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The groups K;(Sy, p) of the algebra of one-sided
inverses of a polynomial algebra

By VLADIMIR V. BAVULA (Sheffield)

Abstract. The algebra S, of one-sided inverses of a polynomial algebra P, in
n variables is obtained from P, by adding commuting, left (but not two-sided) inverses
of the canonical generators of the algebra P,,. The algebra S,, is a noncommutative,
non-Noetherian algebra of classical Krull dimension 2n and of global dimension n, and
is not a domain. If the ground field K has characteristic zero, then the algebra S,
is canonically isomorphic to the algebra K(a%l, . %, fl, .. ,fn> of scalar integro-
differential operators. It is proved that Ki(S,) ~ K*. The main idea is to show that
the group GLo(Sy) is generated by K™, the group of elementary matrices Eoo(Sy,) and
(n —2)2"! + 1 explicit (tricky) matrices, and then to prove that all the matrices are
elementary. For each nonzero idempotent prime ideal p of height m of the algebra S,,
it is proved that

K, iftm=1,

Kl Sn,p >~ m(m—
(5n.9) {Z(2l)><K*m it m > 1.

1. Introduction

Throughout, ring means an associative ring with 1; module means a left
module; N := {0,1,...} is the set of natural numbers; K is a field, and K* is

its group of units; P, := K[x1,...,x,] is a polynomial algebra over K; 0 :=
9%1, ey Op i= % are the usual partial derivatives (K-linear derivations) of P,;

Endg(P,) is the nalgebra of all K-linear maps from P, to P,, and Autg(P,) is
its group of units (i.e. the group of all the invertible linear maps from P, to P,);
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the subalgebra A, := K(x1,...,%pn, O1,...,0,) of Endg(P,) is called the n-th
Weyl algebra.

Definition ([5]). The algebra S,, = S,,(K) of one-sided inverses of P, is the
algebra generated over a field (or a ring) K by 2n elements x1,...,Zn, y1,---,Yn
that satisfy the defining relations:

Y11 = 17"'7yn'rn = 1a ['x?ay]] = [IZaI]} = [yuy]] =0 forall Z#.L
where [a,b] := ab — ba is the algebra commutator of elements a and b.

By the very definition, the algebra S, is obtained from the polynomial
algebra P, by adding commuting, left (but not two-sided) inverses of its canonical
generators. The algebra S; = K(z,y|yx = 1) is a well-known primitive algebra
[12, p. 35, Example 2]. Over the field C of complex numbers, the completion of
the algebra S; is the Toeplitz algebra, which is the C*-algebra generated by a uni-
lateral shift on the Hilbert space [2(N) (note that y = x*). The Toeplitz algebra
is the universal C*-algebra generated by a proper isometry. If char(K) = 0, then
the algebra S,, is isomorphic to the algebra K(a%l, ceey %, fl, ceey fn> of scalar

integro-differential operators (via e T a?:,- )
In [7], it is proved that K;(S;) ~ K*. The first aim of the paper is to prove
that
Ki(S,) ~ K* forall n>1.

See Theorem 3.5.

The algebra S,, was studied in detail in [5]: its Gelfand—Kirillov dimension
is 2n, its classical Krull dimension cl.Kdim(S,,) = 2n, and its weak and global
dimensions are n. The algebra S,, is neither left nor right Noetherian, as was
shown by JACOBSON [11], when n = 1 (see also BAER [1]). Moreover, it contains
infinite direct sums of left and right ideals. It is an experimental fact that the
algebra S,, ~ SY" has properties that are a mixture of properties of the Weyl
algebra A,, ~ A" (in characteristic zero) and the polynomial algebra Py, ~ P5",
which is not surprising when we look at their defining relations:

P, =Kl{x,y): yr —xy =0;
Ay =K(z,y) :yr —axy = 1;
S1 = K{z,y) : yx = 1.

The group G, = Autg_.ig(S,) of K-algebra automorphisms of S,, and the
group S} of units of the algebra S,, were determined in the series of three
papers [6], [7] and [8], and their explicit generators were found (both groups
are huge). The group G was found by GERRITZEN [10].
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Theorem 1.1.

(1) [6] G, = Sp x T™ x Inn(S,), where S,, is the symmetric group, T" ~ K*"
is the n-dimensional algebraic torus, and Inn(S,,) is the group of inner auto-
morphisms of S,,.

(2) [7], 19] S = K* x (14 a,)*, where a,, is the ideal generated by all the height
one prime ideals of S,,.

(3) [8] The centre of the group S} is K*, and the centre of the group (1 + a,)*
is {1}.

(4) [8] The map (1+ a,)* — Inn(S,,), u — wy, is a group isomorphism (w,(a) =
uau~1).

The structure of the proof of Theorem 3.5. The idea of the proof
that K1 (S,) =~ K* (Theorem 3.5) is to use the fact that the group GLoo(S,—1) is
canonically isomorphic to the congruence subgroup (1 + p,)* of SF = K* x (1 4+
a,)*, (L+p,)* € (14 a,)*, where p, is an (arbitrary) height one prime ideal of
the algebra S,,. The group S} is huge, e.g.

S* 5 (14 a,)* D GLoo(K) X -+ X GLoo(K) , (1)

27 —1 times

the iterated semi-direct product being a small part of the group S}. The key
ingredients in finding the groups G,, Inn(S,,) and S} (and their explicit gener-
ators) are the Fredholm operators and their indices, the current subgroups, and
the K;-theory. This explains why it is possible to recover the group GLoo(Sy—1)
in S¥ (this is not straightforward), to find its explicit generators. We prove in
Theorem 3.3, Lemma 3.2, and (34) that

the group GL(S,) is generated by K*, the group of elementary matrices
Ewo(S,), and (n — 2)2"~1 + 1 matrices <9ijéj) (1)> (Lemma 3.6), where,
see (16),

0i(J) == (1+ (i = 1) [ A =2rmn)) (14 (25— 1) [ (0 —2m)) € (1 +a0)7,

keJ\i leJ\j

J is a subset of {1,...,n} with |J]| > 2, i is the largest number in J, and
J € J\i.
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The final and the most difficult part of the proof is to show that
0i5(J)

0 1
units 6;;(J) are elementary when regarded as matrices via the inclusion

GL1(S,) € GL(Sh)-
We spend all of Section 4 to prove this fact.

(Theorem 3.4) all the above matrices ( > are elementary, i.e. the

(Theorem 5.7) Let p be a nonzero idempotent prime ideal of the algebra S,
and m = ht(p) be its height. Then

K*, ifm=1,

Ki(Sy,p) ~
1S, ) {Z(2)><K*m itm > 1.

Let ©, 5, s =1,...,n—1, denote the finitely generated subgroup of the group
(14a,)*, generated by the elements 6;,(.J), where J is a subset of {1,...,n} with
|J| = s+ 1 > 2, and ¢ and j are two distinct elements of the set J. These,
the so-called current subgroups, were introduced in [7] and [8], and they are the
core (the non-obvious part) of the groups Gy, Inn(S,) and S}, and the key for
determining the groups GLoo(Sy), Ki(Syn), GLoo(Sn,p) and Ki(S,,p), as this
paper demonstrates.

The paper is organized as follows. In Section 2, some necessary results and
constructions are collected for the algebra S,, and the group (14a,,)*. In Section 3,
the groups K;(S,), GLx (Sy) and their explicit generators are found. In Section 4,
Theorem 3.4 is proved. In Section 5, the groups GLo (Sy, p), K1 (S,, p) and explicit
generators for them are found, and Theorem 5.7 is proved.

The structure of the proof of Theorem 5.7. The line of proof of
Theorem 5.7 follows that of Theorem 3.5 (but there are new moments): first,
we prove that the group GLo(Sy,p) is generated by the group Eo(S,,p) of p-
elementary matrices, some explicit ‘diagonal’ matrices, and some of the matrices

0:;;(J) 0
(5" ]
E(Sp,p) of GLy (S, p) is introduced, and we prove that

) (Theorem 5.2, Lemma 5.4). Then an ‘obvious’ normal subgroup

K, ifm=1,

GLoo (Sns 0)/E(Sn,p) =4 m
(Sn,p)/E(Sn, p) {Z(Z)XK*'NL if m > 1.

This gives the inclusion E(S,,p) C E(Sp,p). The key moment in proving that
the opposite inclusion holds is (surprisingly) the fact that K;(S,) ~ K*. The
new moment is that not all the ‘diagonal’ matrices and not all the matrices
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<9ij(§J) (1)> that form a part of the generating set for the group GLoo(Sy,p)

are p-elementary.

A canonical form is found (Theorem 5.7) for each element a € GLo (S, p).
Using it, an effective criterion (Corollary 5.10) is given for an element a €
GLoo(Sh, p) to be a product of p-elementary matrices, i.e. a € Ex(Sy,p).

2. The groups S}, and (1 + a,)* and their subgroups

In this section, we collect some results without proofs on the algebras S,
from [5] and [8] that will be used in this paper, their proofs can be found in [5]
and [8]. Several important subgroups of the group (1 + a,)* are considered. The
most interesting of these are the current subgroups 0, ,, s =1,...,n — 1. They
encapsulate the most difficult parts of the groups S} and G,,.

The algebra of one-sided inverses of a polynomial algebra. Clearly,
Sp=S$1(1)®---®@8S1(n) ~ SP", where S; (i) := K(zi,y; |yir; = 1) = Sy, and S,, =
@aﬁeNn Kx%yP, where ¢ := o' - 297, a = (ai,...,q,), y° = yfl cogyBn
and 8 = (B1,...,0n). In particular, the algebra S, contains two polynomial
subalgebras P, and @, := K|[y1,...,yn], and is equal, as a vector space, to their
tensor product P, ® Q..

When n = 1, we usually drop the subscript ‘1’ if this does not lead to

confusion. So, S1 = K(z,y|yz =1) = D, ;5o Kz'yJ. For each natural number
d>1,let My(K) := @?,;io KFE;; be the algebra of d-dimensional matrices, where
{E;;} are the matrix units, and

Moo (K) := lim Ma(K) = P KEy
i,JEN

is the algebra (without 1) of infinite dimensional matrices. The algebra S; contains

the ideal F':= (P, ;o K Eyj, where
Eij = 'y —a Tyt i >0, (2)
For all natural numbers i, j, k, and I, E;; Ey = 0, E;y, where 03, is the Kronecker

delta function. The ideal F' is an algebra (without 1) isomorphic to the algebra
(without 1) M (K) via E;; — E;;. For all 4,5 > 0,

tEij = Eitj, yEij=Ei—1; (E-1;:=0), 3)
Eijl‘ = Ei,j—l; Eljy = Ei,j+1 (Ei,—l = O) (4)
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The algebra
Si=KeozKz|oyKly| e F (5)

is a direct sum of vector spaces. Then
Si/F ~Klz,z Y=L, z—2z, y—az ! (6)

since yr =1, zy = 1 — FEyo and Eyy € F.
The algebra S,, = .-, S1(¢) contains the ideal

=F*"= P KEus,
a,feEN?

n
Eaﬁ = HEazﬂi (Z)7 Eaiﬁi (Z) = thyfﬂ a +1yff7+1

where

Note that E,gE,, = 0gyFEq, for all elements o, 8,7,p € N*, where é3, is the
Kronecker delta function; Fy, = @;_, F(i) and F(i) := @, ,cn K Est(i).
o The algebra S,, is central, prime and catenary. Every nonzero ideal of S, is
an essential left and right submodule of S,,.

o The ideals of S,, commute (IJ = JI); and the set of ideals of S,, satisfy the
a.c.c.

e aNb=ab for all idempotent ideals a and b of the algebra S,,.
e The classical Krull dimension cl. Kdim(S,,) of S,, is 2n.

o Let I be an ideal of S,,. Then the factor algebra S, /I is left (or right) Noether-
ian iff the ideal I contains all the height one prime ideals of the algebra S, .

The set of height one prime ideals of S,,. Consider the ideals of the
algebra S,,:

P1 ::F@Sn_l,pg 1181®F®Sn_2,...,pn I:Sn_1®F.

Then S,/p; =~ Sp—1 ® (S1/F) ~ Syp1 @ K[zg, 27", and (i, ps = [[1ypi =
F®" = F,. Clearly, p; Z p, for all i # j.

The set Hy of height one prime ideals of the algebra Sy, is {p1,...,pn}.

Let a, :=p1 + -+ + pn. Then the factor algebra

Sn/an ~ (S1/F)® ®KIZ, x; Klzy,xit . xp, 2, =L, (7)

is a skew Laurent polynomial algebra in n variables, and so a,, is a prime ideal of
height and co-height n of the algebra S,,.
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Proposition 2.1 ([5]). The polynomial algebra P, is the only (up to iso-
morphism) faithful simple S,,-module.

In more detail, 5, P, ~ S, /(31 Snyi) = Docnn K201, 1:= 1+>°0  Snyis
and the action of the canonical generators of the algebra S,, on the polynomial
algebra P, is given by the rule:

ik = 2T gk = {xa o oitai>0, and FEg, x 2% = (57&30’8,
0 if a; =0,
where the set e; := (1,0,...,0),...,¢e, := (0,...,0,1) is the canonical basis for
the free Z-module Z" = @', Ze;. We identify the algebra S,, with its image in
the algebra End g (P,) of all the K-linear maps from the vector space P, to itself,
ie. S, C Endg(FP,).

For each non-empty subset I of the set {1,...,n},let Sy := @,; S1(i) ~ Sy,
where || is the number of elements in the set I, F1 := &), F'(i) ~ My (K),
as is the ideal of the algebra S; generated by the vector space @,; F'(i), i.e.
a; = EieI F(i)® Spi- The factor algebra L; := Sr/ar =~ K[in,x;l]ie] is a
Laurent polynomial algebra. For elements a = (;)ier, 8 = (Bi)ier € NI, let
Eos(I) :=Tl,c; Ba.p,(i). Then Eqs(I)Ee,(I) = 0ge Eap(I) for all o, 8, €, p € N

The G,-invariant normal subgroups (1+a, s)* of (1+a,)*. Let G,, :=
Autg_a14(Sy,). We will use often the following obvious lemma.

Lemma 2.2 ([6]). Let R be aring and I, ..., I, be ideals of the ring R such
that I;1; = 0 foralli # j. Leta = 1+a1+---+a, € R, wherea; € I, ...,a, € I,,.
The element a is a unit of the ring R iff all the elements 1 + a; are units; and, in
this case, a=' = (1 +a;) (1 +as)™ ' - (1 +a,)" L.

Let R be a ring, R* be its group of units, I be an ideal of R such that I # R,
and let (14 I)* be the group of units of the multiplicative monoid 1 + I. Then
R*N(1+1)=(1+I)* and (1+I)* is a normal subgroup of R*.

For each subset I of the set {1,...,n}, let p; := (,c; bs, and py :=S,,. Each
pr is an ideal of the algebra S, and pr = [],<; ps- The complement to the subset 1
is denoted by CI. For a one-element subset {i}, we write C% rather than C'{i}.
In particular, po; 1= pogiy = ﬂj# pj.

For each number s = 1,...,n, let a, 5 := lel:s pr. By the very definition,
the ideals a,, 5 are G,,-invariant ideals (since the set H; of all the height one prime
ideals of the algebra S,, is {p1,...,Pn}, see [6], and H; is a G,-orbit). We have a
strictly descending chain of G,-invariant ideals of the algebra S,,:

Op =0p1 D0p2 D - Dbpg DD apy =1Ly Daypyr :=0.
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These are also ideals of the subalgebra K + a, of S,,. Each set a, 5 is an ideal of
the algebra K + a,; for all ¢ < s, and the group of units of the algebra K + a, s
is the direct product of its two subgroups

(K4a,)"=K"x(1+a,)", s=1,...,n

The groups (K +a,, )" and (14 a, s)* are G,-invariant. There is the descending
chain of G -invariant (hence normal) subgroups of (1 + a,,)*:

I4+a)" " =14a,1)" DDA +a,)" DDA +ayy)"
=1+ F)" D14 apn+1)" ={1}.

For each number s = 1, ..., n, the factor algebra

(K + an,s)/an,s+1 = K@ @ EI

|[I|=s

contains the idempotent ideals p; := (pr + 6y, 541)/0n, 541 such that p;p; = 0 for
all I # J such that |[I| = |J| = s.
Recall that for a Laurent polynomial algebra LzK[xlil, e Ky (L)~ LF,
[14], [2], [13],
GLw(L) =U(L) x Ex (L), (8)

where F, (L) is the subgroup of GL. (L) generated by all the elementary matrices
{14+aE;jla€ L,i,j € N,i # j}, and U(L) :={p(u) :=uEpo+1—FEoo |u € L*} ~L*,
u(u) <> u. The group E« (L) is a normal subgroup of GLu(L). This is true for
an arbitrary coefficient ring.

By Lemma 2.2 and (8), the group of units of the algebra (K +ay 5)/an s+1 =:
K + a,, 5/, 541 is the direct product of groups,

(K4 ans/an,s41)" = K* x H (1+p)"

[I|=s
~ K* x [[ GLoo(Ler) = K* x [ UlLer) x Exe(Le),
|I|=s [I|=s

since (1 +p;)* =~ (1 + Mo(Ler))* = GLs(Ler), where Loy := Scr/acr =
Riccr Klzi, x; !1is the Laurent polynomial algebra. In more detail, for each
non-empty subset I of {1,...,n}, let Z! := P, Ze;. Tt is a subgroup of Z" =
@D, Ze;. Similarly, N’ := @, _; Ne;. By (8),

(14p;)" =U(Lcr) X Ex(Ler) = (Urn(K) x Xer) X Ex(Ler), 9)
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where
U(Ler) = {pr(u) = uEo(I) + 1 — Eoo(I) |u € Ly} = Loy, pr(u) < u,
v ={ | Ne K a ez},
Ur(K) == {pr(A) == AEoo(I) + 1 — Ego(I) [A € K"} =~ K™, p1(A) < A,
Xer = {ur(z®) := 2“Ego(I) + 1 — Ego(I) | € 297} =~ 27
~ 270, pr(z®) <> a,
Eoo(Leot) = (14 aFqs(I)|a € Lor, o, B € N o # ).

The algebra epimorphism ¢, s : K+a, s = (K+ap.s)/0n 541, @ — atap 541,
yields the group homomorphism of their groups of units (K + a, )" — (K +
Un,s/0n,s+1)* and whose kernel is (1 + a,, 541)*. As a result, we have an exact
sequence of group homomorphisms:

1o (14an 1) = (Lan)* 25 [] (1450~ [ GLoc(Ler) = Zns—1. (10)
[I|=s [I]=s

For s = n, the map v, ,, is the identity map, and so 2, ,, = {1}. Intuitively, the
group Z,, s represents ‘relations’ that determine the image im(v, 5) as a subgroup
of Hlll:s(l—i—ﬁl)*. The group Z, ; is a free abelian group of rank (SL), [8]. So, the
image of the map 1, 5 is large. Note that a,, 541 and py (where |I| = s) are ideals
of the algebra K +a,, ;. The groups (14 a,, s4+1)* and (1+p7)* (where |I| = s) are
normal subgroups of (1+a, s)*. Thus the subgroup Y,, 5 of (1+a, s)* generated
by these normal subgroups is a normal subgroup of (1 + a,,5)*. As a subset of
(1+ ay,,s)*, the group T,  is equal to the product of the groups (1 + ap s41)%,
(L+pr)*, |I| = s, in arbitrary order (by their normality), i.e.

Too= [ +p0)" - (1 +ans1)" (11)
|I|=s

By Theorem 1.1, the group T, ; is a G,,-invariant (hence, normal) subgroup of S¥.

The factor group (1 + a,5)*/ YTy s is a free abelian group of rank (SZI)S, 8].

By (9), the direct product of groups [];_s(1 +p;)* = Xy s x I’y 5 is the
semi-direct product of its two subgroups
Koo = [[ Xer 229 and Ty = [[ Un(K) x Ex(Ler).  (12)
[I|=s [I|l=s

For each subset I of {1,...,n} such that |I| = s, Ur(K) x Ex(Scr) is a subgroup
of (14 ps)*, where

Ur(K) :=={n(M) [ A € K7} ~ K7,
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Ewo(Scr) := (1 +aE.p(I)|a € Scr,a # B € NT), (13)
where pr(A) := AEgo(I) +1 — Ego(I). Clearly,

wn,S|UI(K) : UI(K) =~ UI(K)7 :LLI()‘> — :U/I(/\)a

and ¢, s(Ur(K) X Ex(Scr)) = Ur(K) x Ex(Lcr) for all subsets I with |I]| = s.
The subgroup of (1 + a, 4)*,

Fn,s = wr:,ls(fn,S) = st H (UI(K) X EOO(SCI)) : (1 + an,S-&-l)*a (14)
[I|=s

is a normal subgroup as it is the pre-image of a normal subgroup. We added the
upper script ‘set’ to indicate that this is a product of subgroups but not a direct
product, in general. It is obvious that v, s(Tns) = Tps, and Ty s € Yy s. In
fact, Iy s = Th s, [8]. Let Ay := (14 ay5)*/I'ys. The group homomorphism
Yn,s (see (10)) induces the group monomorphism

s+ Ao = [ (1450 Tos = Xy = 200,
|I|=s

This means that the group A, ; is a free abelian group of rank < (Z) (n—s). In
fact, the rank is equal to (Sil)s, 8].

For each subset I with |I| = s, consider the free abelian group Xj,; :=
D,ccrZ(j,I) =~ Z" %, where {(j,1) |j € CI} is its free basis. Let

X @ Ko = @ P 26.1) =20,

[I|=s |I|=sj€CT
For each subset I, consider the isomorphism of abelian groups
Xer = Xeop pr(xj) :=z;Eo(I) + 1 — Ego(I) = (4, 1).
These isomorphisms yield the group isomorphism
Xn,s = X, o0 pr(az;) = (4, 1) (15)

Each element a of the group X, , is a unique product a=[ ;_; I ;ccr pr (z)"0D
where n(j,I) € Z. Each element a’ of the group X], ; is a unique sum a’ =
2oir1=s 2oject 04, 1) - (4, 1) where n(j,I) € Z. The map (15) sends a to a’. To
make computations more readable, we set ey := Fgg(I). Then ere; = eju.
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The current groups O, s, s =1,...,n — 1. The current groups ©,, ; are
the most important subgroups of the group (1+a,,)*. They are finitely generated
groups, and generators are given explicitly. The generators of the groups ©,, s
are units of the algebra S,, but they are defined as a product of two non-units.
As a result, the groups ©,, s capture the most delicate phenomena regarding the
structure and properties of the groups S and G,.

For each non-empty subset I of {1,...,n} with s :=|I| <n and an element
i€ Cl, let

X(i,1) »= pr(z:) = ziEoo (1) + 1 — Ego(])
and

Y (i, 1) := pr(yi) = yioo(I) + 1 — Eoo(I).
Then Y (i, 1) X (i,1) = 1, ker Y (4,I) = Pcruiy, and P, = im X (i, I) @ Pe(ruiy,
where Poruiy := K[zj]jecui. Recall that S, C Endg(P,). As an element of

the algebra Endg (P,), the map X (i,I) is injective (but not bijective), and the
map Y (i, I) is surjective (but not bijective).

Definition. For each subset J of {1,...,n} with |J| = s+ 1 > 2, and for two
distinct elements ¢ and j of the set J, let

0ij(J) =Y (i, \N)X(J, J\J) € L+pni+pn;)" €1 +ans)"  (16)
The current group ©, , is the subgroup of (14a,, 5)* generated by all the elements
0;;(J) (for all the possible choices of J, 4, and j).

The unit 6,;(I) is the product in Endg (P,) of an injective map and a sur-
jective map, none of which is a bijection.

0i5(J) = 0;:(J) " (17)

Suppose that 4, j, and k are distinct elements of the set J (hence |J| > 3).
Then

015 ()01 (J) = Our(J)- (18)
For each number s = 1,...,n — 1, the free abelian group X;L’S admits the de-

s = D) sj=s11 Bjur=s Z(j, I), and using it we define a character
(a homomorphism) x/;, for each subset J with |J| = s+ 1:

Xy X, =7, Z Z n;1(d, 1) = Z NI

|J/|=s+1 jUl=J" jul=J

composition X7, ¢
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Let max(.J) be the largest number in the set J. The group X/, | is the direct sum

X =K, . DY, (19)

of its free abelian subgroups,

K,.= [] ker(xy)
|J]=s+1

=B D Z(-(max(J), \max(J) + (j, J\j)) = Z(H)*,
|J|=s+1j€J\ max(J)
Y,,= @ Zmax(J),J\max(J)) = Z{:-}).
[J]=s+1

The same decompositions hold if, instead of max(J), we choose any element of
the set J. Consider the group homomorphism ¥, ; : (1 + a, )" — X, ; defined
as the composition of the following group homomorphisms:

. Y D — =
w;,s (14 ans)" = (1+ans)" /T H (L+p)"Tns =Xy s X’In,s'

[I|=s
Then
U, (035(T)) = = (i, J\i) + (4, J\j)- (20)
It follows that
w;,s(e)nd) = K;z,w (21)
since, by (20), ¥, ((On,s) 2 K], ¢ (as the free basis for K], ., introduced above,

belongs to the set ¢;, (On,s)); again, by (20), ¥, ((On.s) € 51241 ker(x)y) =
K7, -

Let H,Hy,. .., Hy, be subsets (usually subgroups) of a group H. We say that
H is the product of Hy,...,H,, and write H = ' [["" | H; = Hy - -- H,,, if each
element h of H is a product h = hy - - - h,,, where h; € H;. We add the subscript
‘set’ (sometime) in order to distinguish it from the direct product of groups. We
say that H is the exact product of Hy,..., H,,, and write H = ¥ect HZ’;I H; =
Hy Xep -+ Xey Hpp, if each element h of H is a unique product h = hy -« hy,,
where h; € H;. The order in the definition of the exact product is important.
A semi-direct product of groups Hy, ..., Hy, is denoted by

Hy w (Hy (- % Hyp)) = Hy x Hy x -+ x Hy, =*™ [ H,.
i=1
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The subgroup of (1 + a, 5)* generated by the groups ©,, , and I';, ; is equal to
their product ©,, ;I';, 5, by the normality of I'j, ;. The subgroup I';, s of the group
O,,sI'n s is a normal subgroup, hence the intersection ©,, s NI, 5 is a normal
subgroup of O,, .

Lemma 2.3 ([8]). For each number s =1,...,n — 1, the group O, ;I',, ; is
the semi-direct product
®n,an,s = semt H H <0max(J),j(J)> X Fn,37

|J|=s+1j€J\ max(J)

where the order in the double product is arbitrary. Each element a € ©,, ;I';, 5 is
a unique product

a= H H O, (J)"07) <,

|J|=s+1j€J\ max(J)
where n(j,J) € Z and v € Ty, 5.
For each number s = 1,...,n — 1, consider the subset of (1 + a, )",

®In,s = eract H H <9max(J),j(‘])>7 (22>

|J|=s+1j€J\ max(J)

which is the exact product of cyclic groups (each of them is isomorphic to Z),
since each element v of O], ; is a unique product

u = H H omax(J)7,j(‘])n(j,J)7

|J|=s+1j€J\ max(J)

where n(j,J) € Z (Lemma 2.3).
By Lemma 2.3, ©,,5/0y,s Ny s =~ Oy Ty /T s 2K~ Z(811)57 and so
the commutant of the current group ©, ; belongs to the group I', 5, i.e.

[Gn,sa Gn,s] c Fn,s- (23)

Recall that the commutant [G,G] of a group G is the subgroup of G, generated
by all group commutators [a,b] := aba~'b~!, where a,b € G. The commutant is a
normal subgroup. The next theorem is the key point in finding explicit generators
for the groups S} and G,,.
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Theorem 2.4 ([8]). ¥;, (14 a,4)*) =), (On) fors=1,...,n—1.

For each number s = 1,...,n—1, consider the following subsets of the group
(1+ans)",
Ens:= ] Ur(K) x Ex(Scr) and Ppo:= [ (149" (24)
|T|=s |T|=s

These are products of subgroups (14 a,, 5)* in arbitrary order, but which is fixed
for each s.

Theorem 2.5 ([8]).

(1) 14a,)*=0,11,,1=0,1E, 10, 2E, 20y, ,_1E, ,_1. Moreover, for s=
L...,n=1, (14a,5)* =0, I s =05 sEp sOpn s41En o1 Op 1By 1.

(2) 14 a,)*=0,17,1=0,1P, 10, 2Py 2Oy 1Py n_1. Moreover, for s=
L...,n=1, (140a,5)* =0, s T s =05 Pp, sOpn s+1Ppst1 - On e 1Pp 1.
Theorem 2.6 ([8]).

(1) Q+a,)* =00 1E,10), 5Ep2---0) . E, ,_1. Moreover, fors=1,...,n—
L (1+a,,)" = ez,s]En:s@;z,s+1En,s7+1 T ®/n,n—1En,nfl-

(2) 14a,)* =0, P10, 5Pro---0, . P, 1. Moreover, fors=1,...,n—
L (1+a,,)" = @%,sPn,)s@%,sHPn,s;l T eg,n—lpn,nfl-

3. The groups K;(S,) and GLx(S,), and their generators

In this section, explicit generators are found for the group GLoo(S,) (Theo-
rem 3.3, Theorem 3.5. (1)), and it is proved that K; (S, ) ~ K* (Theorem 3.5. (2))
modulo Theorem 3.4, which is proved in Section 4.

The subgroup (1 + p,)* of the group S is canonically isomorphic to the
group GLoo(S,—1) via the isomorphism 1+ > a;;E;;(n) — 1+ " a;;E;;, where
aij € Sp—1 = ®?;11 S1(é). It is convenient to identify the groups (1 + p,)* and
GL(Sp—1), and to identify the matrix units E;;(n) and E;;, i.e. (1+p,)* =
GL(Sp—1) and E;;j(n) = E;;. The group (1+p,)* contains the descending chain
of normal subgroups

(1+pn)*:(1+pn)i D'“D(1+Pn)ZD"'D(1+Pn)Z
= (1+Fn)* ) (1+p’ﬂ>:1+1 = {1}a

where (14 pp)% == (1 4+ pn)* N (1 + ap5)*. The following lemma describes the
normal subgroups (1 + p,)%.
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Lemma 3.1.

Aoyt = [0 Dhmnerpn)” =1 n—1,
* 1+ Fy) if s = n.
PROOF. As the case s = n is obvious, we assume that s # n. The ideal
On,s = Z|1|=s pr of the algebra S,, is the sum of idempotent ideals p;. Therefore,
ui,s = a,,s. By [5, Corollary 7.4. (3)], anb = ab for all idempotent ideals a and b

of the algebra S,,. Since the ideals p,, and a, s of the algebra S,, are idempotent,

Pn N An,s = Pnln,s = Z PnPr = Z pr. (25)

|I|=s [I|=s,nel

Thus (14+p,); = (1+pn) " N(1+an )" = (T+ppNa,s)* = (1+E|I|:s,nel pr)*. O
For each number s =1,...,n — 1, consider the following subset of E,, ,

Ens= [] UnE)x Ex(Scr),
|I|=s,nel

where the groups Ur = Up(K) and Eo(Scy) are defined in (13). This is the
product of the subgroups Us(K) X Eo(Scr) of (14 py)% in arbitrary order, but

S

which is assumed to be fixed. Notice that E, 1 = U,(K) X Ex(S,—1), where
Un(K) = {in(\) = den + 1 — €, = (())\ (1)) [\ € K*}, and Foo(S,—1) is the
subgroup of GLy (S, —1) generated by all the elementary matrices.

Consider the element pr(A) = dey +1 — ey € Uy, where |I| = s and n € I.
Then

1+ ()\— 1)61\n 0

i1 (N) = ea(1+ A= T)ep)+1—en = ( ) 1

) € GLoo(Sn_1). (26)

Lemma 3.2. E(S,-1) 2 Iﬁms foralls=2,...,n—1.

Proor. It is sufficient to show that the group E.(S,—1) of elementary
matrices contains the groups Eo(Scr) and Uy(K), where |I| = s and n € I.
The group Eo(Scr) is generated by the elementary matrices u = 1 + aEqyg([),
where a € Scr, a = (;)ier, 8 = (Bi)ier € Nl and a # 8. If a,, # By, then
u=1+(a]l;csisn Eaipi(i)Ea,p,(n) € Ex(Sp—1). If ayy = By, then choose an
element v € N’ such that 7, # a,, and so v # a and v # 3. Since the elements
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14 Eoy and 1 + aFE,3 belong to the group Eo(S,—1) (by the previous case), so
does their group commutator

Es(Sn-1)3[1+ Eqy, 1 +aE5l =1+ aE.s = u.

Therefore, Es(Scr) C Eoo(Sp-1)-

It remains to show that U;(K) C Foo(Sn—1), i.e. ur(A) = 14 AEg(I)
Es(Sp—1) for all scalars A\ € K\{—1}. Notice that n € I and |I| = s > 2.
Choose an element, say m € I, distinct from n. In the subgroup GLuo(S1(m)) of
GLoo(Sp—1), we have for all scalars A € K\{—1} the equality:

(1 0) (1 /\xm>(1 o) (1 —1fr‘)\xm>
—fe 1)\ 1 ) \ym 1) \0 1

_ AEgo(m)
_ <1+)\ 0 ) (1 oo 0)_ o)
0 0 1

This can be checked by direct multiplication, using the equalities ¥y, z.,, = 1 and
TmYm = 1 — Ego(m) that hold in the algebra S;(m). The first five matrices in

the equality belong to the group E(Si(m)). Therefore, the last matrix ¢ =

1 _ AEOO(m)
< T+ 1> belongs to the group Eoo(S;(m)). The idempotent

0

0= [Licn gn,my Eoold) if [I] > 2,
1 if |1] = 2,

determines the group monomorphism
7o : GLoo(S1(m)) = (14 > S1(m)Esj(m))* — GLog(Sn1)
i,j€EN
:(1+pn)*7 UH6u+1767 (28)

that maps the group E(S1(m)) into the group Fo(S,—1). Therefore,

Te(c) = e(Ego(n)(1 —

A A
=1- mEoo(I) = MI(—m) € Eos(Sp—1) N Uk (I).

1+ 3 Boo(m)) +1 = eEoo(n)) +1~¢

Since the map ¢ : K\{—-1} - K\{-1}, A\ — —1%\, is a bijection (=1 = ¢), all

the elements py(\) belong to the group Foo(S,—1). The proof of the lemma is
complete. 0
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By (10), there is the group monomorphism

e el Ty

n,8 * (]_ —+ pn):Jrl (1 -+ On,s+1 \71=s
= ] a+mx JI a+p0)%
|I|=s,nel |I"|=s,n&I'

which is the composition of two group monomorphisms. By Lemma 3.1,

im(@n,s) C H (1+p)" (29)

|[I|=s,nel

Recall that (1 +p;)* = (X¢r x Ur) X Ex(Ler). Since @y (Ep (1 +pn)iyy) =
H|I|=S7n61 Ur x Ex(Lcr), we see that

‘p;}g(fn,s):W'r:}s(im“pn,s)mrn,s):ngﬁg H Ur x Ex(Lcr) :En,s(l‘mn):+1a
|[I|=s,nel

and so there is the group monomorphism

s (1+ pn):/En,S(l + pn);rl = (I+a,) Ths =Xy s~ X;z,s

= H Xer % H Xep-

|I|=s,nel |I"|=s,ngI’

Notice that the group Enys(l + Pn)iyq is a normal subgroup of (1 + p,);. For
each number s = 2,...,n— 1, in the set @;L’S consider the exact product of cyclic
groups (the order is arbitrary)

Onsi= ] T (), (30)

[J|=s+1,n€J jEI\{n,m(J)}

where m(J) is the largest element of the set J\n. Instead of the element m(J), we
can choose an arbitrary element of the set J\n. By (29), im(p,,) C

I 7j=sner Xep- Recall that im(vy, ) = ¥, ((On,s) = Kns = 512551 ker(xX}),
by Theorem 2.4 and (21). The following argument is the key moment in the proof
of Theorem 3.3,

im(@n,s) C lm(w;,s) ﬂ H XICI = ﬂ keI‘(Xi]) ﬂ H XICI =

|[I|=s,nel |J]=s+1 |I|=s,nel
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0 if s=1,
B {H|J|—s+1,nEJ HjEJ\{n,m(J)} Z(*(TTL(J),J\’ITZ(J))#’(.]’ J\])) ifS:27...,n7 15

by(20) | O ifs=1,
Yhs(Onys) ifs=2,...,n—1,

~Jo if s=1,
N Bs(OnsEns (L4 pa)igy) ifs=2,...,n— 1
It follows that

Ena(14pn)3 if 5 =1,
(14 o)t = § ot + P | (31)
Gn,s XexEn,s(1+pn):+1 1f822,...,ﬂ—1.

Theorem 3.3. The group GLoo(Sp—1) = (14p,)* is equal to IEmlén,gIEmg e
O, n—1En n—1. Moreover,

En,lénJEn,Q o én,nflﬁn,nfl if s = ]-7
(1 + pn): = én,s]ﬁn,s T én,nflién,nfl ifs = 2,...,n—1,
(1+ F,)* if s = n.

PRrROOF. By [8, Proposition 3.10], we have the inclusion (1+p,)} = (1+F,)* C
E, n—1. Now, the theorem follows from (31). O

For each subset J of the set {1,...,n} such that n € J and |J| > 3, and for
each pair of distinct elements ¢ and j of the set J\n, the unit ;;(J) € S}, can be
written as follows

9ij(J) = (yieJ\ien +1—e,+en(l— eJ\i))(xjeJ\jen +1—e,+en(l— €J\j))
=en(yiesi +1—epi)(zjen; +1—epn;) +1—en=enbi;(J\n) +1— ey,

where €, 1= Ego(n), e = [Ije; Eoo(k) and ey := [];cp; Eoo(k). There-
fore, the unit 0;;(.J), as an element of the group GLoo(S,—1), is the matrix

0;;(J) = (92-]-(3 \n) (1)) € GLoo(Sn_1), (32)

where 6,;(J\n) € S¥ _;.
The determinant det on GL..(S,_1). The algebra epimorphism S,,_; —

Sp-1/ap—1 = Lp_1, a — @ := a + a,_1, yields the group homomorphisms
det

GLoo(Sn—l) — GLOO(Ln_l), u +— w, and det : GLoo(Sn—l) — GLoo(Ln—l) —
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L: ;. Clearly, det(Eo(S,_1)) = 1, @(én)s) =1lforalls=2,...,n—1, and
det(U,(K)) = K*, since det(u,()\)) = X for all A\ € K*. By Theorem 3.3 and
Lemma 3.2, GLo(S,-1) = Un(K)én,g e (:)n’n,lEoo(Sn,l)7 since E(Sp—1) is a
normal subgroup of GL.(S,,_1). It follows that the image of the map det is K*,

i.e. we have the group epimorphism

det : GLoo(Sp_1) = K*, u > det(u), (33)
and
GLoo(Sp_1) = U,(K) x ker(det)

SLOO(SH_l) = ker(@) = 67172 s @n,n—lEoo (Sn—l)- (34)

Theorem 3.4. én’s C Ex(Sp—1) foralls=2,...,n—1.
The proof of Theorem 3.4 is not easy and is given in Section 4.

Theorem 3.5.

(1) GLoo(Sp_1) = Up(K) X Ex(Sp_1) and SLoo(Sp_1) = Eso(Sp_1), where
Un(K) = {tn(A) == 1+ (A= 1)Ep(n)| A € K*}. So, each element a €
GLoo(S,_1) is the unique product a = p,(\)e, where A = det(a) and
e = pn(det(a))ta € Ex(Sp-1).

(2) Ki(S,) =~ K* for alln > 1.

PROOF. The theorem follows from Theorem 3.4 and (34). O

The number of generators 0y,ax(),;(J) in the block én+1’2 e én+17n for the

group GLOO(SH) = n+1(K) X ®n+1,2 s @n+1,nEoo(S7L) is 2222 (Z) (S — 1) =
(n —2)2"~1 + 1 as the next lemma shows.

Lemma 3.6. For each natural number n > 2, > ,(")(s — 1)
=(n—2)2""1+1.

PROOF. Taking the derivative of the polynomial (1+z)" =3 " (7)z*, we
have the equality n(1+ z)"~' = 3", (7)sz*~'. Then taking the difference of

both equalities at # = 1, we obtain the result: >, (7)(s—1)—1=n2""1—-2" =

(n —2)271. ( O
4. Proof of Theorem 3.4

The whole section is a proof of Theorem 3.4. The proof is constructive (but
slightly technical) and split into a series of lemmas that produce more and more
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sophisticated elementary matrices in E(S,—1). These elementary matrices are

used to show that the elements of the sets ©,, ; are elementary matrices (Propo-
sitions 4.6 and 4.8).

Lemma 4.1. Let D be a division ring, and let A = D & De be a ring over D
such that € = e and de = ed for all d € D. Then

(1) the group of units A* of the ring A is the semi-direct product D* x I" of the
group of units D* of the ring D and the subgroupT' := {1+ Xe| X € D\{-1}}
of A*.

(2) (1+Xe)™t =1— 2xe for all elements A € D\{—1}.
(3) The map ¢ : D\{-1} — D\{-1}, A — —
(4) (1—-2¢)"t=1-2e.

1%\, is a bijection with ¢! = ¢.

ProoF. Straightforward. ]

We are interested in the rings A and their groups of units, since the algebra
K + M (S, —1) of infinite dimensional matrices over the algebra S,,_; contains
plenty of them, and as a result, the group GLo(S,,—1) contains their groups of
units.

Lemma 4.2. Let S1(A) = Alx,y|yx = 1) be the algebra S, over the ring A
from Lemma 4.1. Then, for each element A\ € D\{—1},

<1 0> (1 )\ea:) (1 0) (1 —@’;ex)
% 1J\o 1 /)\y 1)\0 1

_(1+Xxe 0 1— 25eEop 0 (35)
L0 0 1)

_1
1+Xe

where Egg := 1 — a2y (the element 1 + Ae is a unit of the algebra S1(A), by
Lemma 4.1).

ProOF. The RHS of the equality (35) is the product of four matrices, say
Al . A4.

1 ex 1 0 1+ dex ex
v ()00 )
Tt T Trxe/ Y T+re

1+ dex 0
A1'~~A4=< 0 Y 1 )7
1+Xe
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since (1 + Aexy) (— 1J)r‘§\ex> + dex = — 1i§e (1+ Ae)z + Aex = 0. Now,
I+Xe 0 1- 2% FEyp 0
Ay Ay = 1+Ae , 36
o= (U ) (T (36)
since (14 Ae) (1 f ﬁE()O) — 1+ Ae(l — Ego) = 1 + Aexy. Finally, the equal-
ity (35) follows from Lemma 4.1. (2), liie = de (1 - 1%\6) =A (1 - 14%\) e=
A

(I

A &

For each ring R and a natural number m > 1, F,,(R) is the subgroup of
GL,(R) generated by all elementary matrices.

Lemma 4.3.

(1) (E?i)o 2) € E5(S1), where Egg :=1 — zy.

0 ) (2, Y e

PROOF. (1) Using the equalities yz = 1 and Egox = 0, we can easily check
that

(D6 DG DG D6 DE D) @

By (27), the RHS is an element of the group E»(S;), since ﬁzz) = 2, and so
statement 1 holds. (2) It is obvious. O
Y 0

Let R be aring and u be its unit. The 2 x 2 matrix <
utipo T

) € M)

is invertible, where Eyg := 1 — xy. Moreover,

y 0 _1: x ulEy . (38)
UEOO T 0 Yy

Lemma 4.4. Let the ring A be as in Lemma 4.1. Then, for each element

A € D\{-1},
Y 0
((1 + 2e) Ego ac) € B2 (5:(0)

(g (1+ /\ey)‘lEoo) _ ((1 ) ile)EOO 2) - € Ex(S1(A)),

where (1+ Xe)™" =1 — 12e (by Lemma 4.1. (2)).

and
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PROOF. It suffices to prove the first inclusion, since then the equality and
the second inclusion follow from (38). Using the equalities yz = 1 and Egox = 0,
we can check that

G D6 DG Ve 26 DE Y

_ (1 - (2+0Ae)E00 (1)> (30)

1— (2 + )\e)EOO 0 . 1—2Eyp O 1+ XeEg O
0 1) 0 1 0 1)
By (37), (172F0 %) € E5(S1), and then by (35), (1F¢%0 ) € Ey(S1(A)), since
A€ D\{~1}. Therefore, ( (1,305, 3 ) € B2(S1(A)), by (39). 0

1—|—(y2—1)$1y1 0

Lemma 4.5. (
€291 X2

) € E5(Ss), where es:=Eyo(2) =1—z2ys.

PROOF. The statement follows from the equality

L PR IR [ R T

_ <1 + (y2—z1yn 0>’ (40)

€271 €2

which can be checked directly using the equalities y;x; = 1, x;y; = 1 —e¢;, yie; =0
and e;x; = 0, where e; := Egyg(i). The RHS of the equality (40) is the product of
five matrices Aj --- As.

A1A2A3:< 1 (y2—1)x )(1 O>:<1—|—(y2—1)x1y1 (yo—1)z1 )

—woy1 1—x2(y2—1)/ \pn 1 eay1 I—22(y2—1)
since —woy1 + (1 — x2y2)y1 + T2y1 = e2y1. Now,

Al"'A4: <1+(y2—1)x1y1 _(y2_1)2.’£1 >
€291 1— (z2+e2)(ya — 1)

since —y1x1€2(y2 —1)+1—xo(ya —1) = 1—(x2+e€2)(y2 — 1). Finally, Ay --- A5 =

<1 + (y2 — Do ) where
e2y1 b
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a=(1+(y2 — Dz1y1)(y2 — (1 — z2)1 — (Y2 — 1)2551
= (214 (g2 — D) (y2 — D(1 — 22) = (y2 — 1)%z;
=z1(y2 — V(g2 — 1) — (y2 — 1)%21 =0,

b=1—(z2+e2)(y2 — 1) + eay1(y2 — 1)(1 — z2)71
=1-22(y2—1) —ea(y2 — 1) +ea(y2 — 1) — e2(1 — z2)

=1—2oys + 12 — €2 = T3. O

612 0
(1)2 1) € Ex(S,), where 615 = 015({1,2}) = (1 + (y1 —

1)62)(1 + (582 - 1)61), €1 = E[)O(].) and €9 = E()0(2).

Proposition 4.6. <

Proor. By Lemma 4.3, (x2 ©2
0 y2

2 e\ (1+(y2—Dzyr 0 _ (b2 O
Ba(52) 3 (0 yz) ( e2y1 372) B < 0 1) 4D

Indeed, let a be the (1, 1)-entry of the product, then

) € E5(S1(2)) C E5(Sz). Then, by Lemma 4.5,

a=z2(1+4 (y2 — D)a1y1) + €3y1 = 2 + (T2y2 — ¥2)T1y1 + €21
=x9e1+ (1 —e2)(l —e1) +eayr =14 (2 — 1)er + (y1 — 1)ea + eqe9
= (1 + (y1 — Dea)(1 + (w2 — 1)e1) = 012,
since (y1 —1)ez - (2 — L)er = (y1 — 1)er - ea(w2 — 1) = (—e1) - (—e2) = erex. O
Lemma 4.7. Let J ={1,...,m}, where m > 3, and let I = J\{1,2}. Then

14 (y2 — Daayrer 0 )
€ E5(So(K & Key)),
( eayrer 14 (22— 1)es 2(S2( 7))

where ey := Ego(2) and ey := [],.c; Eoo(k).

PRrROOF. The statement follows from the equality

(o D =2 66 )

_ (1 + (y2—1)z1y1er 0 > (42)
exyier 1+ (z2—1)er )’
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The equality can be written shortly as Ay --- A5 = A. Then

Ay AsA, = (1 + (y2 — Dzryrer  (y2 — 1)171> <1 —(y2 — l)xl)

yier 1 0 1
_ (1 + (y2 — Dzayrer —(y2 — 1)2$1€1>
y1€r1 1—(y2—1)er )’

where we have used the fact that y;x7 = 1. Then

A Ay = (1 + (g2 = Daayaer —(y2 — 1)%z1e1 )
€sy1ey 1— (23 +e2)(y2 — ey

In more detail, let («, 3) be the second row of the product. Using the fact that
y1z1 = 1 and €7 = ey, we see that

a=—zayrer(1+ (y2 — Daayrer) + yier = (—x2(y1 + (y2 — Dy1) +y1)er
= (1 — xzoy2)y1e1 = €ayiey,

B =zoyrer(ya — 1)°wrer + 1 — (y2 — Der = 1+ (wayz — w2 — 1)(y2 — 1)eg
=1—(z2+€2)(y2 — L)ey.

L+ (y2 — Daryrer o
esyi€er v
a =0 and b = 2, see the proof of Lemma 4.5)

Finally, A;--- A5 = ( >, where (below, we use the fact that

a' = (1+ (y2 — Daayrer)(ya — 1) (w2 — Darer — (y2 — 1)%z1es

= (1 + (g2 = Voy)(y2 — (w2 — D)oy — (g2 — 1)°z1)e; =a-e; =0-e; =0,
B=1—(22+e2)(y2 — Der +eayi(ye — 1)(1 — x2)z10]

=14 (—14+1—(z2+e2)(y2 — 1)+ eat1(y2 — 1)(1 — z2)z1 ) ey

=1+ (-1+bler =14 (z2 —1)e;.

The proof of the lemma is complete. O

Let J ={1,2,...,m} and m > 3. By multiplying out, the element 615(J) =
(14 (y1 — Depa)(1 + (22 — 1)ey\2) € S5, can be written as the sum

012(J) = zaerer + (1 — erer)(1 — ezer) + yreser, (43)

where I := J\{1, 2}.
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Proposition 4.8. Let J = {1,2,...,m}, and m > 3. Then (912(§J) ?) c
E2(Sp).

PrROOF. We keep the notation of Lemma 4.7. By Lemma 4.3. (2) and
Lemma 4.7, the product of the following two elementary matrices is also an ele-
mentary matrix,

vy ez (1+ (y2 — D)aryrer 0
Fa(S2) (0 y2> < eayer L+ (w2 — 1)61)
_(02(J)+ (2 —1)(1—er)  ea(l—eg)
B < 0 er+(1— 61)1/2)' 44)

Indeed, the LHS is a matrix of type (g ;) (since yoeo = 0), where

a  =zo(1+ (y2 — V)wyrer) + eayrer = 2 + (1 —ea — xz2)(1 — e1)er + eayrer
=x9 —xa(l —er)er + (L —e1)(1 —ex)er + yrezer
=xz9(l —er) + (xgelej + (1 —eger)(1 —erer) + y1€2€j)
+(1—e1)(1—e2)er — (1 —erer)(1 —eqeg)

by (43
yé )$2(1—61)+612(J)+8[ —ejef—egsert+ey—1+eef+eser—ey

= 912(J) + (fEQ — 1)(1 — 6[),
B =y2(14 (z2 —1)er) =y2 + (1 —y2)er = er + (1 —er)yo,
v =ea(l+ (z2 —1)er) = ex(1 —ey),

since eazs = 0. By (43),
O12(J)(1 —er) =1—ey. (45)

Using (45), the RHS of (44) is equal to the product of two matrices

(912(J)+(:c2—1)(1—61) ea(l—er) )

0 er +(L—er)ys
_ <012(§J) (1)> <1 + (a2 701)(1 —ey) . ej((ll_eejj))yz)'

In order to finish the proof of the proposition, it suffices to show that the last
matrix is elementary. This follows from the next two equalities, as the last two
matrices in the equality (47) belong to the group E»(S,,), by Lemma 3.2.
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(; (22 —1+12e2)(1 —e,)> (1—1—(332 —01)(1—6,) e1+(11_—6e11)) )(;2 (1)>

(
<(1) (1— y2)1(1 - e,)) (_1 ) (;2 . (1)> _ (1 - 26251 —eg) (1)> (46)

<1 - 26231 —e1) (1)> _ <1 —0262 (1)> (1 - Zeze, (1)) (47)

The equality (47) is obvious, and the equality (46) can be written in the form
Ay -+ As = A. Using the identities esxg = 0, yaz2 = 1, €7 = ¢y and (1 —e7)? =
1 — ey, we see that

(14 (z2 —1)(1 —ey) ea(1 —eg) 1 (1—y2)(1—ep)
As Ay Ay = ( 1+ (z2 — e er+(1— 6])y2) (0 1 )

B (1—1—(332—1)(1—61) (x2—1+262)(1—61)>

N 1+ (3 — 1)eg 1 '

In more detail, let (u,v)? be the second column of the product of the two matrices
in the middle. Then

(I+(z2 = 1)(L—er)(X —y2) (L —er) + e2(1 —er) =(22(1 — y2) +e2)(1 —e)
=(za— (L —e2)+ea)(1—er) =(x2— 14 2e2)(1 —ey),
(
(

L+ (2 = Der)(1 —y2)(1 —er) +er + (1 —er)y2
l—y )1l —er)+er+(1—er)ys =1.

Finally,

Ag -+ A = (1 - 26281 —er) (z2—1+ 2162)(1 — 6[))7

since 1+ (zo — 1)(1 —ey) — (xa — 1+ 2e3) (1 —e)(1+ (z2 — 1)eg) =14+ (xg —1—
2o+ 1—2e)(1 —er) =1—2es(1 —ey). Now, (46) is obvious. The proof of the
proposition is complete. ([l

PROOF OF THEOREM 3.4. Notice that S,,_1 ~ S®(n b , and the symmetric
group S,_1 is a subgroup of the group of automorphisms of the algebra S, _;
0:;(J) 0)

0 1
(where J C {1,...,n — 1} with |J| > 2) is elementary by Proposition 4.6 (when
|J] = 2) and Proposition 4.8 (when |J| > 2). Now, Theorem 3.4 is obvious. O

(it acts by permuting the tensor components). Then, the matrix (
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5. The groups Ki(Sn,p) and GLo(Sn, p), and their generators

In this section, explicit generators are found for the group GL(S,—1,P),
where p is an arbitrary nonzero idempotent prime ideal of the algebra S,,_1, and
it is proved that K;(S,—1,p) ~ 2(%) x e (Theorem 5.7), where m is the height
of the ideal p.

For a ring A and an ideal a of A, the normal subgroup of GL(A),
GLowo (A, a) := ker(GLy (A) — GLy(A/a)),

is called the congruence group of level a. The normal subgroup Fu, (A4, a) of Fs,(A)
which is generated by all the a-elementary matrices (1 + aE;;, a € a, i # j) is a
normal subgroup of GL(A4). Moreover, [GLy(A), GLo(A,a)] = Ex(4,a) [2],
and so the K;-group

K1 (A, a) := GLoo (A, a)/Ex (A, a)

is abelian. Let E’_(A,a) be the subgroup of F.(A) generated by all the a-
elementary matrices. Then E/_(A,a) C Eo (A, a) C E(A).

We keep the notation of the previous sections. Recall that we identified the
groups (1+p,)* and GLy (S,—1). Each nonzero idempotent prime ideal p of the
algebra S,,_1 is a unique sum (up to order) of distinct height one prime ideals
p=9p;, +- - +p;, and ht(p) = m, where ht stands for the height of an ideal,
[5, Corollary 4.8]. The set supp(p) := {i1,...,%m} is called the support of the
idempotent prime ideal p. The group GLso(S,_1,p) can be identified with the
subgroup (1 + pp,)* of the group (1 + a,,)*. The group (1 + pp,)* contains the
descending chain of normal subgroups

(T+ppn) =T +ppn)i D D (L +ppn)s Do D (1+ppa)y
=1+ F.)" DA +ppn)y = {1},

where (14 pp,,)% := (1 + ppr)* N (1 + a,5)*. Moreover, the groups (1 + pp,,)%
are normal subgroups of the group (1 + a,)*. The following lemma describes the
normal subgroups (1 + pp,,)%.

Lemma 5.1. Let p =p;, +--- +p;,,, where iy,...,1i,, are distinct elements
of the set {1,...,n}. Then

(1+ppa) = {(1+ZII|—S,1€J<p>PI>* ifs=2,....n—1,
n

(1+ F,)* if s =

b

where J(p) := {J C {1,...,n}|n € J,J Nsupp(p) # 0}. In particular, (1 +
ppa)i = (1+ppn)s = (14 ppa)”
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PROOF. The case s = n is obvious. So, we assume that s # n. Since the
ideals pp,, and a, ¢ of the algebra S,, are idempotent ideals,

m

Ppn N Qn,s = PPnln,s = Zpi,,pnan,s = Z pr.
Pt |I|=s. 1€ (»)

Therefore, (14 ppy); = (L+ppn)* N (14 ans)* = (1 +ppp Nans)* = (14
2irj=s,req(p) P1)" O

By (10), there is a group monomorphism

(1+ppn)s (1+an,s)* —
: — : — 1+
(1+ppn)iy (1+ans41)* H ( P

|I|=s
= I sy JI 0+50,

[I|=s,1€J (p) [T"|=5,I"¢T (p)

n,s

which is the composition of two group monomorphisms. By Lemma 5.1,

m(pn) C [ A+ (48)
|I|=s,I€T (p)
For each number s = 2,...,n — 1, consider the following subset of the group
(1+ppa)”, B
Ens(p) =[]  UrxEx(Scr)
[T|=s,1€T (p)

It is a product of subgroups of (1+pp,,)* in arbitrary order, but which is assumed
to be fixed for each s.

Recall that (1 +5;)* = (Xer X Up) X Exo(Ler). Since @ o (B o(p)(1 +
pPn) 1) = [ rj=s.1e7(p) Ur X Eoo (L), We see that there is the group monomor-
phism

(14 ppn)i . (1+a,)

K EXTMS:X;S
" Ens(p)(1+ ppa)iyy Ths :
- H Xor % H cr-
[I|=s,1€T (p) |I'|=s,1"€T (p)

Notice that the group ]Ems(p)(l + ppy)i,, is a normal subgroup of (1 4 pp,);.

For each number s = 2,...,n — 1, in the set @;h consider the exact product of

S
cyclic groups (the order is arbitrary)

On,s(p) = Ol (p) Xz O (p), (49)
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Ol (p)==== ] 11 I w0,

i€supp(p) |J/|=s+1,neJ’,J' Nsupp(p)={i} j'€J\{n,i,m’/(J")}

612 (p) = oot 11 T s,

|J|=s+1,n€J,JNsupp(p)>2 jEI\{n.m(J)}

where m/(J’) is the largest element of the set J'\{n,i}, and m(J) is the largest
element of the set J\n. Notice that ©, 2(p) = 65}2(]3) as the set @5,]2()3) is an
empty set.

By (48), im(%,, s) € I1}1=s,re7(p) Xc1» and

H /CI: H H Z(Zal)

[I|=s,1€7 (p) [I|=s,I1€J(p) 1€CT

= I1 11 Z(j, I\j)

[J|=s+1,n€J,JNsupp(p)#D j€J\n,(J\n)Nsupp(p)#D

= ] II II zu.\"

i€supp(p) |J'|=s+1,neJ",J Nsupp(p)={i} j'€J\{n,i}

x I1 IT zG. 7).

[J|=s+1,n€J,|JNsupp(p)|>2 jEJ\n

Recall that im(vy, ;) = ¢}, ((On,s) = Kns = (51241 ker(x};), by Theorem 2.4
and (21). The following argument is the key moment in the proof of Theorem 5.2.
For each number s =2,...,n—1,

im(@,,) Cim@, )| [I Xer= () kD) JI Xo

|I|=s,1€7 (p) |T]=s+1 |T|=s,1€7 (p)

iesupp(p) |J'|=s+1,n€J’,J' Nsupp(p)={i}
x I1 Z(Hm'(J), J\m/ (') + (5", J\J"))
jreJ\{n,i,m’(J")}
X 11 Iz, Am())+3G, J\)
|J|=s+1,n€J,|JNsupp(p)|>2 jeJ\{n,m(J)}
by (20) ~ . ~ ~ %
= Q/J:’L,S(@nws(p)) = ‘P;,s(gn,S(p)En’S(p)(l + pp’ﬂ)erl)'
The first equality above follows from the decomposition of the abelian group
H| I)=s,1€7(p) X above, and the definition of the homomorphisms x/;. It follows
that

(1+ ppn): = én78(p) Xex En,S(p)(l + ppn):-i-lv s=2,...,n—L (50)
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Theorem 5.2. Let p be a nonzero idempotent prime ideal of the algebra
Sp—1. Then the group GLoo(Sn—1,p) = (1 + ppn)* is equal to Op 2(p)En 2(p) - -
Onn-1(P)En n_1(p). Moreover,

2(P)Ena(p) - Qn,n%(pﬂﬁn,n,l(p) ifs=1,

CH
(1 + ppn): = é (p)En,s(p) : @n,nfl(p)ﬁn,nfl(p) lfS = 27 e, — 17
(1+ F,)* if s =n.

PROOF. By [8, Proposition 3.10], we have the inclusion (1 4 pp,): = (1 +
F,)* CE, n—1(p). Now, the theorem follows from (50). |

Lemma 5.3. Let S;(A) be the algebra S; over the ring A from Lemma 4.1.
Then, for each element A € D\{—1},
0
1

1 0\ /1 Jex 1 0 -
-5 L\ 1 ey 1
1+ Xe 1— 2eFyp 0
—(o )( ) e
1+Xe

=1- H_)\e by Lemma 4.1. (2).

where FEyg := 1 — xy and 1_”9

PRrOOF. The RHS of the equality (51) is the product of four matrices, say

Ay Ay
1 ex 1 0 14 dex ex

mdn= (L ) (1) (0 )
T 1+ )Xe 1+Xe ey 1+Xe

1+ dex 0
A1"'A4—< 0 Y 1 );
1+Xe

since (1 + Aexy)(— 1if\ex) + dex = 1+/\e(1 + Ae)x + dex = 0. The product
Ay -+ Ay coincides with the product ‘A --- A4’ in the proof of Lemma 4.2, and
so the equality (51) follows from (36). O

Lemma 5.4. E/_(S,,—1,p) 2 I~En,s foralls =3,...,n—1, and E/_(S,,—1,p) 2
E(Scr) for all sets I € J(p) such that |I| = 2.

PRrROOF. We have to show that the group E. (S, —1,p) contains the groups

o (Scr) for all subsets I € J(p) such that [I| =2,...,n— 1, and the groups U;
for all subsets I € J(p) such that |I| = 3,...,n—1. By Lemma 5.3, the groups Uy
belong to the group E._(S,—_1,p). Indeed, by (26), each element of the group Uy is
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1+ HET\n
0

|I| > 3, we can choose a number j € I'\n such that (I'\{j,n})Nsupp(p) # 0. Then

enn = €- Eoo(j), where e = ey (; »y € p. By Lemma 5.3, the matrix u belongs to

the group E(S,—1,p), since the map ¢ : K\{—-1} - K\{-1}, A — —p%\7 is a

a matrix v = ( (1)> for some scalar p € K\{—1}. Since I € J(p) and

bijection.

The group Eo(Scr) is generated by the elementary matrices u = 1+aEq3(I),
where a € Scr, a = (4)ier, 8 = (Bi)ier € Nl and a # . If a,, # By, then
U= 1+(a Hie],i;ﬁn Eq,; (i))Eaan (n) € E{)o(Sn—hp)v since I € j(p) Ifan = Bn,
then choose an element v € N such that v, # a,, and so v # « and v # f.
Since the elements 1 + E,, and 1+ aE.,3 belong to the group E. (S,—1,p) (by
the previous case), so does their group commutator

E(Sn-1,p) 31+ Eqy, 1+ aB, 3| =14 aF.3 = u.

Therefore, Eoo (Scr) € EL (Sn—1,p). =

Lemma 5.5. Let J = {4,j,n}, where the numbers i, j and n are distinct.
Let I = {k,n}, where k # n and \ € K*. Then

1 ifk #1i,k # j,
055 (), (N = 1+ (A" =Dey = py (N1 ifk =14,
L+ (A =1)Eu(j)eien ifk=j.

PROOF. Let ¢ be the group commutator, J' = {i,j}, 0;; = 0;;(J) and 0;; =

: +1 +1 /+1 /+1 /-1
0:5(J'). Since 0;; en = entl;;” = 07 e, = en0;; and 07" = 0};, we see that

c=0i;(1+ (A= Deren)d; ur ' (A) = (L+ (A = 1) er8,en) iy (N).

If k # i and k # j, then the elements 0;; and e, commute, and we get ¢ =
(N3 = 1.

If k = 4, then 9§jei = zje; and eﬂ}i = e;y;, by (43), and so
c=(1+ (A= Dajyjeien)ur(N) " = (pr(A) = (A = De)pr(X) !
A—1

A
If k = j, then 0},¢; = yie; + Ero(j)e; and e;07; = xie; + Eo1(j)ei, by (43), and so

=1-A=1Desj1+Nt=1)ey)=1- ey=1+\"1=1Des=p;N)""

c= (14 A= 1)(yiej + Ero(j)e) (wiej + Eor(j)ei)en)pr(N) "
= () + A =D En()een)pr(N) " =14+ (A= 1)E11(j)een. O



86 Vladimir V. Bavula

Let A and B be subgroups/subsets of a group G. The commutant [A, B] is
the subgroup of G generated by all the group commutators [a,b] = aba=1b~!,
where a € A and b € B. For an element g € G, let wy : x — grg~! be the inner
automorphism of the group G determined by the element g. We can easily verify
that for all elements aq,as,by,bs € G,

[albla a2b2] = Wa,y ([b17 a2])wa1a2 ([blv b2]) [a’17 a2]w(12 ([al, bz]) (52)
The normal subgroup £(S,,—1,p). Consider the subgroup

g(Sn—lvp) = H EOO(SCI) : (1 + ppn):’;
|T|=2,1€T(p)

of the group (1 4 pp,)* = GLoo(Sn—1,p). By (50), the group (1 + pp,)* is the
exact product of sets,

(]- + ppn)* = én,Z(p) Xex eract H UI Xex 5(Sn—la p) (53)
[I|=2,1€J (p)

By the very definition, the subgroup £(S,,—1, p) is a normal subgroup of (1+pp,,)*
(see the definition of the map ¢, s). There is the inclusion

[©1.2(p), On2(p)] € (14 ppy)3, (54)

which is obvious due to the fact that the image of each element 6;,(.J) (where
|J| =3 and J € J(p)) under the map ¢, s is the direct product of two ‘diagonal’
matrices with entries in (commutative) Laurent polynomial algebras, hence all
the images commute.

Theorem 5.6. £(S,_1,p) = Eoc(Sp—1,p) = EL(Sp—1,p).

PROOF. Recall that GLo (R, a)/Ex (R, a) is an abelian group for any ring R
and ideal a of R, [2]. By (53), Lemma 5.5 and (54), the factor group (1 +
ppn)*/E(Sn—1,p) is abelian.

Let us show that E. (S,—1,p) C & := E(S,—1,p). We have to show that
1+ pE;j(n) C S for all ¢ # j. Since

m

L+ pEij(n) =14 (pi, + -+ +pi, ) Eij(n) = [ (1 + ps, Eij(n)),

v=1

it suffices to show that 1 +p; E;j(n) C € for all v =1,...,m and i # j, but this
is obvious, since
1+pi, Eij(n) € Exo(Scr) CE,
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where I = {i,,n} (and so |I| =2 and I € S(p)), see the definition of £.

To finish the proof of the theorem, it suffices to show that £(S,,—1,p) C
E!_(Sp—1,p) (namely, then it follows that the group E/_(S,_1,p) is a normal
subgroup of GLyo(Sp—1,p) as GLo(S,—1,p)/€ is an abelian group and £ C
E! (Sp—1,p); hence Eo(Sp—1,p) = E.(Sp—1,p) and E. (S,—1,p) = &). By
Theorem 5.2,

5(Sn—1»p) = H EOO(SCI) : én,B(p)En,S(p) t én,n—l(p)ﬁn,n—l(p)
|I|1=2,I€J (p)

By Lemma 5.4, the inclusion £(S,_1,p) C E.(Sn_1,p) holds iff ©, .(p) C
E' (Sn_1,p) for all s = 3,...,n — 1 iff OLL(p),02,(p) C E/ (Sn_1,p) for all
s=3,...,n—1.

Fix an element # such that either 8 € ég}s(p) or § € (:)E}S(p), i.e. either
0 = Oy, (J") or 0 = 0,5y ;(J), see (49). In the second case, without loss of
generality, we may assume that m(J) € J Nsupp(p), by changing, if necessary,
the order in the set J (or simply by taking a suitable element). In both cases,
we can choose an element, say k& € J Nsupp(p), such that & ¢ {m/(J'),5'} in
the first case, and k & {m(J),j} in the second case. In both cases, we can write
6 =0;;(J), where k € J Nsupp(p) and k & {i,j}. As we have seen in Section 3,

0:5(J) = er0i;(J\k) + 1 — ey

By Theorem 3.5, 0;;(J\k) € Ex (®l 112k S1(1)) € GLoo (®l 112k S1(1)). Under
the algebra monomorphism

n—1
GLoo [ @) Si(l) | = GLoo(Sn-1,p), a > epa+1—ey,
1=1,l#k

the group of elementary matrices Fo (®l 11 S1(1)) is mapped into the group
of p-elementary matrices E._(S,—1,p), since e; € p. Therefore, 6 € E. (Sp—1,p).
The proof of the theorem is complete. O

Theorem 5.7. Let p be a nonzero idempotent prime ideal of the algebra
Sn—1, and m = ht(p) be its height. Then (below is the direct product of groups)

Ki(Sn-1,p) =~ 11 05,5 < 1 Uy
{i>j|4,j€supp(p)} kesupp(p)
{Kt ifm =1,

~

7(3) x K™ ifm o> 1.
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The group GLoo(Sp—1,p) is generated by the elements 6;; := 0,;({t,j,n}) (where
i > jandi,j € supp(p)), and the groups Eoo(Sy—1,p), Ugr,n}, where k € supp(p).
Moreover, each element a of the group GLo(S,,—1,p) is the unique product (the
order is arbitrary)

a = H 9?]” . H H{k,n}(/\k) - €, (55)
{i>j|i,j€Esupp(p)} kesupp(p)
where n;; € Z, Ay, € K* and e € Eo(Sp—1,p).
PRrROOF. The theorem follows from the equality (53) and Theorem 5.6. O

We can find effectively (in finitely many steps) the decomposition (55) (Corol-
lary 5.9). For, we introduce several explicit group homomorphisms.

Definition. For each nonempty subset I of {1,...,n} with s = |I| < n, and
for each element j € CI, define the group homomorphism det; : (140, 4)* = L§;
as the composition of the group homomorphisms (see (10))

det

(14 ane) ™ [T 0 +5)" ™ 1 +5,)" =~ GLlee(Lor) =¥ Ly,

[J|=s

where pr; is the projection map. Define the group homomorphism deg,, ; ; :
(14 ay,,5)* — Z as the composition of the group homomorphisms (1 + a,, 5)* dety

eg, .
Ltp —7 Z, where deg, is the degree in x; of monomial (deg, (A [[;cc;27") =
aj, where A € K* and «a; € Z).

Lemma 5.8. Letn >3 and s =1,...,n — 1. Then for all subsets I and J
of the set {1,...,n} such that [I| =s, |J|=s+1 andn € J,
-1 if I =J\m(J),i =m(J),
degn,],i(om(J)J(J)) =341 if I = J\.]7Z =7Js
0 otherwise,
where 1 € CI and j € J\m(J).

PROOF. The result follows at once from the equality 0,,,(7) ; = (14 (Ym (1) —
Depmn) (1 + (z; — Len;). 0
Corollary 5.9. Given a product decomposition (55) for an element a €

GL(Sp—1,p), we have

Nij = degn,{i,n},j (CL),
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/\k: = det{km} a - H Gl_Jn” y
{i>j|4,j€supp(p)}
—1

€ = H QZ“ . H u{km}()\k) a.

{i>j|i,jesupp(p)} kesupp(p)

PROOF. By Lemma 5.8, deg,, ; } ;(a@) = nijdeg, (; »y ;(0i;) = nyj. Simi-
larly,

det{k,n} a- H gi_jnij = det{k,n} (H{k,n} (Ak)) = M.

{i>j|4,5€supp(p)}
The rest is obvious. (]

Corollary 5.9 gives an effective criterion of whether an element a € GL
(Sp—1,p) is a product of p-elementary matrices.

Corollary 5.10. Let a € GLy(Sp—1,p). Then a € Eo(S,—1,p) iff all
n;; =0 and A\, = 1, iff degn7{i7n}7j(a) =1 for all i > j such that i,j € supp(p),
and dety, 1 (a) = 1 for all k € supp(p).
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