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On the oscillation of certain integral equations

By JOHN R. GRAEF (Chattanooga), SAID R. GRACE (Giza) and ERCAN TUNÇ (Tokat)

Abstract. The authors present conditions under which every nonoscillatory solu-

tion x of the integral equation

x(t) = e(t)−
t∫
c

(t− s)α−1 k(t, s)f(s, x(s))ds, c > 1, 0 < α ≤ 1,

satisfies

|x(t)| = O(t) as t→∞, i.e., lim sup
t→∞

|x(t)|
t

<∞.

They also establish some sufficient conditions to ensure the oscillation of all solutions

of this equation. The results obtained extend previous results in the literature, and the

technique employed can be applied to some related integral equations that are equivalent

to certain fractional differential equations.

1. Introduction

Consider the nonlinear integral equation

x(t) = e(t)−
t∫
c

(t− s)α−1 k(t, s)f(s, x(s))ds, c > 1, 0 < α ≤ 1, (1.1)

where we assume that:

(i) e : [c,∞)→ R is a continuous function;
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(ii) k : [c,∞)× [c,∞)→ R is continuous, and there exists a continuous function

a : [c,∞)→ (0,∞) such that

|k(t, s)| ≤ a(t) for all t ≥ s ≥ c;

(iii) f : [c,∞) × R → R is a continuous function, and there exists a continuous

function h : [c,∞)→ (0,∞), and numbers λ and γ with 0 < λ < 1 such that

0 ≤ xf(t, x) ≤ tγ−1h(t)|x|λ+1 for x 6= 0 and t ≥ c.

We only consider those solutions of equation (1.1) that are continuable and

nontrivial in any neighborhood of ∞. Such a solution is said to be oscillatory if

there exists {tn} ⊆ [c,∞) with tn →∞ as n→∞ such that x(tn) = 0, and it is

nonoscillatory otherwise.

Integral and fractional differential equations have gained considerably more

attention in the last several years due to their applications in many areas in

engineering and the sciences, such as in modeling systems and processes in physics,

mechanics, chemistry, aerodynamics, and the electrodynamics of complex media.

For more details, we refer the reader to the monographs of Podlubny [8] and

Prudnikov et al. [9].

Oscillation and asymptotic behavior results for integral, as well as, integro-

differential equations and fractional differential equations are not very prevalent

in the literature; some results can be found in Bohner et al. [1] and Grace et al.

[3], [4], [5], [6]. There do not appear to be any such results for integral equations

of type (1.1). The main objective of this paper is to establish some new criteria

for the oscillation and asymptotic behavior of solutions of (1.1).

2. Main results

To obtain our results in this paper, we need the following two lemmas.

Lemma 2.1 ([9]). Let α, γ, and p be positive constants such that

p(α− 1) + 1 > 0 and p(γ − 1) + 1 > 0.

Then
t∫

0

(t− s)p(α−1)sp(γ−1)ds = tθB, t ≥ 0,

where B := B[p(γ−1)+1, p(α−1)+1], B[ξ, η] =
1∫
0

sξ−1(1−s)η−1ds, (ξ > 0, η > 0)

and θ = p(α+ γ − 2) + 1.
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Lemma 2.2 ([7]). If X and Y are nonnegative and 0 < λ < 1, then

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, (2.1)

where equality holds if and only if X = Y .

In what follows, for any t1 ≥ c and continuous function w : [c,∞)→ (0,∞),

we let

g(t; t1, w) = e(t) +
(

(1− λ)λλ/(1−λ)
)
a(t)

×
t∫

t1

(t− s)α−1
(
sγ−1w

λ/(λ−1)

(s)h
1/(1−λ)

(s)
)
ds, (2.2)

for t ≥ t1.

In our first theorem, we give sufficient conditions for any nonoscillatory so-

lution x of equation (1.1) to satisfy |x(t)| = O(t) as t→∞.

Theorem 2.1. In addition to (i)–(iii), assume that the following conditions

hold:

(H1) There exists p > 1 such that

p(α− 1) + 1 > 0 and p(γ − 1) + 1 > 0;

(H2) Let θ = p(α+ γ − 2) + 1, set

m(t) =

{
tθ/pa(t), if θ ≥ 0,

a(t), if θ < 0,

and assume that m(t) is bounded on [c,∞);

(H3) Let b : [c,∞)→ (0,∞) be continuous, q = p
p−1 , and assume that

∞∫
c

bq(s)ds <∞, if θ ≥ 0,

∞∫
c

sθq/pbq(s)ds <∞, if θ < 0;

(2.3)

(H4)
|g(t; c, b)|

t
is bounded on [c,∞).

If x(t) is a nonoscillatory solution of equation (1.1), then

lim sup
t→∞

|x(t)|
t

<∞. (2.4)
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Proof. Let x(t) be an eventually positive solution of equation (1.1), say

x(t) > 0 for t ≥ t1 for some t1 ≥ c. Let F (t) = f(t, x(t)). In view of (i)–(iii),

from equation (1.1) we have

x(t) ≤ e(t) + a(t)

t∫
c

(t− s)α−1 |f(s, x(s))|ds ≤ e(t) + a(t)

t1∫
c

(t− s)α−1 |F (s)| ds

+ a(t)

t∫
t1

(t− s)α−1 sγ−1
[
h(s)xλ(s)− b(s)x(s)

]
ds

+ a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)x(s)ds. (2.5)

Letting

X = (h(s))1/λx(s) and Y =

(
1

λ
b(s)(h−1/λ(s))

)1/(λ−1)

in Lemma 2.2, we see that

h(s)xλ(s)− b(s)x(s) ≤ (1− λ)λλ/(1−λ)bλ/(λ−1)(s)h1/(1−λ)(s).

So from (2.5), we obtain

x(t) ≤ e(t) + a(t)

t1∫
c

(t− s)α−1 |F (s)| ds

+
(

(1− λ)λλ/(1−λ)
)
a(t)

t∫
t1

(t− s)α−1
[
sγ−1bλ/(λ−1)(s)h1/(1−λ)(s)

]
ds

+ a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)x(s)ds. (2.6)

Using the fact that (t− s)α−1 ≤ (t1 − s)α−1, (2.6) yields

x(t) ≤ a(t)

t1∫
c

(t1 − s)α−1 |F (s)| ds

+ |g(t; t1, b)|+ a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)x(s)ds. (2.7)
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Thus, in view of conditions (H2) and (H4),

x(t)

t
:= z(t) ≤ C + a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)z(s)ds,

≤ 1 + C + a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)z(s)ds, (2.8)

for some positive constant C. Applying Hölder’s inequality and Lemma 2.1, we

obtain

t∫
t1

(t−s)α−1 sγ−1b(s)z(s)ds ≤

 t∫
t1

(t−s)p(α−1) sp(γ−1)ds

1/p t∫
t1

bq(s)zq(s)ds

1/q

≤

 t∫
0

(t−s)p(α−1) sp(γ−1)ds

1/p t∫
t1

bq(s)zq(s)ds

1/q

≤(Btθ)1/p

 t∫
t1

bq(s)zq(s)ds

1/q

,

where B := B[p(γ − 1) + 1, p(α− 1) + 1] and θ = p(α+ γ − 2) + 1. Hence,

a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)z(s)ds ≤ B1/ptθ/pa(t)

 t∫
t1

bq(s)zq(s)ds

1/q

.

Clearly,

a(t)

t∫
t1

(t−s)α−1 sγ−1b(s)z(s)ds ≤


B1/pB1

(
t∫
t1

bq(s)zq(s)ds

)1/q

, if θ ≥ 0,

B1/pB∗1

(
t∫
t1

sθq/pbq(s)zq(s)ds

)1/q

, if θ < 0,

where B1 and B∗1 are upper bounds for tθ/pa(t) and a(t), respectively. Using this

inequality and the fact that

(x+ y)q ≤ 2q−1(xq + yq) for x, y ≥ 0 and q > 1,
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(2.8) implies

zq(t) ≤


2q−1

(
(1 + C)q + (B1B

1/p)q
t∫
t1

bq(s)zq(s)ds

)
, if θ ≥ 0,

2q−1

(
(1 + C)q + (B∗1B

1/p)q
t∫
t1

sθq/pbq(s)zq(s)ds

)
, if θ < 0.

(2.9)

If we set u(t) = zq(t), P1 = 2q−1(1 + C)q, and

Q1(t) =


2q−1(B1B

1/p)q, if θ ≥ 0,

2q−1(B∗1B
1/p)q, if θ < 0,

then z(t) = u1/q(t) and

u(t) ≤


P1 +Q1

t∫
t1

bq(s)u(s)ds, if θ ≥ 0,

P1 +Q1

t∫
t1

sθq/pbq(s)u(s)ds, if θ < 0,

(2.10)

for t ≥ t1. By Gronwall’s inequality and condition (2.3), we see that u(t) is

bounded, and so

lim sup
t→∞

x(t)

t
<∞.

A similar proof holds if x(t) is an eventually negative solution of the equation.

This completes the proof of the theorem. �

The following example illustrates the above theorem.

Example 2.1. Consider the equation

x(t) = t sin t−
t∫
c

(t− s)−
1
2p

[
ts−

1
2p

t2 + 1

]
h(s)s−

1
2p |x(s)|λ−1x(s)ds (2.11)

with c > 1, p > 1, and 0 < λ < 1. Here we have k(t, s) = t
t2+1s

− 1
2p , a(t) = 1

t ,

q = p
p−1 , α = 1− 1

2p = γ, p(α− 1) + 1 = 1
2 = p(γ − 1) + 1 and θ = p(1− 1

2p + 1−
1
2p − 2) + 1 = 0. Note that m(t) = a(t). We take b(t) = h(t), and assume that

∞∫
c

hq(s)ds <∞ and lim sup
t→∞

1

t2

 t∫
c

(t− s)−
1
2p s−

1
2ph(s)ds

 <∞.
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Then all conditions of Theorem 2.1 are satisfied, so every nonoscillatory solution x

of equation (2.11) satisfies

lim sup
t→∞

x(t)

t
<∞.

Next, we establish an oscillation result for equation (1.1).

Theorem 2.2. In addition to conditions (i)–(iii), (H1)–(H2) and (H4), as-

sume that 
∞∫
c

sqbq(s)ds <∞, if θ ≥ 0,

∞∫
c

sθq/psqbq(s)ds <∞, if θ < 0.

(2.12)

If

lim inf
t→∞

g(t; c, b) = −∞ and lim sup
t→∞

g(t; c, b) =∞, (2.13)

then all solutions of equation (1.1) are oscillatory.

Proof. Since condition (2.12) implies (H3), the conclusion of Theorem 2.1

holds. Without any loss of generality, assume that t1 ≥ c is sufficiently large so

that x(t) > 0 for t ≥ t1. From equation (1.1), we have

x(t) = e(t)−
t1∫
c

(t− s)α−1 k(t, s)f(s, x(s))ds−
t∫

t1

(t−s)α−1 k(t, s)f(s, x(s))ds

≤ e(t)−
t1∫
c

(t−s)α−1 k(t, s)f(s, x(s))ds+ a(t)

t∫
t1

(t− s)α−1 sγ−1h(s)xλ(s)ds.

Proceeding as in the proof of Theorem 2.1, we obtain (see (2.6))

x(t) ≤ e(t) + a(t)

t1∫
c

(t− s)α−1 |F (s)|ds

+
(

(1− λ)λλ/(1−λ)
)
a(t)

t∫
t1

(t− s)α−1
[
sγ−1bλ/(λ−1)(s)h1/(1−λ)(s)

]
ds

+ a(t)

t∫
t1

(t− s)α−1 sγ−1b(s)s
(
x(s)

s

)
ds. (2.14)
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Applying Hölder’s inequality and Lemma 2.1 gives

x(t) ≤ g(t; t1, b) + a(t)

t1∫
c

(t1 − s)α−1 |F (s)|ds+

+


B1/pB1

(
t∫
t1

sqbq(s)
(
x(s)
s

)q
ds

)1/q

, if θ ≥ 0,

B1/pB∗1

(
t∫
t1

sθq/psqbq(s)
(
x(s)
s

)q
ds

)1/q

, if θ < 0.

(2.15)

Now, by Theorem 2.1, (x(t)/t) is bounded, so from condition (2.12), the last

two integrals on the right hand side of (2.15) are finite. Taking the lim inf of

both sides of this inequality as t → ∞, in view of condition (2.13), we obtain

a contradiction to the fact that x(t) is eventually positive. The proof, if x is

eventually negative, is similar. �

The following corollary is an immediate consequence of the above theorem.

Corollary 2.1. Let condition (2.13) in Theorem 2.2 be replaced by

lim
t→∞

a(t)

t∫
c

(t− s)α−1
(
sγ−1bλ/(λ−1)(s)h1/(1−λ)(s)

)
ds <∞, (2.16)

and

lim inf
t→∞

e(t) = −∞ and lim sup
t→∞

e(t) =∞.

Then all solutions of equation (1.1) are oscillatory.

We conclude this paper with the following example.

Example 2.2. Consider the equation

x(t) = t cos t−
t∫

2

(t− s)−
1
4

[
et

st2(et + 1)

]
s−

1
3x

1
3 (s)ds. (2.17)

Here we have p = 2, λ = 1/3, k(t, s) = et

st2(et+1) , a(t) = 1/t2, f(t, x) = t−
1
3x

1
3 ,

h(t) = 1, q = 2, α = 3
4 = γ and θ = 0. If we take b(t) = t−2, then∫ ∞

2

s2bq(s)ds =

∫ ∞
2

s−2ds <∞,
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and (2.16) becomes

lim
t→∞

1

t2

∫ t

2

(t− s)− 1
4 s

3
4 ds ≤ lim

t→∞

1

t
5
4

∫ t

2

(t− s)− 1
4 ds <∞.

We see that the hypotheses of Corollary 2.1 are satisfied, and so all solutions of

equation (1.1) are oscillatory.

3. Concluding remarks

To see that the approach and results obtained here can be applied to frac-

tional differential equations, consider the initial value problem for fractional dif-

ferential equations of the form
Dα
c x = f(t, x),

limt→c+ I
1−α
c x(t) = x0,

(3.1)

where Dα
c is the differential operator of order α, 0 < α ≤ 1, and Iβc is the

Riemann–Liouville fractional integral opeator given by

Iβc x(t) =
1

Γ(β)

∫ t

c

(t− s)β−1x(s)ds.

It is known that this fractional initial value problem is equivalent to the integral

equation

x(t) =
x0(t− c)α−1

Γ(α)
+

1

Γ(α)

∫ t

c

(t− s)α−1f(s, x(s))ds. (3.2)

Clearly, (3.2) has the form of our equation (1.1). Similar remarks can be made

for fractional initial value problems involving the Caputo derivative.

It should also be clear that it would be possible to obtain similar results for

equations with n− 1 < α ≤ n.

Finally, it would be of interest to obtain results analogous to those in this

paper even in the case where λ > 1 in condition (iii).
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