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Rationality of the zeta function of the subgroups
of abelian p-groups

By OLIVIER RAMARÉ (Marseille)

Abstract. Given a finite abelian p-group F , we prove an efficient recursive formula

for σa(F ) =
∑

H≤F |H|a where H ranges over the subgroups of F . We infer from this

formula that the p-component of the corresponding zeta-function on groups of p-rank

bounded by some constant r is rational with a simple denominator. We also provide

two explicit examples in rank r = 3 and r = 4, as well as, a closed formula for σa(F ).

1. Introduction

The subgroups of finite abelian p-groups have been intensively studied. An

early paper of G. Birkhoff establishes in [8, Theorem 8.1] material to count the

number of subgroups of a given type; the version given in [9, (1)] is surely easier

to grasp. To fix the notation, our p-groups will be of rank below some fixed r,

and are thus isomorphic to a product

F = Z/pf1Z× Z/pf1+f2Z× · · · × Z/pf1+f2+···+frZ, (1)

where fi are non-negative integers. We write F = [p; f1, f2, · · · , fr]. The type

of F is the partition (f1 + · · · + fr, f1 + · · · + fr−1, · · · , f1). The type of a sub-

group H is its type as an abstract group, while its cotype is the type of F/H.

In the fifties, P. Hall considered the numbers gλµ,ν(p) of subgroups of type µ and

cotype ν in a group of type λ, and used them as multiplication constants to form

what is now called the Hall algebra. The combinatorial aspects have been further
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developed by T. Klein in [16], in the milestone book of I. G. MacDonald [20],

and by L. Butler in [10] and [11] concerning the poset formed by these sub-

groups and the inclusion. This short bibliography is by no means complete! Two

closely related fields of enumerative algebra concern the number of subgroups

of not-especially abelian groups, e.g. Y. Takegahara in [27], and the number

of subgroups of a given index in a fixed group, see [12] by F. J. Grunewald,

D. Segal and G. C. Smith, and the book [19] by A. Lubotzky and D. Segal.

Given a finite abelian group F and a complex number a, we concentrate in

this paper on the counting function

σa(F ) =
∑
H≤F,

H subgroup

|H|a. (2)

We obviously have σa(F1F2) = σa(F1)σa(F2) whenever F1 and F2 have coprime

orders, therefore reducing the study of σa to the case of p-groups.

Despite the wealth of work on the question and our restriction to finite abelian

groups, it is difficult to get formulae for σa that are not (very) intricate. Still we

know that, once the type of F is fixed, say equal to λ, the value σa(F ) is a

polynomial in p and q = pa, since, by using the Hall polynomials gλµ,ν , we have

σa(F ) =
∑
µ,ν

gλµ,ν(p)pa(µ1+µ2+µ3+··· ),

the sum being over all possible choices of µ and ν. By combining the expression

given in [9, (1)] and the development of the p-binomial coefficient given in [15,

Theorem 6.1], we even conclude that σa(F ) is a polynomial in p and q with integer

non-negative coefficients. The main novelty of our study is the “simple” recur-

sion formula given in Theorem 3.1. As an interesting consequence, the relevant

generating series is shown to be rational; we even provide a fully explicit formula.

Theorem 1.1. We have

∑
f1,f2,··· ,fr≥0

σa([p; f1, f2, · · · , fr])Xf1
1 · · ·Xfr

r

=
∑

(εk)∈{−1,1}r

r∏
t=1

−εtpε
∗
t (a+

∑r
h=t+1 εh)

pa+
∑r

h=t+1 εh − 1

1

1− p(a+r−t+1)
∑r

h=t ε
∗
h−(

∑r
h=t ε

∗
h)

2
Xt

,

where ε∗ = (1 − ε)/2. This series belongs in particular to Q(p, pa, X1, · · · , Xr)

and a denominator is given in (16).
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This formula appears already in the unpublished thesis of G. Bhowmik [1,

Section IX], with whom I collaborated at that time. By “a denominator”, we mean

a polynomial by which we can multiply our series to fall in Q[p, pa, X1, · · · , Xr].

No minimality is assumed. The dependence in pa = q is maybe better explained

by modifying (2) in case of a p-group into

σa(F ) =
∑
H≤F,

H subgroup

qlog |H|/ log p. (3)

We infer from Theorem 1.1 the rather compact closed formula (20) for σa(F ).

A detour in integer matrices arithmetic. Since it is easier to understand

the proof below in the framework of integer matrices, let us present this hundred-

years-old field, called Noncommutative Number Theory by L. N. Vaserstein

in [30]. The book [21] of C. C. MacDuffee contains already, in this context, a

notion of gcd and lcm that is till under scrutiny, see [28] by R. C. Thompson. A

founding result is that, when decomposing a non-singular integer matrix M as a

product of two integer matrices M = AB, the number of right-classes of A under

the action of SLr(Z) is finite; A · SLr(Z) is then called a left-divisor of M . From

this fact, V. C. Nanda in [22] and [23] introduced a convolution product between

functions of integer matrices invariant under the action of SLr(Z). This algebra

is (almost immediately) isomorphic to the Hecke algebra, see the book [17] by

A. Krieg. V. C. Nanda detailed examples among which we find an Euler totient

function, the divisor function (our σ0), and a Möbius function. The initial interest

for this arithmetic comes from modular forms.

Back to finite abelian groups. Any finite abelian group of rank r can be rep-

resented as a quotient Zr/M(Zr) for some non-singular integer matrix M . This

correspondence is shown in [3] to carry through to the subgroups that in return

appear as left-divisors of M . The left-divisibility of divisors translates as the

inclusion of subgroups, and the right-complementary divisor of any left-divisor

H of F is associated to the quotient F/H. In this manner, the arithmetic of

subgroups of finite abelian groups and the one of integer matrices locally (i.e.

once a home group F is chosen) coincide; for instance, the Möbius function de-

fined on the lattice of subgroups is identical to the one defined on matrices as the

convolution inverse of the 11-function. More fundamentally, the Hall algebra, the

Hecke algebra, and the algebra of arithmetical functions on integer matrices co-

incide. Other connections exist: for instance, the paper [29] of R. C. Thompson

converts T. Klein’s combinatorial result [16] in terms of divisibility of invariant

factors.
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Average results. Here, the vocabularies of groups and of matrices get mixed.

As shown by G. Bhowmik in [7], the function σa(F ) taken on average under the

determinant condition |F | ≤ x exhibits some regularity: when translated in terms

of abelian groups, the question is to decide of the asymptotic behavior, when x

goes to infinity, of ∑
|F |≤x

σa(F )/
∑
|F |≤x

1,

where F ranges over the finite abelian groups of rank below some fixed r. The

sum
∑
|F |≤x 1 has been the subject of numerous publications, e.g. A. Ivic̀ [14],

[26] by O. Robert and P. Sargos, or [18] by H.-Q. Liu. The average order

of σa is closely related to the behavior of the rather mysterious Dirichlet series

Dr,a(s) =
∏
p≥2

∑
f1,··· ,fr≥0

σa([p; f1, · · · , fr])
p(rf1+(r−1)f2+···+fr)s

,

the product being taken over the primes p. Its abscissa of convergence has been

determined in [2], while G. Bhowmik and J. Wu in [6] exhibit a representation

of Dr,a(s) that yields a larger domain of meromorphic continuation. Since the

p-factor of this series is the case Xt = 1/ps(r−t+1) of Theorem 1.1, we now have a

completely explicit expression. This series is an analog in the finite group case of

the zeta-function, introduced and studied by F. J. Grunewald, D. Segal and

G. C. Smith in [12], though these authors work with a fixed group and investigate

the generating function associated to the number of subgroups of a given index,

as this index varies. In our case, the subgroups are less precisely determined (we

do not fix the index) but the sum runs over a family of groups. We further note

that it (as well as, the more general version considered in Theorem 1.1) has also

been investigated by V. M. Petrogradsky in [25].

As a side-note, we mention another kind of mean-regularity that has been ob-

tained in [5]: we have σ0(F ) = (log |F |)(1+o(1)) log 2 for all but o(x) abelian groups

of order not more than x. On restricting the set to groups of rank r exactly (there

are about x1/r such groups), we show that σ0(F ) = |F |[r2/4]/r(log |F |)ξr+o(1) for

all but o(x1/r) exceptions, where ξr = (1 + (−1)r)/2.

In Section 5, we use our method to derive two new explicit formulae: one

when r = 3, under the determinant condition and a general a, and one when

r = 4, still under the determinant condition, though this time restricted to the

case a = 0 to keep the expression within a reasonable size. Finally, in Section 6,

we use Theorem 1.1 to derive a closed formula for σa(F ).
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2. Duality

The function σa(F ) is defined in (2), and we propose now another expression

that is surely not novel but is lacking an easy reference. We present a proof for

the sake of completeness.

Lemma 2.1. When F is a finite abelian group, we have

σa(F ) =
∑
H≤F,

H subgroup

|F/H|a.

In terms of divisors of matrices, as explained in the Introduction, the expres-

sion (2) can be seen as summing over left-divisors, while the above can be seen

as summing over right-divisors. We present an independent proof.

Proof. Since the character group F̂ of F is isomorphic to F , we have

σa(F ) = σa(F̂ ). The following function is known to be one-to-one, see [13, The-

orem 13.2.3]:

VF→F̂ : subgroups of F → subgroups of F̂

H 7→ H⊥ = {χ/χ|H = 1}.

It is further classical that H⊥ ∼= F/H. As a consequence, we find that

σa(F ) =
∑
H≤G,

H subgroup

|H⊥|a =
∑
H≤F,

H subgroup of F

|F/H|a

as wanted. �

3. Recursion formulae

This section is the heart of the whole paper. The next theorem together with

Lemma 2.1 are the only places where we input information on our function. Once

this formula is established, the remainder of the proof of Theorem 1.1 is maybe

not immediate but is essentially a matter of bookkeeping.

Theorem 3.1. Let Fr be a finite abelian p-group of rank r ≥ 1 and expo-

nent p`. Let e` be an element of order p`, and let Fr−1 be a subgroup such that

Fr = Fr−1 ⊕ Ze`. We have

(pa − 1)σa(Fr) = pa`+a |Fr−1|σa−1(Fr−1)− σa+1(Fr−1).
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Proof. We consider Gr = Fr−1 ⊕ Zpe`. We first prove the following two

recursion formulae:

σa(Fr) = paσa(Gr) + σa+1(Fr−1) (4)

and

σa(Fr) = σa(Gr) + pa` |Fr−1|σa−1(Fr−1). (5)

A linear combination of both gives the recursion announced in the lemma. The

first formula will come from the expression of Lemma 2.1

σa(Fr) =
∑
H≤Fr

|Fr/H|a,

while the second one will come from the initial expression

σa(Fr) =
∑
H≤Fr

|H|a.

To do so, we split both summations according to whether H is a subgroup of Gr
or not. The first case is readily handled via the two formulae∑

H≤Fr,
H≤Gr

|Fr/H|a = pa
∑
H≤Gr

|Gr/H|a = paσa(Gr) (6)

and ∑
H≤Fr,
H≤Gr

|H|a =
∑
H≤Gr

|H|a = σa(Gr). (7)

The second case requires some more analysis. Let K be a subgroup of Fr−1. We

consider

Ψ :
{
H|H 6≤ Gr, H ∩ Fr−1 = K

}
→ Fr−1/K

H 7→ y mod K,where y ∈ (H − e`) ∩ Fr−1.

This function is well-defined. Indeed, the set (H − e`) ∩ Fr−1 is non-empty since

H 6≤ Gr, and thus there exists x = f + ne` ∈ H, where f ∈ Fr−1 and n is

prime to p`. On multiplying by the inverse of n modulo p, we recover an element

of the form y + e` as wanted. Furthermore, the class of y modulo K does not

depend on the choice of y. For, if y′ also belongs to (H − e`) ∩ Fr−1, then

y−y′ = (y+e`)−(y′+e`) belongs to H∩Fr−1 = K. We note that H = 〈K, y+e`〉,



Rationality of the zeta function on finite abelian p-groups 97

and that this defines the reverse function to Ψ, proving that Ψ is one-to-one and

onto. Note that Fr/H ∼= Fr−1/K. As a corollary, we get∑
H≤Fr,
H 6≤Gr

|Fr/H|a =
∑

K≤Fr−1

|Fr−1/K||Fr−1/K|a = σa+1(Fr−1) (8)

and ∑
H≤Fr,
H 6≤Gr

|H|a =
∑

K≤Fr−1

pa`|Fr−1/K||K|a = pa`|Fr−1|σa−1(Fr−1). (9)

Combining (6) together with (8) gives (4), while combining (7) together with (9)

gives (5). �

Remark 1. The recursion formula we prove in (4) is already contained in [7], where

a proof in terms of matrices is given. The proof below uses the group-theoretical

context, offering the advantage that we can re-use the same scheme of proof on

the dual group, giving rise to (5). The comparison of both yields the theorem.

The reader should notice that this formula offers a very fast manner to compute

σa(Fr): the recursion (4) yields an algorithm of complexity 2f1+f2+···+fr , while

the above reduces this complexity to 2r.

Remark 2. The part of the proof that involves Ψ is in fact similar to [19, Lemma

1.3.1 (i)], where complements of a given subgroup are being counted.

In the case r = 1, Theorem 3.1 recovers, when a 6= 0, the classical formula

for the sum σa(m) =
∑
d|m d

a of the a-th power of the divisors of the integer m:

σa(pf1) =
pa(f1+1) − 1

pa − 1
=
qf1+1 − 1

q − 1
,

and, by continuity, σ0(pf1) = f1 + 1. We can also use an algebraic argument: the

expression for σa is a polynomial in q = pa which we evaluate at q = 1.

By the classification of finite abelian groups, Fr−1 = [p; f1, f2, · · · , fr−1]. The

situation is, however, not so simple concerning the subgroup Gr introduced in the

above proof. Indeed, when fr ≥ 1, we have Gr = [p; f1, f2, · · · , fr− 1], but this is

not the case anymore when fr = 0. This fact explains the difficulties met in [2]

and in [6]. The novelty of Theorem 3.1 is that it produces a recurrence formula

that preserves this representation.

In the case r = 2, Theorem 3.1 gives, when a 6= 0,

(pa − 1)σa([p; f1, f2]) = pa(f1+f2+1)+f1
p(a−1)(f1+1) − 1

pa−1 − 1
− p(a+1)(f1+1) − 1

pa+1 − 1
. (10)

This formula is generalized in (20).
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4. Proof of Theorem 1.1

Let us use our recursion to derive an explicit formula for

Qr,a(X1, · · · , Xr) =
∑

f1,f2,··· ,fr≥0

σa([p; f1, · · · , fr])Xf1
1 · · ·Xfr

r , (11)

where r ≥ 0 and the parameter p is fixed. The exponent p` of the group

〈f1, · · · , fr〉 is pf1+···+fr , and we recall that Fr−1 = 〈f1, f2, · · · , fr−1〉. An im-

mediate consequence of Theorem 3.1 reads

(pa − 1)Qr,a(X1, · · · , Xr)

= paQr−1,a−1(pa+r−1X1, p
a+r−2X2, · · · , pa+1Xr−1)

∑
fr≥0

(paXr)
fr

−Qr−1,a+1(X1, · · · , Xr−1)
∑
fr≥0

Xfr
r . (12)

We note for future reference that

Q1,a(X1) =
1

(1−X1)(1− paX1)
, Q0,a = 1. (13)

The value at r = 0 follows from the definition (11). We also check directly that

the relation (12) holds true also when r = 1, though we will not use it. We rewrite

the above, when a 6= 0 and r ≥ 1, in the form

Qr,a(X1, · · · , Xr)

=
pa

(pa − 1)(1− paXr)
Qr−1,a−1(pa+r−1X1, p

a+r−2X2, · · · , pa+1Xr−1)

− 1

(pa − 1)(1−Xr)
Qr−1,a+1(X1, · · · , Xr−1).

We can reiterate this process to obtain a rational fraction, provided that the

parameter a that appears does not vanish, which we assume. We will argue by

continuity later. Each time we use the above formula, we change the parameter

r to r − 1, the parameter a to a + ε where ε = ±1, and the parameters Xi

to pε
∗(a+r−i)Xi where ε∗ = (1 − ε)/2. We, furthermore, multiply Qr−1,a+ε by

wε(p
a, Xr), where

wε(q, Y ) = −ε qε
∗

q − 1

1

1− qε∗Y
. (14)

With these notations, the above relation reads

Qr,a((Xi)) =
∑

ε∈{−1,1}

wε(p
a, Xr)Qr−1,a+ε

(
(pε
∗(a+r−i)Xi)i

)
. (15)

In this form, it is easily iterated and yields the next lemma.
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Lemma 4.1. When r ≥ 1, we have

Qr,a((Xi)) =
∑
(εk)

r−1∏
s=0

wεr−s

(
pa+

∑s−1
k=0 εr−k , p

∑s−1
k=0 ε

∗
r−k(a+s−k+

∑k−1
`=0 εr−`)Xr−s

)
,

where the sum runs over (εk)1≤k≤r ∈ {−1, 1}r and ε∗ = (1− ε)/2.

Proof. To prove the above formula, we use recursion, starting from r = 1,

where it is readily checked. We employ (15) to get

Qr,a((Xi))

=
∑

εr∈{±1}

wεr (pa, Xr)
∑

(εk)1≤k≤r−1∈{±1}r−1

r−2∏
s=0

wεr−1−s

(
pa+εr+

∑s−1
k=0 εr−1−k ,

p
∑s−1

k=0 ε
∗
r−1−k(a+εr+s−k+

∑k−1
`=0 εr−1−`)pε

∗
r(a+εr+r−(r−1−s))Xr−1−s

)
.

With s′ = s+ 1, k′ = k + 1 and `′ = `+ 1, the right-hand side reads:

∑
εr∈{±1}

wεr (pa, Xr)
∑

(εk)1≤k≤r−1∈{±1}r−1

r−1∏
s′=1

wεr−s′

(
pa+εr+

∑s′−1

k′=1
εr−k′ ,

p
∑s′−1

k′=1
ε∗
r−k′ (a+εr+s

′−k′+
∑k′−1

`′=1
εr−`)pε

∗
r(a+εr+s

′)Xr−s′
)
.

We transform the above expression with:

a+ εr +

s′−1∑
k′=1

εr−k′ = a+

s′−1∑
k′=0

εr−k′ ,

s′−1∑
k′=1

ε∗r−k′
(
a+ εr + s′ − k′ +

k′−1∑
`′=1

εr−`

)
=

s′−1∑
k′=1

ε∗r−k′
(
a+ s′ − k′ +

k′−1∑
`′=0

εr−`

)
,

s′−1∑
k′=1

ε∗r−k′
(
a+ s′ − k′ +

k′−1∑
`′=0

εr−`

)
+ ε∗r(a+ εr + s′)

=

s′−1∑
k′=0

ε∗r−k′
(
a+ s′ − k′ +

k′−1∑
`′=0

εr−`

)
.

The factor wεr (pa, Xr) gets readily incorporated in the product over s from 1 to

r − 1 as the value for s = 0. This completes the proof. �
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On using the definition given by (14) on the expression given by Lemma 4.1,

we get a fully explicit formula:

Qr,a((Xi))

=
∑

(εk)∈{±1}r

r−1∏
s=0

−εr−spε
∗
r−s(a+

∑s−1
k=0 εr−k)

pa+
∑s−1

k=0 εr−k−1

1

1−p
∑s

k=0 ε
∗
r−k(a+s−k+

∑k−1
`=0 εr−`)Xr−s

.

Some beautification is called for. We first notice that

−k +

k−1∑
`=0

εr−` =

k−1∑
`=0

(εr−` − 1) = −2

k−1∑
`=0

ε∗r−`,

yielding that Qr,a((Xi)) is equal to

∑
(εk)∈{±1}r

r−1∏
s=0

−εr−spε
∗
r−s(a+

∑s−1
k=0 εr−k)

pa+
∑s−1

k=0 εr−k − 1

1

1− p
∑s

k=0 ε
∗
r−k(a+s−2

∑k−1
`=0 ε

∗
r−`)Xr−s

.

The indices of shape r − s, r − k and r − ` were useful for the recursion, but

introduce now a useless level of complexity. We set t = r − s, h = r − k and

g = r − `, and get, for Qr,a((Xi)), the expression

∑
(εk)∈{±1}r

r∏
t=1

−εtpε
∗
t (a+

∑r
h=t+1 εh)

pa+
∑r

h=t+1 εh − 1

1

1− p
∑r

h=t ε
∗
h(a+r−t−2

∑r
g=h+1 ε

∗
g)Xt

.

The proof of Theorem 1.1 is almost complete. We only need to use the identity

r∑
h=t

ε∗h

(
a+ r − t− 2

r∑
g=h+1

ε∗g

)
= (a+ r − t)

r∑
h=t

ε∗h −
( r∑
h=t

ε∗h

)2
+

r∑
h=t

ε∗h,

which is valid because ε∗h
2 = ε∗h.

5. Consequences on Dirichlet series

Let us investigate a possible denominator for the series Qr,a((Xi)) of The-

orem 1.1. The index t being fixed, for each (εk), only one factor has the vari-

able Xt. All these factors are of the shape 1 − p(a+r−t+1)j−j2Xt for some j in

{0, · · · , r − t+ 1}. A possible denominator is thus simply

Br(p, q,X1, · · · , Xr) =

r∏
t=1

r−t+1∏
j=0

(
1− qjp(r−t+1)j−j2Xt

)
, (16)
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by which we mean that the product Ar = Br(p, q,X1, · · · , Xr)Qr,a((Xi)) falls a

priori inside Q(p, q)[X1, · · · , Xr]. However, the only possible remaining poles are

for q = pb for some integer b, and this is not possible, since, when s = 2 + |b| and

Xt = 1/ps(r−t+1), the series Dr,a(s) is bounded. It would be helpful to get a better

description of Ar, and at minimum show that it is prime to Br. Furthermore, its

coefficients are integers, and thus likely to have a combinatorial expression. We

will see below that these coefficients may vary in signs.

When we restrict our attention to the case q = 1 (i.e. a = 0) and Xt =

1/ps(r−t+1), the denominator (16) becomes (Careful! We have replaced j by i

and then used j = r − t+ 1 to be able to compare with [6, Theorem 1]):

r∏
j=1

j∏
i=0

(
1− p−js+ji−i

2)
.

The zeta product extracted in [6, Theorem 1] corresponds to i = j/2 when j is

even, and to i = (j ± 1)/2 when j is odd.

We checked the formula given by Theorem 1.1 in the case r = 1 with (13),

and in the case r = 2 with [2, Corollary 3] that we recall:

B2(p, q,X1, X2)Q2,a(X1, X2) = 1 + qX1 − q(q + 1)X1X2. (17)

In the case a = 0 and r = 3, the erratum [4, (4.17)] gives the proper formula that

we have also checked against our expression.

We finally investigated formulae for r = 3, r = 4 and r = 5. The formulae are

huge in general. We can, however, record two new explicit formulae to help test

conjectures. When r = 3, we can keep a arbitrary and still have a manageable

formula under the determinant condition:

B3(p, q,X3, X2, X)Q3,a(X3, X2, X)

= 1 + qX2 + p(q + 1)qX3 − (q2 + (p+ 1)q + 1)qX4

− ((p+ 1)(q3 + 1) + (p2 + p+ 1)q(q + 1))qX5

+ (q4 + (p+ 1)q(q2 + 1) + (p2 + p+ 1)q2 + 1)qX6

− (q2 + q + 1)pq3X8 + (q3 + (p+ 1)q(q + 1) + 1)pq3X9

+ (pq2 + (p+ 1)q + p)pq4X10 − (pq3 + (p+ 1)q(q + 1) + p)pq4X11. (18)

We have used a GP-Pari [24] script to run the computations based on (15) rather

than on Theorem 1.1. Since we know a possible denominator, we have used a data
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structure of the form [Numerator, Denominator-Vector], where Denominator-

Vector was a list of triplets [u, v, k] meaning that the denominator was the product

of 1−puqvXk, taken over all the triplets of the list. The addition of any two such

structures is readily handled. The computations took essentially no time, while a

brute force algorithm using Theorem 1.1 and relying on the arithmetic of rational

fractions was taking a very long time when r = 4. We checked that the final

minimal denominator was indeed Br(p, q,X1, · · · , Xr). When r = 4, we use the

determinant condition and stick to a = 0 to get

B4(p, 1, X4, X3, X2, X)Q4,0(X4, X3, X2, X)

= (7p3 + 5p2 + 8p+ 4)p6X26 − (6p3 + 4p2 + 6p+ 2)p6X25

− (5p3 + 10p2 + 9p+ 8)p6X24 + (6p4 − 10p3 − 4p2 − 4p− 2)p4X23

+ (5p4 + 15p3 + 7p2 + 8p+ 1)p4X22 + (4p5 + 6p3 + 12p2 − 2p+ 4)p4X21

− 3(3p2 + p+ 1)p4X20 − 2(2p6 + 3p5 + 12p4 + 5p3 + 5p2 + 2p+ 1)pX19

+ (p7 + 3p6 + 12p5 + 23p4 + 6p3 + 8p2 + 3p+ 1)pX18

+ 2(p8 + 2p7 + 5p6 + 7p5 + 18p4 + 18p3 + 10p2 + 6p+ 2)pX17

− (3p8 + 6p7 + 15p6 + 16p5 + 16p4 + 18p3 − 4p2 + p− 2)pX16

− (2p6 + 6p5 + 16p4 + 18p3 + 24p2 + 24p+ 4)p2X15

+ (3p7 + p6 + p5 − 20p4 − 13p3 − 21p2 − 26p− 9)pX14

+ 2(3p6 + 4p5 + 5p4 + 4p3 + 4p2 + 4p− 3)pX13

+ (9p5 + 11p4 + 23p3 + 15p2 + 12p+ 10)pX12

− 6(p2 + p− 1)p3X11 − (3p5 + 2p4 + 8p3 − p2 + 5p+ 9)X10

+ 4(p5 + p3 + 2p+ 2)X9 + (6p4 + 4p3 + 9p2 + 2p+ 7)X8

− 2(p3 + 3p2 + 2p+ 4)p2X7 − (3p2 + 2p+ 3)pX6

− 2(2p2 + 3p+ 4)X5 + (p2 + 4p+ 2)pX4 + 2pX3 +X2 + 1 (19)

This expression shows that the polynomial in p in front of each power of X is not a

sum of monomials of constant signs, as could have been thought from the expres-

sions for r ≤ 3. We computed similarly the p-factor Q5,0(X5, X4, X3, X2, X), and

obtained a quotient of a polynomial in Z[p,X] of degree 50 in X and 25 in p, the

largest monomial being 11p25X50, by B5(p, 1, X5, X4, X3, X2, X) as expected.
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6. A closed formula

We exploit Theorem 1.1 to express σa([p; f1, · · · , fr]). We use the expansion

1

1− qaupvXt
=
∑
ft≥0

qauftpvftXft
t

to find that ∑
f1,f2,··· ,fr≥0

σa([p; f1, f2, · · · , fr])Xf1
1 · · ·Xfr

r

=
∑

(εk)∈{−1,1}r

r∏
t=1

−εtqε
∗
t pε
∗
t

∑r
h=t+1 εh

qp
∑r

h=t+1 εh − 1
×

r∏
t=1

∑
ft≥0

q
∑r

h=t ε
∗
hftp

(
(r−t+1)

∑r
h=t ε

∗
h−(

∑r
h=t ε

∗
h)

2
)
ftXft

t .

On identifying the coefficients, we find that

σa([p; f1, f2, · · · , fr])

=
∑

(εk)∈{−1,1}r

r∏
t=1

−εtqε
∗
t pε
∗
t

∑r
h=t+1 εh

qp
∑r

h=t+1 εh − 1
×

q
∑r

t=1

∑r
h=t ε

∗
hftp

∑r
t=1

(
(r−t+1)

∑r
h=t ε

∗
h−(

∑r
h=t ε

∗
h)

2
)
ft . (20)

As a mean of verification, we note that (3) gives us σa([p; f1, f2, · · · , fr]) = 1

when q = 0. In the expression above, the only contribution when q = 0 occurs

when ε∗t = 0 for every t ∈ {1, · · · , r}, i.e. when εt = 1 for every t ∈ {1, · · · , r}. In

this case
∑r
h=t ε

∗
h = r− t+1, and the above formula gives the value 1 as required.

The case r = 2 is given in (10).
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