z —y) f(y)dy.

For b € BMO(R"), let /K/lvgvb be the commutator of MVQ defined by

Ma,of () = </122 |y o f (z, t)|2dt)é7

JEZ
with
Fof(e, t) = / (b(z) — b(w)) K (z — 1) f(w)dy.

n

A trivial computation leads to that
Mo f(z) = Maf(@), Mo,uf(@) ~ Ma,of(@). (2.4)

Let ¢ € C§°(R™) be a nonnegative function such that [, ¢(z)dz = 1,
suppo C {z : |z| < 1/4}. For I € Z, let ¢(y) = 27 ™p(27!y). It is easy to
verify that for any 5 € (0, 1),

|61(€) — 1| < min {1, [27¢]7}. (2.5)

Let

Fif(z,t) = - K] * ¢j1(z —y)f(y) dy.

Define the operator /K/lle by

ML f(z) = (/12 ST |E 7¢)|2dt>é (2.6)

JEZ

For b € BMO(R"), let /f\/lvg,b be the commutator of //\/lle, that is,

M fa) = ( SOE e ofat) (2.7

JEZ
with
FLofte ) = [ (o) = b)) K 05-a(e — ) (0)

n

For j € Z and l € N, let

Usjsie(y) = K7 = o (y) — Ki (y).
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Let Eg = {2/ € S"7!: |Q(z)| < 2} and By = {2’ € S 1 : 24 < |Q(z')| <
29411 for d € N. Denote by Qg the restriction of Q to Ey, namely, Qq(z') =

Q2" )x g, (x'). Set

Us,jia,e(y) = K+ b (y) — K7, (y),

with L Q)
d\T
51y = EWX{Qj*1t<\z|§2it}(x)~
Lemma 2.1. Let © be homogeneous of degree zero and Q € L'(S™™1)
for p € (1, c0),

H(Z UL, g0 % fz(x)\Q)%

leZ

(T1a2)

leZ

S L sm-1y

LP(R™) Lp(R™)

For the proof of Lemma 2.1, see [19].

. Then

Lemma 2.2. Let Q be homogeneous of degree zero and have mean value
zero, MY, be the operator defined by (2.6). Suppose that Q € Lln L(S"™1), then

foril € N and p € (1, o0),

[ Maf = Maflor@ S 1F @
PROOF. It is obvious that
— — 2 5 \ 2
Mo se) ~ Mg )] < ([ Ui S0t
1 -
J
Let ¢ € C§°(R™) be a radial function such that suppy C {1/4 < [¢| < 4}
DT =1, [ #0.
i€z

Define the multiplier operator .S; by

—

Sif(€) = (27 f(9).

Let

1
0 3

Dif(e)= 3 ( /122\Um;t*<Sm_jf><z>\2dt) 7

m=—0o0

(2.8)

and
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Df) =3 3 ([ [t (s )

d=1m=Nd

1
2

and

D3 f(z) = i f </12 Z ‘Ul,j;d,t * (Smjf)(ff)rdt)é-

d=1m=1 JEZL

It then follows that for f € S(R™),

2 5 \2
(e
1 -
J
We now estimate the term D;. By Fourier transform estimate, we know that
2 2
([ S v s ar)
1 j L2(R™)
2 2
:/ / Z‘UlJ;t*(Sm_jf)(w)‘ dadt
LR ez,

2 —~ - 4 ~
= [ X ORI — 1Flw PRI Pasar

JEL

3
< Z IDi f | Lo ®ny-
1=1

Lr(R™)

1
3112

<y 3 / 272 (2 )P (o) Pde
jez /R
< 22272111 (gn1y [ £ 170 (- (2.9)

On the other hand, for p € (2, ), applying the Minkowski inequality and
Lemma 2.1, we have that

([ Sl sanfa) ]
3/12 (/R (jGZZ‘Ul’j;t*(Smjf)(a;)r)gdx)zdt

< QT (sm-1) 1 1 Zr ny - (2.10)

1
3112

To estimate .
3

([ Slserofs)

LP(R™)
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for p € (1, 2), we consider the mapping F defined by
F o Ahj(@)}jez — {U g0 * by (@)}
Note that for any ¢ € (1, 2),
Ut ji1 % hj(@)| S MMohj(z) + Mahj(),
with Mg the maximal operator defined by

1
Mqoh(z) =sup ———
( ) r>0 |B(I7 T)| B(z,r)

9z = y)lIf(y)ldy.

It is well known that Mg is bounded on LP(R™) with bound C||$2[|1(gn-1y for all
€ (1, 00). A straightforward computation then tells us that for py € (1, o00)

/ / Z(Ul g * hy(@) [ dtdz S Q075 gn / > |hj(z)Poda. (2.11)
. .
JEL

Also, we have that

sup sup ’Ul gt *hi(z )’ S QL1 sn-1y sup | ()],
JEZ te[l, 2] JEL

which implies that for p; € (1, 00),

Sz gn-1y

Hsup sup !Ul,j;t*hj{‘ sup|h |‘ (2.12)

J€Z te(1,2] LP1 (R)

LP1(R™)

For p € (1, 2), interpolating the inequalities (2.11) and (2.12) (with py € (1, 2),
p1 € (2, 00) and 1/p=1/2+ (2 —po)/(2p1)) leads to that

([t ear) sy

JEZ

S QL sn-1y
Lr(R)

Lr(Rn)

and so

2 . ;
H(/ Z‘Ulﬂ”*(sm—jf)(w)‘ dt)
' J Lr(R™)
<Z|Smfjf\2)%
JEZL

S QL s

S Q n- p(R™)-
Le(Rn) ~ ” ”Ll(s 1)Hf”L (R™)
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This, along with (2.10), states that for p € (1, o),

H (/Z L (sm_jf)(x)fd);

Interpolating the inequalities (2.9) and (2.13) gives us that for p € (1, c0),

H(/Z L <Sm—jf><z>\2dt>é

with ¢, € (0, 1) a constant depending only on p. Therefore,

Sz sn-y [ fllze@ny-  (2-13)
Lr(R™)

S 29" L1 sn-1y 1 | e s
Lr(R™)

ID1fllr@ey S N2 L1 sm-1) | fll Lo @)

We turn our attention to the term Dy. Again by the Plancherel theorem and
the Fourier transform estimates (2.2) and (2.5), we have that

| (/ > [t (Ses (o))

2 - — . —~
=[S [ R OrIG ~ P e e

jez

1
3112

L2(R™)

2dedt

. / 27|22 g (2 ) P ()P
jez /R
< 12l 512702 2 (2.14)

As in the inequality (2.13), we have that for p € (1, c0),

L2

H (/12 J% ‘Ulvj?d»f*(Sm—jf)(ﬂ«“)rdt) i

Interpolating the inequalities (2.14) and (2.15) then gives that

H </12 J;Z LORES (Sm—jf)(x)rdty

This in turn implies that

S 19l gn 1) 1 17 any- (2.15)
Lr(®")

S ||Qd|\L°°(Sn—1)27m6p||fHLP(Rn)~
L (R™)

oo

D2 fllo@ny S 2% D 27| flie@ny S I llLe@n,
d

=1 m=Nd
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if we choose NV € N such that N > 26,,.
It remains to consider the term Dj3. Again as (2.13), we have that for p €
(1, 00),

H </12 zg: LTS (Sﬂwf)(sdrclt)é

This, in turn implies that

S 11Qallzr @y L f 1| 2o ey -
Lr(R"™)

o N
IDs /Ny S 2% S 192llzr sm-y 1l o ey S 1F 11 zoqeny.

d=1 m=1

ISY

Combining the estimates for D, Dy and Dj leads to (2.8). O

The following result shows that {va}leN approximate to Mg properly, and
will be useful in the proof of Theorem 1.1.

Theorem 2.1. Let 2 be homogeneous of degree zero and have mean value
zero. Suppose that Q € L(In L)Y (S™"!) for some v € (1, o), then for | € N and
p € (1, 00),

[Maf — MVIQfHLv(Rn) S| £l po ey
with 0, a constant depending only on p and n.

PROOF. By the estimates in [17], we know that if Q satisfies (1.3) for some
0 € (0, 00), then, for £ € R"\{0}, j € Z and t € [1, 2],

KF(€)] <~ (12g]).

For each ¢ € R"\{0} and [ € N, let jy be the integer such that 2!/2~1 < |2/0¢| <
2!/2. A trivial computation involving the Fourier transform estimates (2.1)-(2.3)
leads to that

K ©@ ) -KI© S > TP+ Y mTM(e) S
JEL JE€Z: j<jo JEL:j>jo
This, via the Plancherel theorem, leads to

HMQf - MleHLz(Rn) 5 l_9+§ ||fHL2(R”)' (216)

On the other hand, it was pointed out in [18] that, if Q € L(InL)?(S"~!) for
v € (1, 00), then € satisfies (1.3) for 6 € (1, 7). Therefore, by interpolating the
inequalities (2.8) and (2.16), we know that under the hypothesis of Theorem 2.1,

[Maf = MOSl oy S T2 r @y

with € € (0, v — 1/2). This completes the proof of Theorem 2.1. |
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3. Proof of Theorem 1.1

To prove Theorem 1.1, we will use some lemmas.

Lemma 3.1. Let Q be homogeneous of degree zero and belong to L*(S™~1),
K be defined as in (2.1). Then forl € N, s € (1, 00|, jo € Z_ and y € R™ with
lyl < 27074,

S (

3>jo k€L
< glntbg=do|y.

i
o7

|Ktj xdii(x +y) — K * ¢j—l(x)|s,dz>

k< |z <2k+1

Proor. We follow the argument used in [25] (see also [7]), with suitable
modification. Observe that supp K7 * ¢, C {z : 2772 < |z < 27+2} and

< 2(j—l)n/32j—l ‘yl

|¢j—1(- +y) — ¢j—1(-)]

Ls' (R™)
Thus, for all £ € N,

1
o7

ng’;(/zk o] <2k-+1 K7 % ¢ 1(x+y) — K} *¢lj($)|s/dm)
<|z|<2F

JEL

S Y 2K e g+ y) — é5-()]
JET|j—kI<3

I(nt1)s Y]
Lo () ,S 9 (n+ )927]6.

This, in turn, leads to that

1
7

s

(] Wb )
2k < |z| <2k+1

Jj>jo kEZL
1
n ) . 5 s’
= 3 Yoo </ |E * dj—i(a +y) — K * dj—i(2)] dx)
k>jo—3 jEZ 2k <Ja <2+

< 21(’ﬂ+1)2*j0‘y|7

and completes the proof of Lemma 3.1. O

Fort € [1,2] and j € Z, let K7 be defined as in (2.1), ¢ and ¢; (with [ € Z) be
as in Section 2. By Lemma 2.2 and the LP(R™) boundedness of Mg, we see that
if Q is homogeneous of degree zero, has mean value zero and 2 € Lln L(S™™1),
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then for p € (1, o0), Mwlﬂ is bounded on L?(R™) with bound independent of [. For
jo € Z, define the operator M5 by

N

dt) ,

M f(z) = ( / Y
th) g

JEL:j>jHo
Lemma 3.2. Let Q be homogeneous of degree zero and have mean value
zero. Suppose that Q € L(In L)7(S™1) for some v € (1, 00), then for p € (1, c0),
l € Nand jy € Z, Mlg’lj" is bounded on LP(R™) with bound independent of
l and jp.

[ K osia =ty

and the commutator /K/lvl(’zjg by

2
Mt = ([ X
L jez:j>jo
with b € BMO(R").

/Rn (b() = b(y)) K] * 6;-1(x — ) f(y)dy

PROOF. Let p € (1, o0) and [ € Z. By Theorem 2.1, it follows that JT/l/lQ is
bounded on LP(R"™) with bounded independent of I. Observe that

MG" f(@) S M f (@) + NG ™ f (@),
with
. 2 3
N @) = ([ 3 IR 0r)
L j<io
Thus, it suffices to prove that ./\/}l2 7o is bounded on LP with bound independent
of jo and [. To this aim, we first note that if supp f C @ for a cube @ having
side length 270, then supp./\/é’ Jofc 204/nQ. On the other hand, if {Qx}x is a
sequence of cubes with disjoint interiors and having side length 27¢, then the cubes
{204/nQ}} have bounded overlaps. Thus, we may assume that supp f C Q, with

Q a cube centered at h € R"™ and having side length 270 For such a f € LP(R"),
we see that if z € 20,/nQ, then

2
/ > |Ff(x t)Pdt =0.
L j>jo+20n
Therefore, for x € 204/nQ,
2 3
N# @) <Fpf@( [ I 0Pa) S8+ f(o)
L jo<i<io+20n

The desired LP(R™) boundedness of ngo then follows directly. O
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Lemma 3.3. Let 2 be homogeneous of degree zero and integrable on S"~!.
Then for b € C§°(R™), 1 €N, jo € Z_ and p € (1, c0),

HMl jof MQ beLp(Rn 27| fll Lo ey

PROOF. Let b € C§°(R") with ||Vb| 1 ®n) = 1. By the fact that supp KL *
Gj—1 C {z: 2972 < |z| < 27F2} it is easy to verify that

Z/ K * ¢j_i(x —y)|l — yllf (y)|dy

Ji<jo
2k<|a: y‘<2k+1 | * ] — l r—vy Hf | Yy Q f(])

]<70 |k—j|<3

Thus,

YR )—/WQ bf<x>]2

2
—b(y)) K] * ¢j(x —y)f(y)| dt
Jj<Jjo
2 .
/ (Z / o= Il 051l = DIy ) S (20D @)
J<jo
The desired conclusion now follows immediately. ]

Let p, r € [1, 00), ¢ € [1, oo|, LP(L%([1, 2]), I"; R™) be the space of sequences
of functions defined by

LP(L([L, 2]), I R™) = {f = {fiteez « 1floeequ, 2, m5mm) < 00},

with

2 a N\t
I lercesco, ey = | ([ (St o) at)
1

kEeZ

LP(R™)
With usual addition and scalar multiplication, L?(L4([1, 2]), {"; R™) is a Banach

space.

Lemma 3.4. Let p € (1, 00), G C LP(L?([1, 2]), I?; R"). Suppose that G
satisfies the following five conditions:



24 Jiecheng Chen and Guoen Hu

(a) G is bounded, that is, there exists a constant C' such that for all f € g,
1A o (2, 2, 25 me) < C

(b) for each fixed € > 0, there exists a constant A > 0, such that for all f =
{fr}rez €6,

H( > Il B dt> éX{\.\>A}(')

1 kez

< €
Lr(R™)

(¢c) for each fixed € > 0 and N € N, there exists a constant ¢ > 0, such that for
all f ={fctrez €0,

sup (/ S fe(@, t) = fr(z + by t)] dt)

[h|<e 1 |k|<N

=

< €
Lr(R™)

(d) for each fixed € > 0 and N € N, there exists a constant o € (0, 1/2) such
that for all f = {fr}rez € G,

sup(/l ST Ul t+8) = fuls ¢ >|2dt)%

lsl<o k| <N

< €,

Lr@®")

(e) for each fixed D > 0 and ¢ > 0, there exists N € N such that for all
{fe}rez € G,

H</1 Z | fx (- |dt) XB(0, D)

|k|>N

< €.

Lr(R")

Then G is a strongly pre-compact set in LP(L?([1, 2]), I?; R"™).

PrOOF. We employ the argument used in the proof of [9, Theorem 5], with
some refined modifications. We claim that for each fixed ¢ > 0, there exists
ad =0d. >0, and a mapping ®. on LP(L3([1, 2]), (?; R™), such that ®.(G) =
{®.(f): feG}isa strong pre-compact set in LP(L2([1, 2]), 12; R™), and for any
f,Gdeq,

[@c(f) = (@)l Lr(z2, 2, iz:mmy < 8 = [|F — Gllieizequ, 2y, 2 mny < 9e.

If we can prove this, then by Lemma 6 in [9], we see that G is a strongly pre-
compact set in LP(L?[1, 2], I?; R™).
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Now let € > 0. We choose A > 1 large enough as in assumption (b), N € N
such that for all {fx}rez € G,

H</1 Z |fk dt) XB(0,2A)

|k|>N

< €.
Lr(R™)

Let ¢ € (0, 1/2) be small enough as in assumption (¢), and o € (0, 1/2) be
small enough such that (d) holds true. Let @ be the largest cube centered at
the origin such that 2Q C B(0, o), @1, ..., Qs be J copies of @ such that they
are non-overlapping, and B(0, A) C UJ _.Q; C B(0,24), I, ..., I, C [1, 2]
be non-overlapping intervals with the same length |I|, such that |s — t| < o for
all s,t € I; (j =1,...,L) and U;V:Jj = [1, 2]. Define the mapping ®,. on
LP(LA([1, 2)), &5 R") by

J L
(I)E( ﬁ)(l‘, t) = {...,O, .oy 0, ZZinXIj(f_N)XQiXIj(a:?t)’

i=1 j=1
S5 et (ot eSS e, U X (226,01 -
i=1j5=1 1=1j=1
where, and in the following,
1 1
t)dadt.
szXI (fk) |Q | ‘I| Qix1, fk(xa ) x

Note that

) :
M, (fi)] < (W / | / Ul t>|2dydt)

For j?: {fr}rez and p € [2, 00), we have that by the Holder inequality,

_, 5 4
H(PE(JC)”Z[)‘p(Lz([L2])’12;]1@):|Q|1 2‘1‘1 ZZ / / Z|fk (y,t |dydt)

=1 j=1 LkeZ

pa
2

J L
<SS [ (T 0F) e < 17 s 0 0 0
i=1j=1"1i / Qi

On the other hand, we have that

sup sup ’ZZinXIj(fk)XQiXIj(I?t) ,Ssup sup |fk(m7 t)‘,
~N<k<N el 2 | keZ tell, 2]
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which implies that for p; € (1, 00),

1@ Pl Lo zoe (a2, 1osmy S N Fll Lo zoeqia, 21y, 100w (3.1)

We also have that for py € (1, 00),

1 7
mauer, ()] < (IQIII / / Ui O dydt) ,

||(I)6(f)||LPO(LPO([1,2]),lP0;R”) N Hﬂ|L"0(LP0([1,2]),l1’0;1R”)~ (3.2)

and so

By interpolation, we deduce from (3.1) and (3.2) that for any p € (1, 2),
1Pe(Hllr(z2(,2)), 12:mm) S ”f”iP(Lz([l,2]),12,R")'

Thus, ®.(G) = {®(f) : f € G} is a strongly pre-compact set in LP(L2([1, 2]),
12;R™). Denote D = U/_,Q;. Write

fo@ - (I)e(f)HLP(m(u 2]), 12;R")

(2 e

Mk‘

L 1
Zm@u (Fe)xQix1; (1) dt)

|k|<N i=1 j=1 LP(R™)
%
+H</ Z|fk > XB(0,24)
|k|>N Lr(R™)
Let
3P
E = | sup (/ Z|fk fr(-+h, 1) dt) ,
[h|<e 1 |k|<N Lr(R™)
2 ||P
=) sue (/ S 1l ) = fil t+s)|2dt>
lsl<e \J1 iy Lr(R™)

Noting that for x € Q; with 1 <1i < J,

J L ;
{/ Z’fk:v t)Xp — ZZ mq,x1; (fx)XQix1; zt|dt}

|k|<N =1

<|Q||I|{Z// [T |dydsdt}

i |k|<N
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{// > il 8) — flc(x+hs|dsdh}

|k|<N

+|f|-{2// S el 1) il )l dtds} ,

7 |k|<N

we then get that

J 2 J ;
21/62{/1 <k|§v|f’“(% t);sz(fk)XQz(w)E)dt} dz < E + F.

It then follows from the assumption (b) that for all f € G,

1f = Pe(f)llr 2, 21), 027

SHfXD7¢ ||Lp(L2([l 2] 12; R™) H </ Z |fk | dt) X{‘ |>A}( ) <3€
keZ Lr(R™)
Note that
1 = Gl ereaq, 2y, 25wy
< = (e, 2, i2:re) + 1Re(f) = Pe(@) Lo (z2 (1, 21), 12: R7)
+ 17 = @e(Dl e 21, 21, 12, R7)-
Our claim then follows directly. This completes the proof of Lemma 3.4. O

For b € BMO(R™), set

FLof @)= [ (o) = W) K+ 65400~ ) f(0) .

PROOF OF THEOREM 1.1. Let jo € Z_, b € C5°(R™) with suppb C B(0, R),
p € (1, 00) and § € (0,1). Without loss of generality, we may assume that
Hb”Loo(Rn) + ||Vb||Loo(Rn) = 1. We claim that

(i) for each fixed € > 0, there exists a constant A > 0 such that

< ellfllze@n;

H( S IF o f(x, 1) dt) X{|-1>43 ()

JEZ

Lp(Rn)
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(ii) for s € (1, 00),

1

2 2
( / SR f 1) — Bl yf(e 4 h t)Zdt)
7>Jo
< 2R (M f (o) + 20N, f())

(iii) for each € > 0 and N € N, there exists a constant o € (0, 1/2) such that

< ellfllermny;
Lr(R")

: :
swp ([7 30 I st s+ - £ at)
\

IsI<o JI<N

(iv) for each fixed D > 0 and € > 0, there exists N € N such that

2 3
H </ Z |Fjl,bf('a t>|2dt) XB(0, D)
1

j>N

< €llfllLr@ny-
L (&™)

We now prove claim (i). Let ¢ € [1, 2]. For each fixed € R™ with |z| > 4R,
observe that supp K * ¢, C {2772 < |z| < 272} and fz\<R |K] % ¢ji(x —

z)‘dz # 0 only if 2/ ~ |z|. A trivial computation leads to that
/ |Ktj>k¢j,l(w—z)|dz
|z|[<R

< (/ ’Ktj *¢pj_i(x — z)|2dz> R < (/ ‘Ktj * ¢>j_l(z)‘2dz> R®
|21<R Lzl<)z) <2al

~

S K sy ¢j—ill 2wy RE < 22| "2 R%.

On the other hand, we have that

S et nlria)

JEL
1

s

Lty 6 21760 =70 0) 5 (a1

w |-

JEL: 2 |x|

Another application of the Holder inequality then yields

STIF fe 0 S

JEL
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2 Z

([ el < ([ K7 oa-nla)
jez \IyI<R lyl<R

2

SR (MaM(If1) (@)

This, in turn implies our claim (i).
We turn our attention to claim (ii). Write

|F} o f (@, t) = FLyf(x+ b, t)] < [b(x) — b(z + h)||FL f(, t)] + I f (=, t),

with

Jéf(xat) =

/n (K{ x¢j_i(z—y)— Ki*¢;_i(x+h—y)) (blz+h)—b(y)) f(y)dy|.

It follows from Lemma 3.1 that

(Zlﬂ e ) SY [ K < 0y1(0 = 9) = K dyaa+ b= )] )y

J>Jo J>7J0

<2 B2 M, ().

Therefore,
1

(/ > IF yf (@, t) = FL o f(x+ h, t)th>2

J>jo

S RMGP f(z) + 21D 2730 b M, f(2).  (3.3)

The claim (ii) now follows from the (3.3) and Lemma 3.2.
We now verify claim (iii). For each fixed o € (0, 1/2) and t € [1, 2], let

1 |Q(z 1 Q(=
Ut],a( )7 27 WX{QJ(t 0)<|z|<2it} + 57 || |,(I )1| X{20+1t<|2| <2041 (t40)}»
and
Gt @) = [ (UL o) =l W)l
Note that

107 5 * | 1—jlll L1 eny S o

By the Young inequality, it is obvious that for p; € (1, c0),

swp sup (G, || S ol o e, (3.4)

lj|<N tel1,2] Lr1(R™)
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and for py € (1, 00),
[ 3 161wl aide £ Ny (55)
e

We get from (3.4) and (3.5) that for p € (1, 2),

1

([ 2 torora)

7SN

S Nollfllze @n)- (3.6)
Lr(R")

On the other hand, for p € [2, c0), we obtain from the Minkowski inequality and
the Young inequality that

() = eteasora) |

7SN
L0 (QN/,L( Luo 101 J|)($—y)f(y)|dy>2dt>gdx}p
5/{|ZN ([ ([ @artoiienisoin) ) Yo
S NP1 ey o

Since
sup |F} ,f(z, t) = F} f(z, t+5)| < GI, ,f(2),

|s|<o

our claim (iii) now follows from (3.6) and (3.7) immediately if we choose 0 =
€/(2N).

It remains to prove (iv). Let D > 0 and N € N such that 2¥=2 > D. Then
for j > N and x € R™ with |z| < D,

/ K y1(a — ) f(9)|dy = / K7 5 651(x — 9) £ (5) X112+ (9)dly

n Rn

S [ @R -y S 22 F 1 oo
y|<29+3

Therefore,

(f o) v

J>N

D\7*
2 ) Wllreeo.
L (R")
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We can now conclude the proof of Theorem 1.1. Let p € (1, 00). Our claims
(i)—(iv), via Lemma 3.2 and Lemma 3.4, prove that for b € C5°(R™), [ € N and
Jo € Z_, the operator ]—']4O defined by

.7-";0 s fl@)—={...,0,..., FJl»mbf(x, t), F;0+17bf(z, t), ...}

is compact, and completely continuous from LP(R™) to LP(L?([1, 2]), I?; R™).
Thus, /r\/lvéz]g is completely continuous on LP(R™). This, via Lemma 3.3 and
Theorem 2.1, shows that for b € C§°(R™), MQJ) is completely continuous on
LP(R™). Note that

| Mo, fro(x) — Mo, o f(2)| S Ma,u(fio — F)(z) S Ma,o(fi — f)(@).

Thus, for b € C§°(R™), Mg, is completely continuous on LP(R™). Recalling that
when Q € L(In L) 2 (S"1), Mg, 3 is bounded on LP(R") with bound C||b]|gmorn)
(see [5]), we finally obtain that for b € CMO(R™), Mg, is completely continuous
on LP(R™). O
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