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Abstract. We prove various finiteness theorems for integers having only few non-

zero digits in different multi-base representations simultaneously.

1. Introduction

It is an old problem to study integers having only ‘few’ non-zero digits in some

classical base b representation, see, e.g. papers by Erdős, Mauduit, Pomer-

ance, Sárközy [6], [7], [15], [16], [17], and the references therein. On the other

hand, if a number n has to hold certain other arithmetical property, it may hap-

pen that it must have ‘many’ digits. This is the case when n belongs to some

recurrence sequence; see, e.g. Bugeaud, Cipu and Mignotte [4], Luca [13] and

Stewart [21] for effective results in this direction.

The number of non-zero digits of integers, and that of integers with fixed

number of non-zero digits is also investigated with respect to other types of bases,

e.g. with respect to linear recurrence number systems, cf. [19], [22]. Another

generalization of the classical number systems is given by the so-called multi-base

representations, when instead of linear combinations of powers of a fixed number b,

one can combine products of powers of fixed primes. For related problems and
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results, see, e.g. the papers [1], [2], [5], [10], [11], [12], [18], and the references

therein.

It is an interesting question to study integers having only ‘few’ non-zero

digits in different bases simultaneously. Here we mention two results. Senge and

Straus [20] proved that the number of those integers whose number of non-zero

digits in two different bases b1 and b2 with log b1/ log b2 /∈ Q remains under some

fixed bound is finite. Later, Stewart [21] gave a more precise, effective version

of this result.

In this paper, as a generalization of the problem mentioned in the previous

paragraph, we study integers having only ‘few’ non-zero digits in different multi-

base representations simultaneously. To set the problem precisely, we need to

introduce some notation.

Let S be a finite set of primes, and write ZS (resp. Z+
S ) for the set of inte-

gers (resp. positive integers) having no prime divisors outside S. A multi-base

representation of an integer n is an expression of the form

n = u1 + · · ·+ ut (1)

with u1, . . . , ut ∈ ZS . If S = {p} and we require that u1, . . . , ut ∈ Z+
S , we get

several expansions of n as sums of powers of p, with the shortest one (namely,

the one with the fewest terms) being the usual expansion of n in base p. For

an integer n, we write wS(n) for the minimal t for which (1) holds with some

u1, . . . , ut ∈ ZS . If n > 0 and we also require that u1, . . . , ut ∈ Z+
S , we then write

w+
S (n) instead.

In what follows, we prove various finiteness theorems for integers n with

‘small’ values of w+
S (n) with respect to different sets S simultaneously. To prove

our results, we use Baker’s method for linear forms in logarithms, a deep theorem

of Evertse [8] bounding the number of non-degenerate solutions of S-unit equa-

tions, and a local method of Bertók and Hajdu [3] developed for the resolution

of exponential equations over Z.

2. New results

Our first theorem concerns the general case.

Theorem 2.1. Let k be a positive integer, S1, . . . , Sk be finite sets of primes

such that S1 ∩ · · · ∩ Sk = ∅. Then, for any T , the inequality

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T
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is valid only for finitely many integers n. Further, the number of such integers n is

at most c1 = c1(T, k, s), where c1 is an effectively computable constant depending

only on T, k and s := |S1 ∪ · · · ∪ Sk|.

Remark 1. Note that the condition S1 ∩ · · · ∩Sk = ∅ in the above theorem is

necessary. Indeed, if p ∈ S1 ∩ · · · ∩ Sk held for some prime p, then for T := k ≥ 1

we would have

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

for all n = pα (α ≥ 0).

Our second result gives an effective bound in a special case.

Theorem 2.2. Let ` be a positive integer, S1 = {p1, . . . , p`} and S2 = {q},
where p1, . . . , p`, q are distinct primes. If n is a positive integer with n > ee

e

such

that w+
S1

(n) = 1, then we have

w+
S2

(n) >
c2 log log n

log log log n
,

where c2 = c2(`, p1, . . . , p`, q) is an effectively computable positive constant de-

pending only on `, p1, . . . , p`, q.

Remark 2. The condition q /∈ S1 is necessary. This can be easily checked

by a similar example as in Remark 1. Further, we note that if Si are not sets of

primes, but sets of multiplicatively independent integers instead, then, after the

necessary modifications, our theorems still hold.

Finally, we give a complete list of integers n having only ‘few’ non-zero digits

for some fixed choices of sets S1, S2. Note that in the cases considered, though

the number of solutions can be bounded, e.g. by results of Evertse [8], there are

no tools available which would effectively bound the solutions themselves. To find

the solutions explicitly, we apply a method of Bertók and Hajdu [3].

Theorem 2.3. Let S1, S2 be disjoint non-empty sets of primes with S1∪S2 =

{2, 3, 5}. Then

w+
S1

(n) + w+
S2

(n) ≤ 4

implies that if

(1) S1 = {2} and S2 = {3, 5}, then n ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20,

24, 25, 32, 34, 36, 40, 48, 72, 80, 81, 96, 128, 130, 136, 144, 160, 258, 260,

288, 384, 640, 1152, 2050, 2052, 4104, 32832};
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(2) S1 = {3} and S2 = {2, 5}, then n ∈ {1, 2, 3, 4, 5, 6, 9, 10, 12, 18, 27, 28, 30,

36, 54, 81, 82, 84, 90, 108, 162, 252, 270, 324, 729, 756, 810, 6561, 6570};
(3) S1 = {5} and S2 = {2, 3}, then n ∈ {1, 2, 3, 5, 6, 10, 25, 26, 27, 30, 50, 125,

126, 130, 150, 625, 630, 650, 3125, 3126, 15625, 78750}.

3. Proof of Theorem 2.1

To prove Theorem 2.1, we need to introduce some notions and notations.

Let a1, . . . , a` ∈ Q∗. Consider the equation

a1x1 + · · ·+ a`x` = 0 (2)

in x1, . . . , x` ∈ ZS . A solution (x1, . . . , x`) of the above equation is said to be

non-degenerate if∑
i∈I

aixi 6= 0 for each non-empty I ⊂ {1, . . . , `},

and degenerate otherwise. Further, two solutions (x1, . . . , x`) and (y1, . . . , y`)

of (2) are called proportional if, for some z ∈ Q∗, we have

xi = zyi for i = 1, . . . , `.

Lemma 3.1. Let s = |S|. Then equation (2) has at most

(235(`− 1)2)(`−1)
3s

non-degenerate solutions (x1, . . . , x`) ∈ ZS × · · · × ZS , no two of which are pro-

portional.

Proof. The statement is a simple consequence of [8, Theorem 3]. �

Theorem 2.1 can be immediately deduced from the following result.

Proposition 3.1. Let k ≥ 2, and let t1, . . . , tk ∈ N. For i = 1, . . . , k, let

Ai = {ai,1, . . . , ai,ti}

be a set of ti positive integers. Then the number of positive integers n with the

property that for each i, there exist ui,1, . . . , ui,ti ∈ Z+
Si

such that

n = ai,1ui,1 + · · ·+ ai,tiui,ti ,

is at most

(235(t− 1)2)(k−1)(t−1)
4s,

where t = t1 + · · ·+ tk and s = |S1 ∪ S2 ∪ · · · ∪ Sk|.
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Proof. We prove the proposition by induction on k.

Let S = S1 ∪ S2 ∪ · · · ∪ Sk. Suppose that k = 2. We will prove that the

result holds in this case using induction on t = t1 + t2. Suppose that t = 2. Then

t1 = t2 = 1. We now show that the equation

a1,1u1,1 = a2,1u2,1 (3)

in (u1,1, u2,1) ∈ Z+
S1
× Z+

S2
has at most one solution. Indeed, the equation (3)

implies that
u1,1
u2,1

=
a2,1
a1,1

.

The claim follows by the coprimality of u1,1 and u2,1. Therefore, the result holds

when k = t = 2. Let t ≥ 3, and assume that the result holds whenever t1 + t2 ≤
t − 1. We now consider the case t1 + t2 = t. We have to count the number of

solutions of the S-unit equation

a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2 , (4)

where u1,j ∈ Z+
S1

and u2,j ∈ Z+
S2

. By Lemma 3.1, this equation has at most

(235(t− 1)2)(t−1)
3s

non-degenerate solutions. Next, we count the number of degenerate solutions.

(Observe that if t = 3, then (t1, t2) = (1, 2) or (2, 1), and hence all the solutions are

non-degenerate. Therefore, while counting degenerate solutions, it is understood

that t ≥ 4.) For a degenerate solution, there exists a non-empty subset I of

{1, . . . , t1} and a non-empty subset J of {1, . . . , t2} such that∑
i∈I

a1,iu1,i −
∑
j∈J

a2,ju2,j = 0, (5)

but no proper subsum in this equation vanishes. Fix I, J . We count the number

of solutions of (4) satisfying (5). Since |I|+ |J | ≤ t−2, it follows from Lemma 3.1

that the S-unit equation (5) has at most

(235(t− 3)2)(t−3)
3s

non-degenerate solutions. Further, by the induction hypothesis, the equation∑
i/∈I

a1,iu1,i −
∑
j /∈J

a2,ju2,j = 0
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has at most

(235(t− 3)2)(t−3)
4s

solutions. Hence, given I, J , we obtain that there are at most

(235(t− 3)2)s(t−3)
3(t−2)

solutions. Varying I and J , we obtain that the total number of degenerate solu-

tions is at most

2t(235(t− 3)2)s(t−3)
3(t−2) ≤ 1

2
(235(t− 1)2)(t−1)

4s.

Thus, (4) has at most

(235(t− 1)2)(t−1)
3s +

1

2
(235(t− 1)2)(t−1)

4s ≤ (235(t− 1)2)(t−1)
4s

solutions. This completes the induction on t. Hence, the result holds for k = 2.

Now, let k ≥ 3. Suppose that the result holds for every k′ with 2 ≤ k′ < k.

That is, given k′ in the above range, we assume that the result is valid for all t and

for all choices of the sets Ai and Si. Note that t = t1 + · · ·+ tk ≥ k ≥ 3. We have

to bound the number of solutions of the following system of S-unit equations:

a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2

...

= ak,1uk,1 + · · ·+ ak,tkuk,tk , (6)

where ui,j ∈ Z+
Si

. We mention that similar systems of S-unit equations have been

studied by Evertse and Győry [9]. However, their theorems cannot be used

directly here, so we apply some other results. Namely, by Lemma 3.1, the first

equation in (6) has at most

(235(t− 2)2)(t−2)
3s (7)

non-degenerate solutions. For a degenerate solution, there exists a positive integer

l ≤ t − 2 and distinct non-empty subsets I1, . . . , Il ⊆ {1, . . . , t1}, J1, . . . , Jl ⊆
{1, . . . , t2} such that for m = 1, . . . , l,∑

i∈Im

a1,iu1,i =
∑
i∈Jm

a2,iu2,i, (8)
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but no proper subsum vanishes. Fix I1, . . . , Il, J1, . . . , Jl. We count the number

of solutions of system (6) satisfying the additional equations (8). By Lemma 3.1,

for each m = 1, . . . , l, (8) has, up to a factor of proportionality, at most

(235(t− 3)2)(t−3)
3s

non-degenerate solutions. Let ((u1,i)i∈Im , (u2,i)i∈Jm) be a solution of (8) with

gcd((u1,i)i∈Im , (u2,i)i∈Jm) = 1. Set

a′m =
∑
i∈Im

a1,iu1,i

(
=
∑
i∈Jm

a2,iu2,i

)
.

Then

{((Umu1,i)i∈Im , (Umu2,i)i∈Jm) : Um ∈ Z+
S1∩S2

}

is precisely the set of solutions of (8) which are proportional to

((u1,i)i∈Im , (u2,i)i∈Jm). The problem is thus reduced to considering the following

system of equations in the variables U1, . . . , Ul, u3,1 . . . , uk,tk :

a′1U1 + · · ·+ a′lUl = a3,1u3,1 + · · ·+ a3,t3u3,t3

...

= ak,1uk,1 + · · ·+ ak,tkuk,tk .

Since (S1∩S2)∩S3∩· · ·∩Sk = ∅, we apply the induction hypothesis for k′ = k−1

to conclude that the above system of equations has at most

(235(t− 2)2)(k−2)(t−2)
4s

solutions. Hence, given I1, . . . , Il, J1, . . . , Jl, we get at most

(235(t− 3)2)(t−3)
3s(t−2) · (235(t− 2)2)(k−2)(t−2)

4s

solutions. Therefore, the number of degenerate solutions is bounded by

tt(235(t− 2)2)(k−1)(t−2)
4s ≤ 1

2
(235(t− 1)2)(k−1)(t−1)

4s. (9)

Combining the above bound (9) with (7), we obtain that the total number of

solutions is at most

(235(t− 1)2)(k−1)(t−1)
4s.

This completes the induction and the proof of the proposition. �

Proof of Theorem 2.1. Taking ti = w+
Si

(n) and Ai = {1} for all i =

1, . . . , k in Proposition 3.1, the statement immediately follows. �
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4. Proof of Theorem 2.2

To prove Theorem 2.2, we use a Baker type estimate due to Matveev [14].

For its formulation, we need to introduce some notation.

For an algebraic number α of degree D over Q, the absolute logarithmic

height of α is defined by

h(α) =
1

D

(
log a0 +

D∑
i=1

log max(1, |α(i)|)

)
,

where a0 > 0 is the leading coefficient of the minimal polynomial of α over Z, and

the α(i)’s are the conjugates of α. Note that in the special case when α = p/q is

a non-zero rational number with gcd(p, q) = 1, it follows that h(α) = h(1/α) =

log max{|p|, |q|}.
The following result is due to Matveev [14].

Lemma 4.1. Assume that α1, . . . , αr are positive real algebraic numbers in

a real algebraic number field of degree D, d1, . . . , dr are rational integers, and

Λ := αd11 . . . αdrr − 1

is not zero. Set

B ≥ max{|d1|, . . . , |dr|},

and

Ai ≥ max{Dh(αi), | logαi|, 0.16}, for all i = 1, . . . , r.

Then we have

|Λ| > exp(−1.4 · 30r+3r4.5D2(1 + logD)(1 + logB)A1 · · ·Ar). (10)

Now, we are ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. We combine arguments of Luca [13] and Stew-

art [21] with some other considerations.

Let n be a positive integer with w+
S1

(n) = 1 and w+
S2

(n) = t, and write

u1 = n = v1 + · · ·+ vt, (11)

with u1 ∈ Z+
S1

and v1, . . . , vt ∈ Z+
S2

. Without loss of generality, we may assume

that v1 ≥ · · · ≥ vt.
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We write

u1 = pα1
1 . . . pα`

` , vi = qβi (i = 1, . . . , t). (12)

Let B be the maximum of the exponents appearing in (12).

Equation (11) can be rewritten as

u1 − v1 = v2 + · · ·+ vt. (13)

Since u1 6= v1 and v1 6= 1 (otherwise n = 1 or t = n and the statement is trivial),

Lemma 4.1 yields

v1 exp(−c4(1 + logB)) < v1(u1v
−1
1 − 1), (14)

with c4 := c3h(p1) · · ·h(p`)h(q)2, where

c3 = c3(`+ 2) := 1.4 · 30`+5(`+ 2)4.5

is the constant appearing in the conclusion of Matveev’s theorem (10) when Λ

involves r = `+ 2 rational numbers (r = `+ 2 and D = 1).

Now, we show that

v1
vj

< exp
(
2j log t(c4(1 + logB))j−1

)
(j = 2, . . . , t). (15)

We prove this claim by induction. Combining the above inequality (14) with

v1(u1v
−1
1 − 1) = u1 − v1 < tv2

implied by (13), we get

v1
v2

< exp (log t+ c4(1 + logB)) ≤ exp (2(log t)c4(1 + logB)) .

Let now i be arbitrary with 2 ≤ i < t, and assume by induction that

v1
vj

< exp
(
2j log t(c4(1 + logB)j−1)

)
for all j = 2, . . . , i. (16)

Rewrite (11) as

u1 − v1 − · · · − vi = vi+1 + · · ·+ vt. (17)

Observe that by (12) and (16) (used with j = i), we have

h

(
1 +

v2
v1

+ · · ·+ vi
v1

)
= h

(
qβ1−βi + · · ·+ qβi−1−βi + 1

qβ1−βi

)
=
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= log(qβ1−βi + · · ·+ qβi−1−βi + 1) ≤ log(tqβ1−βi)

= log t+ log

(
v1
vi

)
< (2i+ 1)(log t)(c4(1 + logB))i−1.

Hence, Lemma 4.1 yields

v1 exp(−(2i+ 1)(c4(1 + logB))i)

< v1

(
u1v
−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)

< v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v
−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
.

The above inequality, together with

v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v
−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
= u1 − v1 − · · · − vi < tvi+1

obtained from (17), implies the inequality

v1
vi+1

< exp
(
log t+ (2i+ 1)(log t)(c4(1 + logB))i

)
< exp

(
(2i+ 2)(log t)(c4(1 + logB))i

)
,

which completes the induction step. Hence, our claim (15) follows. Now, note

that either B = β1 or B ∈ {α1, . . . , α`}. In the latter case we have 2B ≤ n ≤ tqβ1 ,

so β1 ≥ c5B − c6 log t, where c5 := log 2/ log q and c6 := 1/ log q. Since q ≥ 2, it

follows that the inequality

β1 ≥ c5B − c6 log t

holds both when B = β1 and when B ∈ {α1, . . . , α`}.
Further, log n/ log(p1 · · · p`) ≤ B ≤ log n/ log 2, showing that

log log n− c7 ≤ logB ≤ log log n+ c8, (18)

where c7 := log log max{3, p1 . . . p`} and c8 := − log log 2. Note now that since q 6∈
{p1, . . . , p`}, it follows that vt = 1. Setting j = t in (15) and taking logarithms,

we get

c5B − c6 log t ≤ β1 ≤ c9t log t(c4(1 + logB))t−1, (19)
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where we can take c9 := max{1, 2(log q)−1}. If the left-hand side of (19) is smaller

than c5B/2, we then get that

log t > c10B,

where c10 := c5/(2c6), therefore,

t > ec10B > nc11 ,

where c11 := c10/ log(p1 · · · p`), which for large n is better than the inequality we

are after. If the left-hand side of (19) is at least c5B/2, then by taking logarithms

we get

logB − c12 < (t− 1) log(c4(1 + logB)) + log t+ log log t,

where c12 := − log(c5/2) + log c9. From here, we get right–away that in fact

t > (1 + o(1))
logB

log logB

as B → ∞. Combining this with (18), we get that for every ε > 0, taking

c13 := 1− ε, the inequality

t > c13
log log n

log log log n

holds for all n > n0(ε), where n0(ε) is effectively computable in terms of ε and

p1, . . . , p`, q. Hence, the statement follows. �

5. Proof of Theorem 2.3

To prove Theorem 2.3 we use the method of Bertók and Hajdu, described

in [3].

Proof of Theorem 2.3. If w+
S1

(n) + w+
S2

(n) = 2, then it is clear that the

only solution is n = 1, so we suppose that w+
S1

(n) +w+
S2

(n) ≥ 3. We describe our

method in detail only in the case when S1 = {3}, S2 = {2, 5}. The other cases

can be handled similarly. In this case we have five equations to solve, namely:

3a1 = 2b1 · 5c1 + 2b2 · 5c2 ,

3a1 = 2b1 · 5c1 + 2b2 · 5c2 + 2b3 · 5c3 ,

3a1 + 3a2 = 2b1 · 5c1 ,

3a1 + 3a2 = 2b1 · 5c1 + 2b2 · 5c2 ,

3a1 + 3a2 + 3a3 = 2b1 · 5c1 .
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To find all solutions of the above equations, we apply the algorithm intro-

duced in [3]. Here we only sketch the method and concentrate on how to use it for

our present equations. For the detailed description of the general method, see [3].

First, by an exhaustive search, we find all ‘small’ solutions of the equations in

non-negative integers ai, bi, ci, (i = 1, 2, 3). Then, after modifying the equations

appropriately, we try to find a modulus m such that the modified equation has

no solutions modulo m. We illustrate the method by solving the equation

3a1 = 2b1 · 5c1 + 2b2 · 5c2 .

By an exhaustive search, we get that this equation has only five solutions with

a1, b1, b2, c1, c2 ≤ 100, namely

(a1, b1, b2, c1, c2) = (1, 0, 0, 1, 0), (2, 0, 0, 3, 0), (4, 4, 1, 0, 0),

(2, 0, 1, 2, 0), (3, 1, 0, 0, 2),

yielding n = 3, 9, 27, 81. Note that 9 = 32 can be represented in two ways, since

9 = 1 + 8 = 5 + 4. We suspect that the equation has no other solutions. First, it

can be seen that if both b1 and b2 are greater than zero, then this equation has

no solutions modulo 2. The same argument applies for c1, c2 modulo 5, thus we

conclude that we have to solve the following two equations:

3a1 = 1 + 2b2 · 5c2 , (20)

3a1 = 5c1 + 2b2 . (21)

Since in every ‘small’ solution the exponent of 3 is at most 4, then instead of the

equations above, we consider

35 · 3a
′
1 = 1 + 2b2 · 5c2 , (22)

35 · 3a
′
1 = 5c1 + 2b2 , (23)

respectively, where every exponent is a non-negative integer. If our expectation

is true, then these equations have no solutions. To prove this, we show that

these equations are already not solvable locally, modulo an appropriately chosen

modulus. Concerning the question how to find such a modulus, we refer once

again to [3]. Now we only state that if we choose m to be 35 · 7 · 13 · 17 · 19 · 37 ·
73 · 97 · 109 · 163 · 193 · 257 · 433 · 487 · 577 · 769 · 1153 · 1297 · 2593 · 3457 · 10369,

then as one can check, equation (22) has no solutions modulo m. Thus, in (20),
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a1 has to be less than or equal to 4. By checking every possibility, we get that

this equation has three solutions, namely

(a1, b1, b2, c1, c2) = (1, 0, 0, 1, 0), (2, 0, 0, 3, 0), (4, 4, 1, 0, 0).

Similarly, if m = 35 · 7 · 13 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 193 · 433 · 577 · 769,

then equation (23) has no solutions modulo m, thus we only have to check (21)

with a1 ≤ 4. In this case, we get the remaining two ‘small’ solutions. The other

equations can be handled similarly. Finally, we mention that an appropriately

chosen divisor of M = 216 · 310 · 58 · 7 · 13 · 17 · 19 · 163 · 37 · 433 · 193 · 97 · 73 · 257 ·
109 · 577 · 769 · 487 · 1153 · 1297 · 1459 · 2593 · 2917 · 3457 · 3889 · 10369 · 1373 · 3137 ·
12289 ·17497 ·18433 ·39367 ·52489 ·65537 ·50177 ·139969 ·147457 ·209953 ·331777 ·
472393 ·114689 ·268913 ·470597 ·629857 ·746497 ·786433 ·839809 ·995329 ·614657 is

sufficient for every equation under investigation. (Certainly, one can take m = M

in each case, however, then the computation time would be enormous.) �
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