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A universality theorem for the sequential behaviour
of minimal F -automata

By GABRIEL CIOBANU (Iaşi) and SERGIU RUDEANU (Bucharest)

Abstract. In a sequence of previous articles, we have dealt with the final behaviour

of certain types of automata, including F -automata. In the present paper, we tackle the

study of the sequential behaviour of F -automata. We construct a pair of adjoint functors

(E∗, N∗) between the categories FA of reachable F -automata and the category FB∗

of sequential behaviours of F -automata. Thus, we provide a Goguen-like universality

theorem for the sequential behaviour of F -automata.

The universality result presented in this paper is inspired by the fundamental

adjunction between the category of deterministic automata and the category of

their behaviours given by Goguen in [4] to prove that minimal realization is

universal. Minimal realization is right adjoint to behaviours, and so behaviours

are left adjoint to minimal realization, as both are functors between categories

of machines and behaviours. The existence of such an adjunction yields several

structural results on minimal realization. An adjunction between regular sets and

finite state acceptors follows as a corollary of this universality result.

The algebraic theory of automata is a theory which models the work of the

automatic devices which surround us in everyday life. It assumes time takes

discrete values (t = 0, 1, 2, . . . ); several kinds of automata have been devised

within this medium. The most prominent automata seem to be Mealy and Moore

automata. Both of them are tuples (S, I,O, δ,m, s0), where (S, I, δ, s0) is a semi-

automaton with the initial state s0 and the transition function δ : S × I −→ S,

extended uniquely to a function δ : S × I∗ −→ S with the properties δ(s, ε) = ε

for all s ∈ S, and δ(s, w1w2) = δ(δ(s, w1), w2)) for all s ∈ S,w1, w2 ∈ I∗. The
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output function is m : S × I −→ O for Mealy automata, and m : S −→ O

for Moore automata. The intended meaning is that δ constructs the next state

of the automaton, i.e., sn+1 = δ(sn, in), while m acts instantly. The formula

β(w) = m(δ(s0, w)) defines the final behaviour β : I∗ −→ O for Moore automata,

while β(wi) = m(δ(s0, w), i) defines the final behaviour β : I+ −→ O for Mealy

automata.

In a sequence of papers, we have dealt with semiautomata and other general-

izations of Mealy and Moore automata: F -automata [5], behavioural automata [1],

[2], and M -automata [3]. In the following, we resume the concept of F -automata,

which is a common generalization of Mealy and Moore automata.

Recall that if F : Set −→ Set is a functor which preserves surjections, an

F -automaton is a tuple A = (S, I,O, δ, µ, s0), where the reduct ΣA = (S, I, δ, s0)

is a semiautomaton, and µ : S×FI −→ O. The automaton is said to be reachable

if ΣA is reachable, i.e., if every s ∈ S can be written in the form s = δ(s0, w)

for some w ∈ I∗. The final behaviour β of A is the function β : I∗ × FI −→ O

with β(w, j) = µ(δ(s0, w), j) for all w ∈ I∗, j ∈ FI. Mealy automata are obtained

by taking F := IdSet, while Moore automata are obtained by considering the

constant functor FI = {•}, Ff = 1{•}.

The category FAut of F -automata is defined by a multi-sorted universal

algebra, the morphisms being the triples (a, b, c) of mappings of sorts S, I,O,

respectively, for which certain diagrams are commutative. Let FA be the subcat-

egory of FAut, which consists of reachable F -automata and of those morphisms

(a, b, c) for which b is surjective. The objects of the category FBeh of behaviours

are the functions of the form f : X∗ × FX −→ Y , while the morphisms are the

pairs (b, c) of mappings of sorts X and Y , respectively, for which certain diagrams

are commutative. Let FB be the subcategory of FBeh, which consists of the

same objects and of those morphisms (b, c) for which b is surjective. The external

behaviour functor E : FA −→ FB is defined by EA = β and E(a, b, c) = (b, c).

The Nerode F -automaton associated with a function f : X∗ × FX −→ Y is an

F -automaton Nf which realizes the function f , and for which the set S of states

has the smallest cardinality among all the F -automata which realize the same

function f . The correspondence f 7→ Nf turns out to be the object function of

a functor N : FB −→ FA, which is called the Nerode functor. The Goguen-like

theorem proved in [5] states that (E,N) is a pair of adjoint functors between FA

and FB.

So far, we have discussed the final behaviour; now, we pass to the sequential

behaviour. Recall that unlike the final behaviour which exhibits just the final

output, the sequential behaviour displays the entire sequence of outputs leading
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to the final one. The formal definition of the sequential behaviour for F -automata

is the following.

Definiton 1. The sequential behaviour of an F -automatonA=(S, I,O, δ, µ, s0),

with final behaviour β = µ ◦ δ0, is the function β∗ : I∗ × FI −→ O∗ defined by

β∗(ε, j) = β(ε, j)[= µ(s0, j)], (1)

β∗(i1 . . . in, j) = β(i1, j) . . . β(i1 . . . in, j). (2)

Note that

β∗(wi, j) = β∗(w, j)β(wi, j) ∀w ∈ I+. (3)

This is not true for all w ∈ I∗, just because for w := ε we should have

β∗(i, j) = β∗(ε, j)β(i, j), meaning that β∗(ε, j) = ε, and this condition is not

assumed in our approach.

While every function f : X∗ × FX −→ Y can be realized as the final be-

haviour of a certain F -automaton (cf. Nf), only certain functions g : X∗ ×
FX −→ Y ∗ occur as sequential behaviours of certain F -automata. Since the

final behaviour β takes values in O, it follows from (1) and (3) that if a func-

tion g : X∗ × FX −→ Y ∗ is the sequential behaviour of an F -automaton A =

(S,X, Y, δ, µ, s0), then

g(ε, j) ∈ Y and ∀w ∈ X+∀x ∈ X∀j ∈ FX∃y ∈ Y g(wx, j) = g(w, j)y. (4)

We are going to prove that the necessary condition (4) is also sufficient for g to

be the sequential behaviour of an F -automaton.

Let FB∗ be the category having as its objects the functions g which sat-

isfy (4), while the morphisms in FB∗(g, g′) are the pairs (b, c) : X×Y −→ X ′×Y ′
such that the identity c∗ ◦ g = g′ ◦ (b∗ × Fb) holds

X∗ × FX
g

Y ∗

X ′∗ × FX ′
g′

Y ′∗

b∗ × Fb c∗

and b is a surjection.

Recall that if C is a category, then the class of its objects is denoted by |C|.

Proposition 1. A bijection Φ : |FB| −→ |FB∗| together with its inverse

Ψ : |FB∗| −→ |FB| are established iff the following identities hold:
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f(ε, j) = g(ε, j), (5.1)

f(x, j) = g(x, j), (5.2)

g(wx, j) = g(w, j)f(wx, j) ∀w ∈ X+. (5.3)

Proof. If f ∈ |FB|, then g ∈ |FB∗|, because property (4) holds by (5.1)

and (5.3). If g ∈ |FB∗|, then (4) and (5.1) imply f(ε, j) ∈ Y , while (4) and (5.3)

imply g(w, j)y = g(w, j)f(wx, j), hence f(wx, j) = y ∈ Y , and so f ∈ |FB|.
Thus, Φ and Ψ are functions which act as it was claimed, and they are inverse to

each other. �

The next step is to lift the object functions Φ and Ψ to functors.

Lemma 1. For every b : X −→ X ′, c : Y −→ Y ′ and Φf = g, we have

(b, c) ∈ FB(f, f ′)⇐⇒ (b, c) ∈ FB∗(g, g′).

Proof. According to the definition of morphisms in FB and FB∗, we must

prove that

c ◦ f = f ′ ◦ (b∗ × Fb)⇐⇒ c∗ ◦ g = g′ ◦ (b∗ × Fb), i.e.,

X∗ × FX f
Y

X ′∗ × FX ′
f ′

Y ′

b∗ × Fb c

X∗ × FX
g

Y ∗

X ′∗ × FX ′
g′

Y ′∗

b∗ × Fb c∗

For w := ε and w := x, the two diagrams are identical.

If the left diagram is commutative, we prove the commutativity of the right

diagram by induction on the length of the variable w.

If the right diagram is commutative for w, then it is also commutative for wx:

g′(b∗(wx), F b(z))=g′(b∗(w)b(x), F b(z)) = g′(b∗(w), F b(z))f ′(b∗(w)b(x), F b(z))

=c∗(g(w), z)f ′(b∗(wx), F b(z)) = c∗(g(w), z)c(f(wx, z))

=c∗(g ∗ (w), z)c(f(wx, z))=c∗((g(w), z)f(wx, z))=c∗(g(wx, z)).
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Moreover, the commutativity of the right diagram implies the commutativity

of the left one, because

g′(b∗(w), F b(z))f ′(b∗(wx), F b(z))

= g′(b∗(wx), F b(z)) = c∗(g(wx, z)) = c∗(g(w), z)f(wx, z))

= c∗(g(w), z)c∗(f(wx, z)) = g′(b∗(w), F b(z))c(f(wx, z)).

By comparing the first and the last term of this sequence of equalities, we get

f ′(b∗(wx), F b(z)) = c∗(f(wx, z)). �

Lemma 1 can be paraphrased by the implications (b, c) ∈ FB(f, f ′) =⇒
(b, c) ∈ FB∗(Φf,Φf ′), and (b, c) ∈ FB∗(g, g′) =⇒ (b, c) ∈ FB(Ψg,Ψg′). There-

fore, the mappings Φ and Ψ can be extended to functors Φ : FB −→ FB∗ and

Ψ : FB∗ −→ FB, by setting Φ(b, c) = (b, c) and Ψ(b, c) = (b, c), respectively.

Proposition 1 is thus strengthened as follows:

Proposition 2. The functors Φ and its inverse Ψ establish an isomorphism

between FB and FB∗.

Moreover, Φ and Ψ enable us to establish a Goguen-like theorem for the

sequential behaviour.

Theorem 1. The functors E∗
def
= Φ ◦ E : FA −→ FB∗ and N∗

def
= N ◦Ψ :

FB∗ −→ FA are a pair of adjoint functors.

Proof. By Proposition 2, since adjointness is clearly preserved by isomor-

phisms. �

Proposition 3. E∗A is the sequential behaviour of A, for every A ∈ |FA|.

Proof. E∗A = ΦEA = Φβ = β∗, because the properties (1), (2) and (3)

show that conditions (5) are satisfied for f := β and g := β∗. �

Now, we are able to prove that every function g ∈ |FB∗| can be realized by

an F -automaton, as we have claimed.

Proposition 4. The F -automaton N∗g = N(Ψg) realizes the sequential be-

haviour g with the least number of states among the F -automata which realize g.

Proof. The sequential behaviour of N∗g is E∗N∗g = ΦENΨg = ΦΨg = g

by Proposition 3 and Theorem 1. If A ∈ |FA| satisfies E∗A = g, then from

ΦEA = g it follows that EA = Ψg. Therefore, A has at least as many states as

N(Ψg). �
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Conclusion

All these results show that Theorem 1 represents a Goguen-like universality

theorem for the sequential behaviour of F -automata. It was proved that minimal

realization is a right adjoint to behaviours, and so behaviours are left adjoint to

minimal realization, while both are functors between categories of F -automata

and sequential behaviours.
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and Gh. Păun, eds.), DMTCS, Springer, London, 2000, 247–256.

GABRIEL CIOBANU

ROMANIAN ACADEMY

INSTITUTE OF COMPUTER SCIENCE

BLVD. CAROL I NO. 8

700505 IAŞI
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