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On Newton–Sobolev spaces

By MIGUEL ANDRÉS MARCOS (Santa Fe)

Abstract. Newton–Sobolev spaces, as presented by N. Shanmugalingam, describe

a way to extend Sobolev spaces to the metric setting via upper gradients, for metric

spaces with ‘sufficient’ paths of finite length. Sometimes, as is the case of parabolic

metrics, most curves are non-rectifiable. We generalize some of these results to spaces

where paths are not necessarily measured by arc length. Under the assumption of a

Poincaré-type inequality and an arc-chord property here defined, we obtain the density

of some Lipschitz classes, relate Newton–Sobolev spaces to those defined by Haj lasz, and

we also get some Sobolev embedding theorems. Finally, we illustrate some non-standard

settings where these conditions hold, specifically by adding a weight to arc-length.

1. Introduction

If Ω is an open set in Rn and f is a smooth function defined on Ω, the Fun-

damental Theorem of Calculus for line integrals implies that, for every piecewise

smooth path γ in Ω with endpoints x, y, we get

|f(x)− f(y)| ≤
ˆ
γ

|∇f |d|s|.

Nonnegative functions defined in Ω that satisfy this inequality for every x, y and

every γ, joining them in place of |∇f |, are referred to as upper gradients (see, for

example, [14]).
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In the case Ω = Rn, one can consider only segments parallel to the coordinate

axes instead of more general paths, and those are sufficient to describe partial

derivatives and through them gradients. The same can be done if we consider a

rotation of these segments, as the Euclidean metric is invariant under rotations,

and the same holds for path length. This is not true in a more general setting

such as R2 with the parabolic metric defined further along this section, where

only horizontal segments are rectifiable.

In [16], N. Shanmugalingam describes, via upper gradients, a way to char-

acterize Sobolev spaces W 1,p in open sets of Rn that extends to metric measure

spaces, defining Newton–Sobolev spaces N1,p. If the space has ‘sufficient’ rectifi-

able paths (in the sense that the set of rectifiable paths has nonzero p-modulus),

an interesting theory of Sobolev functions can be developed, but if the set of

rectifiable paths is negligible, this ‘Sobolev space’ is just Lp.

Easy enough examples of metric measure spaces with no paths of dimen-

sion 1 can be constructed. For instance, take X = R with d(x, y) = |x − y|1/2,

and we get that paths are either 0-dimensional (trivial paths) or 2-dimensional.

While ‘classical’ Newton–Sobolev theory in such a space would be nonsensical,

a good theory could be developed if we measured path ‘length’ by Hausdorff

2-dimensional measure H2
d with respect to the new distance d. Of course, H2

d

coincides with H1 with respect to the Euclidean distance, and the above example

seems to be just a change of parameters.

In a more interesting scenario, we consider parabolic metrics associated to a

matrix, see, for instance, [9]. Take an n× n diagonal matrix D with eigenvalues

satisfying α1, . . . , αn ≥ 1. For x ∈ Rn and λ > 0, we define

Tλx = eD log λx =

 λα1

0
. . .

0 λαn


 x1

...

xn

 .

For a norm ‖ · ‖ in Rn it can be shown that, for x 6= 0, ‖Tλx‖ is continuous,

strictly increasing in λ, tends to 0 as λ → 0 and tends to ∞ as λ → ∞. Then

there exists a unique 0 < ρ(x) <∞ such that ‖T1/ρ(x)x‖ = 1. If we define

d(x, y) = ρ(x− y)

for x 6= y and d(x, x) = 0, then d is a translation invariant metric that also

satisfies d(Tλx, Tλy) = λd(x, y) and d(x, y) = 1 iff |x − y| = 1, d(x, y) < 1 iff

|x − y| < 1, d(x, y) > 1 iff |x − y| > 1. These metrics thus defined can have

different Hausdorff dimensions, see [1].
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The word parabolic refers to the case α1 = . . . = αn−1 = 1 and αn = 2, which

provides the right dilations for the heat equation and other partial differential

equations of parabolic type (see [5]). For example, if we consider R2 with D =(
1 0

0 2

)
and the maximum norm, we obtain

d ((x, y), (x′, y′)) = max
{
|x− x′|, |y − y′|1/2

}
,

and it can be shown that balls have Hausdorff dimension 3 (in fact they are Ahlfors

3-regular). Here, the only non-trivial rectifiable paths are horizontal segments,

so even though there are rectifiable paths, the space is not connected by them.

Smooth non-horizontal paths have Hausdorff dimension 2, so we see that this

measure is not rotation invariant.

As another example of heterogeneity, we can consider adding a weight ω to

arc-length by using the measure dµ = ωdH1. In this case, this path measure will

not necessarily be invariant under any kind of isometry.

In this work, following the ideas in [16], we develop a more general theory

of Newton–Sobolev spaces by replacing Hausdorff 1-dimensional measure by an

arbitrary measure µ as a way of measuring path ‘lengths’.

In Sections 2 and 3, we generalize all the machinery needed to construct

Newton–Sobolev spaces. In Section 4, we define these spaces and prove that

they are complete. In Section 5, we call for some additional properties, such as

Poincaré inequality, needed to prove some more interesting results, as Lipschitz

density or Sobolev embeddings. We also compare Newton–Sobolev spaces with

another kind of Sobolev space in metric spaces: Haj lasz–Sobolev spaces.

2. µ-arc length and upper gradients

Classical definitions of arc length, length function, arc length parametrization

and line integrals in the metric setting can be found in [13]. In this section,

we modify these concepts so they apply in more general ways to measure path

‘lengths’.

Given a metric space (X, d) and a path γ : [a, b] → X, i.e. a continuous

function from [a, b] into X, its length is defined as l(γ) = sup
∑
i d(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions of [a, b]. We say that γ̃ is a

sub-path of γ if it is the restriction of of γ to a subinterval of [a, b]. We say that a

path (or subpath) is trivial if it is a constant path (for injective paths this means

a = b).
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The concept of arc length of a path is similar to, but not equal to, Hausdorff

one-dimensional measure H1 of its image, however, they do coincide for injective

paths (see [6]). From this result, for injective paths and for Borel nonnegative

measurable functions, we get that

ˆ
γ

gdσ =

ˆ
Im(γ)

gdH1,

where dσ is arc-length, and from this, we can think of exchanging the measure H1

for another Borel measure, as Hs.
Let µ be a non-atomic Borel measure in X (in the sense that µ({x}) = 0 for

each x ∈ X). Define Γµ as the set of all non trivial injective paths γ in X such

that 0 < µ(Im(γ̃)) < ∞ for all non trivial subpaths of γ. For nonnegative Borel

functions g : X → [0,∞], we define

ˆ
γ

g =

ˆ
Im(γ)

gdµ.

Now, for a path γ : [a, b]→ X in Γµ, we define h(γ) = µ(Im(γ)) and its µ-arc

length νγ : [a, b]→ R as νγ(x) = h(γ|[a,x]).
The following result is immediate.

Lemma 2.1. For paths γ : [a, b] → X in Γµ, we have that νγ is strictly

increasing, continuous, onto [0, h(γ)], and besides

h(γ) = h(γ|[a,x]) + h(γ|[x,b]).

We can now recover an analogue to the arc length parametrization.

Theorem 2.2. For γ : [a, b]→ X in Γµ, there is a unique γh : [0, h(γ)]→ X

such that γ = γh ◦ νγ , which satisfies Im(γ) = Im(γh) and ν(γh)(t) = t in [0, h(γ)]

(therefore, γh = γh ◦ νγh). We call this the µ-arc length parametrization of γ.

Proof. As νγ : [a, b] → [0, h(γ)] is strictly increasing and onto, it is a

bijection between [a, b] and [0, h(γ)], and we can define γh = γ ◦ ν−1γ . It is

immediate that Im(γ) = Im(γh), and

ν(γh)(t)=µ(γh([0, t]))=µ(γ(ν−1γ ([0, t])))=µ(γ([a, ν−1γ (t)]))=νγ(ν−1γ (t))= t. �
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As a corollary, we obtain

Theorem 2.3. If γ : [0, h] → X is a path in Γµ parametrized by µ-arc

length, then, for every Borel set B of [0, h], we have

µ(γ(B)) = |B|,

where |B| is the 1-dimensional Lebesgue measure of B. Furthermore, if g : X → R
is nonnegative and Borel measurable, then, for each subpath γ̃ = γ|[a,b], we have

ˆ
γ̃

g =

ˆ b

a

g ◦ γ̃.

Finally, we get the same result as with rectifiable curves.

Theorem 2.4. Given a function f : X → R and a path γ : [0, h]→ X in Γµ

parametrized by µ-arc length, if there exists a Borel measurable nonnegative

ρ : X → R satisfying

|f(γ(s))− f(γ(t))| ≤
ˆ
γ|[s,t]

ρ <∞

for every 0 ≤ s < t ≤ h, then f ◦ γ : [0, h]→ R is absolutely continuous.

Proof. Let ε > 0. As ρ ∈ L1(Im(γ), µ), by absolute continuity of the

integral, there exists δ > 0 such that for every E ⊂ Im(γ) with µ(E) < δ we

have
´
E
ρdµ < ε. Then, if 0 ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ h satisfy∑

i |bi − ai| < δ,

µ(∪iγ([ai, bi])) =
∑
i

νγ(bi)− νγ(ai) =
∑
i

bi − ai < δ,

and therefore∑
i

|f ◦ γ(bi)− f ◦ γ(ai)| ≤
∑
i

ˆ
γ|[ai,bi]

ρ =

ˆ
∪iγ([ai,bi])

ρdµ < ε. �

Let now Γ∗ be a subset of Γµ, closed under taking subpaths (i.e. if γ ∈ Γ∗

and γ̃ is a non-trivial subpath of γ, then γ̃ ∈ Γ∗). A nonnegative Borel measurable

function ρ satisfying

|f(x)− f(y)| ≤
ˆ
γ

ρ

for every γ ∈ Γ∗ with endpoints x, y, for every pair of points x, y with f(x), f(y)

finite, is called a µ-upper gradient for f with respect to Γ∗. As Theorem 2.4

shows, if a function f has an upper gradient with respect to Γ∗ that is integrable

over each path in Γ∗, then it is absolutely continuous over every path in Γ∗.
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Example 2.5. Let R2 be equipped with the parabolic distance d discussed in

the introduction, and let µ = H2. If γ is a segment joining x = (a, ka + b) with

y = (a+h, k(a+h) + b) for some h > 0, then its measure µ is just its height |k|h,

while its length is
√

1 + k2h, so in fact we have dµ = k√
1+k2

dl over these paths

(clearly, when k → 0, we get µ = 0, and when k →∞, µ = l).

Now, for f smooth,

|f(y)− f(x)| ≤
ˆ √1+k2h

0

∣∣∣∣∇f (a+
t√

1 + k2
, b+

t√
1 + k2

)∣∣∣∣ dt
=

ˆ
γ

|∇f |ds =

√
1 + k2

k

ˆ
Im(γ)

|∇f |dµ,

and the same bound can be shown in a similar way for h < 0.

Therefore, if we consider Γ∗k to be the set of all polygonal paths made up of

segments of slope ±k for a fixed 0 < k < ∞, we obtain that
√
1+k2

k |∇f | is an

upper gradient for f with respect to Γ∗k. The following picture illustrates a path

of Γ∗k for k = 1:

x

y

γ

Example 2.6. Now, if we consider X = Rn with Euclidean distance, but

dµ = ωdH1, where ω and 1
ω are locally integrable with respect to H1, we obtain

Γµ = Γrect, where Γrect is the set of all non-trivial injective rectifiable paths. For

f smooth and γ ∈ Γµ,

|f(y)− f(x)| ≤
ˆ
γ

|∇f | =
ˆ
Im(γ)

|∇f |dH1 =

ˆ
Im(γ)

|∇f |
ω

dµ,

and in fact the same can be applied to any ‘classical’ upper gradient of a func-

tion f . There is clearly a one-to-one correspondence between upper gradients ρ

with H1, and upper gradients of the form ρ/ω with measure µ.

3. Modulus of a path family and p-weak upper gradients

Let now m be a Borel measure on X. As in [16], we adjust the definition of

modulus of a set of measures in [8] to path families.
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For every family Γ ⊂ Γµ and 0 < p <∞, we define its p-modulus as

Modp(Γ) = inf

ˆ
X

gpdm,

where the infimum is taken over all nonnegative Borel measurable functions

g : X → R satisfying
´
γ
g ≥ 1 for every γ ∈ Γ.

The following results can be found in [8], we state them here in the language

of paths instead of measures.

Theorem 3.1. Modp is an outer measure on Γµ.

As expected, we say that a property holds for p-almost every path γ ∈ Γµ if

the set Γ where it does not hold has Modp(Γ) = 0. A useful property of sets of

p-modulus zero is the following.

Lemma 3.2. Modp(Γ) = 0 if and only if there exists a nonnegative Borel

measurable function g satisfying
´
X
gpdm <∞ and

´
γ
g =∞ for every γ ∈ Γ.

Given a set E ⊂ X, we define

ΓE = {γ ∈ Γµ : Im(γ) ∩ E 6= ∅}, Γ+
E = {γ ∈ Γµ : µ(Im(γ) ∩ E) > 0},

and we have the following lemma:

Lemma 3.3. If m(E) = 0, then Modp(Γ
+
E) = 0.

A nonnegative Borel measurable function ρ satisfying

|f(x)− f(y)| ≤
ˆ
γ

ρ

for p-almost every γ ∈ Γµ with endpoints x, y is called a p-weak upper gradient

for f .

As in Shanmugalingam’s case, we do not lose much by restricting ourselves

to weak upper gradients.

Proposition 3.4. If ρ is a p-weak upper gradient for f and ε > 0, there

exists an upper gradient ρε for f such that ρε ≥ ρ and ‖ρ− ρε‖p < ε.

As seen in 2.4, functions with ‘small’ upper gradients are absolutely contin-

uous on curves. We say that a function f is ACCp or absolutely continuous over

p-almost every path if f ◦ γh : [0, h(γ)]→ R is absolutely continuous for p-almost

every γ.
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Lemma 3.5. If a function f has a p-weak upper gradient ρ ∈ Lp, it is ACCp.

Proof. Let Γ0 be the set of all paths γ such that |f(x)− f(y)| >
´
γ
ρ, and

let Γ1 be the set of all paths with a subpath in Γ0. As ρ is a weak upper gradient,

Modp(Γ0) = 0, but if g satisfies
´
γ
g = ∞ for every γ ∈ Γ0, it clearly satisfies´

γ
g =∞ for every γ ∈ Γ1, and therefore

Modp(Γ1) = 0.

Let Γ2 be the set of all paths γ with
´
γ
ρ =∞. Then, as ρ ∈ Lp, Modp(Γ2)=0. For

paths not in Γ1 ∪Γ2, we can apply Theorem 2.4 and we conclude the lemma. �

We will also need the following lemma later on.

Lemma 3.6. If f is ACCp, and f = 0 m-almost everywhere, then the family

Γ = {γ ∈ Γµ : f ◦ γ 6≡ 0}

has p-modulus zero.

Proof. Let E = {x : f(x) 6= 0}, then m(E) = 0 and Γ = ΓE . As Γ+
E

has modulus zero (because m(E) = 0), we only need to see that ΓE\Γ+
E also

has modulus zero. But if γ ∈ ΓE\Γ+
E , Im(γ) ∩ E 6= ∅ but µ(Im(γ) ∩ E) = 0,

therefore, γ−1h (E) has length 0 in R, and f ◦ γh is nonzero in a set of length 0,

and if E 6= ∅, this set is not empty and f ◦ γh cannot be absolutely continuous.

Therefore, Modp(ΓE\Γ+
E) = 0. �

4. Extended Newton–Sobolev spaces N1,p

From now on, we will work on a fixed subset Γ∗ ⊂ Γµ, closed under taking

subpaths. Properties defined on the previous section, such as p-weak upper gra-

dients or ACCp, can be easily adjusted to Γ∗ instead of Γµ. We will also require

that the space X be connected by paths belonging to Γ∗. This is the case of Γ∗k
in the example of R2 with the parabolic metric. For the Euclidean case, it is

sufficient to consider piecewise linear paths made of segments parallel to the co-

ordinate axis instead of all rectifiable paths in order to obtain a theory of Sobolev

spaces, but in general this need not be the case.

We define the space Ñ1,p as the space of all functions f having a p-weak

upper gradient, both with finite p-norms. We define the N1,p norm as

‖f‖N1,p = ‖f‖p + inf
ρ
‖ρ‖p,
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where the infimum is taken over all p-weak upper gradients of f .

It immediately follows from definition that (Ñ1,p, ‖ · ‖N1,p) is a semi-normed

vector space. Moreover, if f, g ∈ Ñ1,p, then

|f |,min{f, g},max{f, g} ∈ Ñ1,p.

As seen before, every function in Ñ1,p is ACCp.

Ñ1,p is not a normed space, as two distinct functions can be equal almost

everywhere, but also because a function may be in Ñ1,p, while a function equal

almost everywhere to it may not. We do have the following as a corollary of 3.6.

Corollary 4.1. If f, g ∈ Ñ1,p and f = g m-a.e., then ‖f − g‖N1,p = 0.

Finally, we define the equivalence relation: f ∼ g iff ‖f −g‖N1,p = 0, and the

quotient space N1,p = Ñ1,p/ ∼, called as the generalized Newton–Sobolev space.

Example 4.2. In the case of R2 with the parabolic distance, µ = H2 and

m = H3 defined in the Introduction, we saw in Section 2 that if we consider

Γ∗k for a fixed k > 0 as our path family, we obtain that
√
1+k2

k |∇f | is an upper

gradient for f . In fact, one can show that N1,p = W 1,p with equivalent norms.

If we consider the whole of Γµ, this will not happen, as we can see by considering

that if ρ is a bounded upper gradient for f , for paths γ joining (x, y) and (x′, y′),

we obtain

|f(x, y)− f(x′, y′)| ≤
ˆ
γ

ρ ≤ ‖ρ‖∞µ(Im(γ)).

So, for the case of segments in Γ∗k, we would obtain

|f(x, y)− f(x′, y′)| ≤
ˆ
γ

ρ ≤ ‖ρ‖∞|y − y′|,

and if we allow segments of arbitrarily small height, we obtain that f must

be cylindrical, f(x, y) = g(y), so, unless f ≡ 0 or p = ∞, we cannot obtain

f ∈ Lp(dm). For p = ∞, we obtain that N1,∞ consists of cylindrical bounded

functions f(x, y) = g(y), with g a Lipschitz-1 function (in the Euclidean sense).

Example 4.3. Back to the example of X = Rn with Euclidean distance and

dµ = ωdH1, where both ω and 1
ω are locally integrable with respect to H1, so for

the measure dm = ωpdx (where dx is Lebesgue measure) we get that the space

N1,p(dm) consists of those f ∈ Lp(dm) such that |∇f |ω ∈ Lp(dm), or in terms of

Lebesgue measure,

N1,p = {f : ωf, |∇f | ∈ Lp(dx)}.
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For the particular case ω(x) = 1 + |x|, this space coincides with the Sobolev–

Hermite space Lp1, as defined in [2]. More generally, for the Schrödinger operator

L = −∆ + V (x), if V satisfies a certain reverse Hölder condition, for the weight

ω = V 1/2, our Sobolev space N1,2 = {f : ωf, |∇f | ∈ L2(dx)} is the appropriate

space to work with the operator L (see, for instance, [17]).

As in the case of Shanmugalingam, the spaces N1,p turn out to be Banach.

We state here the result, its proof is analogous to Theorem 3.7 in [16].

Theorem 4.4. N1,p is Banach.

5. Poincaré inequality

If there is no relationship between the ‘space measure’ m and the ‘path

measure’ µ, most standard results about N1,p cannot be proven. The standard

way of relating them is by Poincaré inequality. In our case, we will also need a

relationship between the ‘path measure’ and the distance function.

We say that X supports a (1, p)-Poincaré inequality of exponent β > 0 if

there exists C > 0, λ ≥ 1 such that for every ball B and every pair f, ρ defined

in B such that f ∈ L1(B), and an upper gradient of f in B, we have

 
B

|f − fB |dm ≤ Cdiam(B)β
( 

λB

ρpdm

)1/p

.

The functions f satisfying the above inequality for some ρ ≥ 0 in Lp belong

to the space P β,pλ (X) described in [12], where relationships with some generalized

Poincaré inequality spaces and classical Newtonian spaces are proven.

In Shanmugalingam’s case, this property suffices to prove that Lipschitz func-

tions are dense in N1,p. One crucial fact for proving this is that the length of a

path is always greater than, or equal to the distance between any pair of points

over the curve, but in our context this may not be the case. We say that the fam-

ily Γ∗ has the µ-arc-chord property with exponent β ≥ 1 if there exists Cµ > 0,

such that for every γ ∈ Γ∗ (and thus for every subpath of that γ, as Γ∗ is closed

under taking subpaths), we get that

diam(Im(γ))β ≤ Cµµ(Im(γ)).

Observe that the usual chord-arc property (see, for instance, [4]) means the

opposite inequality: l(γ) ≤ Cd(x, y) if γ is a path joining x and y (which in turn



On Newton–Sobolev spaces 117

implies l(γ) ∼ d(x, y), as the reverse inequality d(x, y) ≤ l(γ) always holds). We

do not require this control over the measure of the curves in Γ∗, but the opposite

one (thus we reverse the word order in the definition). Observe also that, as

mentioned by one of the Referees, the µ-arc-chord property implies the Hausdorff

dimension of each Im(γ), γ ∈ Γ∗ is at most β, so the case 0 < β < 1 makes no

sense, as in metric spaces there are no paths of dimension between 0 and 1.

In this section, we will prove some results that arise from these properties,

and then we will go back to the example dµ = ωdH1.

First, we will prove a series of lemmas that will give us sufficient conditions

for Lipschitz functions to be dense in N1,p.

Lemma 5.1. Let f be ACCp such that f |F = 0 m-a.e., for F a subset of X.

If ρ is an upper gradient of f , then ρχX\F is a p-weak upper gradient of f .

Proof. Let Γ0 be the set of paths for which f ◦γh is not absolutely continu-

ous, and let E = {x ∈ F : f(x) 6= 0}, so Modp(Γ0 ∪Γ+
E) = 0. Now, if γ 6∈ Γ0 ∪Γ+

E

has endpoints x, y,

• if Im(γ) ⊂ (X\F )∪E, then |f(x)−f(y)| ≤
´
γ
ρ=

´
γ
ρχX\F as µ(Im(γ)∩E)=0.

• if x, y ∈ F\E, then f(x) = f(y) = 0 and |f(x) − f(y)| ≤
´
γ
ρχX\F holds

trivially.

• if x ∈ (X\F )∪E (or the same for y) but Im(γ) is not completely in (X\F )∪E,

as (f ◦ γh)−1({0}) is a closed set of [0, h(γ)] (f ◦ γh is continuous), it has a

minimum a and maximum b (with f ◦ γh(a) = f ◦ γh(b) = 0). Then,

|f(x)− f(y)| ≤ |f(x)− f(γh(a))|+ |f(γh(b))− f(y)|

≤
ˆ
γh|[0,a]

ρ+

ˆ
γh|[b,h(γ)]

ρ ≤
ˆ
γ

ρχX\F ,

as γh([0, a]) and γh([b, h(γ)]) intersect F in a set of µ-measure zero. �

As immediate consequences of the µ-arc-chord property, we have the following

results (Lemma 5.3 follows a pattern similar to the proof of Lemma 5.1).

Lemma 5.2. If Γ∗ has the µ-arc-chord property with exponent β, then

every Lipschitz-β (also called Hölder-β) function is absolutely continuous over

every curve of Γ∗.

Lemma 5.3. If Γ∗ has the µ-arc-chord property with exponent β and f :

X → R is a Lipschitz-β function with constant L, then CµLχsupp(f) is an upper

gradient of f . In particular, if supp(f) is compact, we have f ∈ Ñ1,p.
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With the previous results, and also requiring the measure m to be doubling,

we get the following.

Theorem 5.4. If m is doubling, X supports a (1, p)-Poincaré inequality of

exponent β = 1, and Γ∗ satisfies the µ-arc-chord property with exponent also

β = 1, then Lipschitz-1 functions are dense in N1,p.

Proof. Let f ∈ Ñ1,p, and let g ∈ Lp be an upper gradient of f . Assume

f is bounded (bounded functions are clearly dense in N1,p, as a truncated version

of a function in N1,p is still in N1,p, and convergence of the truncated functions

to the original one follows from Lemma 5.1). We define

Ek = {x ∈ X : Mgp(x) > kp},

where M is the noncentered Hardy–Littlewood maximal function. As m is dou-

bling, M is weak type 1, 1, and m(Ek) ≤ C
kp

´
X
gp → 0 as k →∞. Let Fk = X\Ek

(which is closed as Ek is open). If x ∈ Fk, r > 0 and B = B(x, r),

 
B

|f − fB | ≤ Cr
( 

B

gp
)1/p

≤ Cr(Mgp(x))1/p ≤ Crk.

Then if we take fn(x) = fB(x,2−nr), we have

|fn+j(x)−fn(x)|≤
j∑
i=1

|fn+i+1(x)−fn+i(x)|≤C
j∑
i=1

 
B(x,2−(n+i)r)

|f−fB(x,2−(n+i)r)|

≤Ckr2−n
j∑
i=1

2−i ≤ Ckr2−n,

and therefore fn(x) is Cauchy for each x ∈ Fk. Now, we define for x ∈ Fk,

fk(x) = lim fn(x). Observe that for Lebesgue points of f in Fk, we have fk(x) =

f(x). Let’s verify that fk is Lipschitz-β. Given x, y ∈ Fk, take r = d(x, y),

Bn = B(x, 2−nr), B′n = B(y, 2−nr), then, as before,

|fk(x)− fk(y)| ≤
∞∑
n=0

C

 
Bn

|f − fBn |+ C

 
2B0

|f − f2B0
|+

∞∑
n=0

C

 
B′n

|f − fB′n |

≤ Ckr
∞∑
n=0

2−n + Crk ≤ Ckr = Ckd(x, y).

Now, fk can be extended to all of X as a Lipschitz function with the same

Lipschitz constant, and we can assume it is bounded by Ck (see [1]). Thenˆ
X

|f − fk|p =

ˆ
Ek

|f − fk|p ≤ C
ˆ
Ek

|f |p + Ckpm(Ek)→ 0



On Newton–Sobolev spaces 119

as k →∞, for m(Ek)→ 0 and the weak type of the Hardy–Littlewood maximal

implies kpm(Ek)→ 0.

So fk tends to f in Lp. As f and fk are ACCp, (g+C̃k)χEk is a p-weak upper

gradient of f − fk, and as it is in Lp and tends to 0 when k →∞, f − fk ∈ N1,p

for every k and ‖f − fk‖N1,p → 0. �

If X is doubling and supports a (1, q) Poincaré inequality of exponent β > 0

for some 1 ≤ q < p, then we have that every function in N1,p has a Haj lasz

gradient in Lp, i.e. N1,p ↪→ Mβ,p with ‖ · ‖Mβ,p ≤ C‖ · ‖N1,p (see [10], [15], [16],

we define Mβ,p to be the space M1,p for the metric dβ). The converse embedding

holds true in general for Shanmugalingam’s case. In our case, we need the µ-arc-

chord property.

Lemma 5.5. Assume Γ∗ satisfies the µ-arc-chord property with exponent β,

and let f be a continuous function satisfying

|f(x)− f(y)| ≤ d(x, y)β(g(x) + g(y))

for every x, y, for some nonnegative measurable function g. Then there exists

C > 0 such that Cg is an upper gradient for f .

Proof. Let γ : [0, h] → X be a path in Γ∗, parametrized by µ-arc length

with endpoints x, y. If
´
γ
g = ∞, we are done. Otherwise, for each n we take

γi = γ|[ in , i+1
n ], 0 ≤ i ≤ n−1, as γ is a µ-arc length parametrization, we have that

µ(|γi|) = µ(Im(γ))/n = h/n. For each i, there exists xi ∈ |γi| with g(xi) ≤
ffl
γi
g,

and the µ-arc-chord property implies that d(xi, xi+1)β ≤ Cµ(|γi|), then

|f(x0)− f(xn−1)| ≤
∑
i

|f(xi)− f(xi+1)| ≤
∑
i

d(xi, xi+1)β(g(xi) + g(xi+1))

≤ C
∑
i

(ˆ
γi

g +

ˆ
γi+1

g

)
≤ C

ˆ
γ

g.

Taking n→∞, x0 → x, xn−1 → y and

|f(x)− f(y)| ≤ C
ˆ
γ

g,

and we have what we needed. �

Corollary 5.6. If Γ∗ satisfies the µ-arc-chord property with exponent β and

continuous functions are dense in Mβ,p (which happens, for instance, if β = 1,

see [10]), then Mβ,p ↪→ N1,p, with ‖ · ‖N1,p
≤ C‖ · ‖Mβ,p .
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As said before, functions that satisfy a (1, q) Poincaré inequality of exponent

β > 0 for some 1 ≤ q < p are automatically in Mβ,p (see [15] for the case β = 1,

the general case follows the same proof). Together with the previous corollary,

we obtain the following theorem.

Theorem 5.7. If X is doubling and supports a (1, q) Poincaré inequality

with exponent β = 1 for some 1 ≤ q < p, and Γ∗ satisfies the µ-arc-chord property

with the same exponent β = 1, then M1,p = N1,p, with equivalent norms.

As in [16], we have the following versions of the classical Sobolev embedding

theorems. In Shanmugalingam’s case they are proven for β = 1, but the same

proof can be applied for other β in our case.

Theorem 5.8. If m is doubling and satisfies

m(B(x, r)) ≥ CrN

for C,N independent of x ∈ X, 0 < r < 2 diam(X), and if X supports a (1, p)

Poincaré inequality of exponent β ≤ 1 for p > N/β, then functions in N1,p are

Lipschitz-α with α = β −N/p.

Proof. Let g be an upper gradient of f ∈ Ñ1,p, that is in Lp. The telescop-

ing argument as in the proof of Theorem 5.4, together with Poincaré inequality,

give, for x, y Lebesgue points of f and r = d(x, y), Bn, B
′
n, fn, as before,

|f(x)− f(y)| ≤ C
∞∑
n=0

(2−nr)β
( 

2Bn

gp
)1/p

+ C

∞∑
n=0

(2−nr)β

( 
B′n

gp

)1/p

≤ C
∞∑
n=0

(2−nr)β−N/p‖g‖p ≤ C‖g‖pd(x, y)α.

Now, if L is the set of Lebesgue points of f , m(X\L) = 0, then f |L is Lipschitz-α

with α ≤ 1, so it can be extended to a Lipschitz-α function f̃ in all X. Γ+
X\L

has p-modulus zero, and the set Γ0 of paths where f is not absolutely continuous

has p-modulus zero. If γ 6∈ (Γ+
X\L ∪ Γ0), as µ(Im(γ) ∪ X\L) = 0, taking γh its

µ-arc-chord parametrization, we obtain that γ−1h (X\L) has measure zero as a

subset of R, and as f ◦ γh and f̃ ◦ γh coincide outside γ−1h (X\L), and they are

both continuous, they coincide in all [0, h(γ)], so f and f̃ coincide in all of Im(γ).

Finally, if E = {x ∈ X : f(x) 6= f̃(x)}, then ΓE has p-modulus equal to zero, and

therefore f and f̃ are the same function in N1,p. �
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Theorem 5.9. If X is bounded (and thus m(X) <∞) and satisfies

crN ≤ m(B(x, r)) ≤ CrN

with c, C,N independent of x ∈ X, 0 < r < 2 diam(X) (i.e. X is Ahlfors N -

regular), and if X supports a (1, q) Poincaré inequality of exponent β for q > 1/β,

then for p satisfying q < p < Nq, 1
p∗ = 1

p −
1
Nq we have that every f ∈ N1,p with

upper gradient g,

‖u− uX‖p∗ ≤ C diam(X)β−1/q‖g‖p.

Proof. Let f ∈ Ñ1,p, and x be a Lebesgue point of f . Take r = 2 diam(X),

and the sequence of balls Bn = B(x, 2−nr). Then, by the telescoping argument

as in the proof of Theorem 5.8,

|f(x)− fX | ≤ C
∞∑
n=0

(2−nr)β
(

C

(2−nr)N

ˆ
Bn

gq
)1/q

≤ C
∞∑
n=0

(2−nr)β−1/q
(ˆ

Bn

gq(z)

d(x, z)N−1
dm(z)

)1/q

≤ Cdiam(X)β−1/q
(ˆ

X

gq(z)

d(x, z)N−1
dm(z)

)1/q

.

As for Ahlfors spaces, the Riesz potential I1(h)(x)=
´
X

h(z)
d(x,z)N−1 dm(z) is bounded

from Ls into Ls
∗

for s∗ = Ns/(N − s) and 1 < s < N , and gq ∈ Lp/q, we have

that ‖I1(gq)‖s∗ ≤ C‖gq‖p/q = C‖g‖qp, for s = p/q. Finally,

‖|f − fX |q‖s∗ ≤ C (diam(X))
βq−1 ‖I1(gq)‖s∗ ≤ C (diam(X))

βq−1 ‖g‖qp,

and as qs∗ = Nqp/(Nq − p) = p∗, the theorem follows. �

Example 5.10. We finish this work with the example X = Rn with Euclidean

distance, dµ = ωdH1, dm = ωpdx, where ω and 1
ω are locally integrable. First,

we consider when a Poincaré inequality holds.

If ω is bounded, as Poincaré inequality is true for dx, we get

 
B

|f−fB |dm≤2

 
B

|f−fB,dx|dm≤2

(
|B|
m(B)

)1/p(
1

|B|

ˆ
B

|f−fB,dx|pωpdx
)1/p

≤ C‖ω‖∞diam(B)

( 
B

(
|∇f |
ω

)p
dm

)1/p

,

where fB,dx =
ffl
B
fdx.
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Instead of asking for ω to be bounded, we may use a two-weight Poincaré

inequality as found in [11]. Let 1 < p < n, ωp ∈ A∞, and
ˆ
Q

ωpdx ≤ C|Q|q(
1
p−

1
n )

for each cube Q, with C independent of Q, and some q such that p < q < np
n−p .

If p = q = 2, this would be Fefferman–Phong’s condition (see [7]).

In our case, the pair 1, ωp satisfies condition A
1/n
p,q , where we say two weights

w1, w2 satisfy condition Aαp,q if there exists C > 0 such that(ˆ
Q

w
−p′/p
1

)1/p′ (ˆ
Q

w2

)1/q

≤ C|Q|1−α

for each cube Q, for 0 ≤ α < 1, 1 < p, q <∞, 1/p− α ≤ 1/q.

E. Harboure proves in [11] that these conditions imply that there exist

constants C > 0 and δ > 0 (depending on the A∞ and A
1/n
p,q constants) such that

the following Poincaré inequality holds:

ˆ
Q

|f − fQ,dx|pωpdx ≤ C
(ˆ

Q

ωpdx

)δ ˆ
Q

|∇f |pdx.

From this condition, our (1, p) Poincaré inequality follows,

 
Q

|f − fQ|dm ≤ C
1

m(Q)1/p

(ˆ
Q

|f − fQ,dx|pωpdx
)1/p

≤ C 1

m(Q)1/p

(
m(Q)δ

ˆ
Q

(
|∇f |
ω

)p
dm

)1/p

≤ Cdiam(Q)β
( 

Q

(
|∇f |
ω

)p
dm

)1/p

,

for β = δq
p

(
n
p − 1

)
, where the last inequality follows from the fact that, by our

assumption, m(Q) ≤ Cdiam(Q)q(n/p−1).

As an example of such ω, we may consider ω(x) = |x|−λ, for some 0 ≤ λ < 1.

Then, ωp ∈ A∞ if pλ < n and the pair 1, ωp satisfies condition A
1/n
p,q for q = n−λp

n−p p.

As a special case, we can consider λ = 0, so the weight ω = 1, which gives

classical Sobolev spaces W 1,p, is included in our result.

This particular example of ω(x) = |x|−λ can also be obtained using a result

by S. Chanillo and R. Wheeden, see [3], and we get the β-Poincaré inequality

of the kind we require, for 0 ≤ λ < 1 and p > 1, with β = 1− λ.
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With Poincaré inequality, Theorems 5.8 and 5.9 hold, provided the other con-

ditions are met. We also obtain one half of Theorem 5.7, as a Poincaré inequality

is sufficient to obtain N1,p ↪→Mβ,p.

If there exists c > 0 such that ω(x) ≥ c for all x, we also get the arc-chord

property,

diam(Im(γ)) ≤ H1(Im(γ)) ≤ 1

c

ˆ
Im(γ)

ωdH1 =
1

c
µ(Im(γ)).

As an example, the weight ω(x) = |x|−λ satisfies this restriction in the usual

case λ = 0, or if we take our space to be X = Q0 for some fixed cube Q0 (here we

consider only cubes Q ⊂ Q0 that may contain the origin, so ω is not necessarily

bounded), and satisfies the A
1/n
p,q condition restricted to cubes in Q0. This case

allows for both a Poincaré inequality and an arc-chord property, even though the

exponents in each case may not coincide.

Acknowledgements. The author is infinitely indebted to his advisors

Eleonor ‘Pola’ Harboure and Hugo Aimar for their guidance and support

throughout the development of his doctoral thesis and its resulting papers.

He would also like to thank the Referees for their many suggestions to improve

this article.

References

[1] H. Aimar, Distance and Measure in Analysis and PDE, Birkhäuser, Boston, 2013, 300 pp.
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