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On class-preserving Coleman automorphisms of semidirect
products of finite nilpotent groups by finite groups

By JINKE HAI (Qingdao) and SHENGBO GE (Qingdao)

Abstract. Let G be a semidirect product of a finite nilpotent group by a finite

group. It is shown that under some conditions class-preserving Coleman automorphisms

of 2-power order of G are inner. Interest in such automorphisms arose from the study

of the normalizer problem for integral group rings.

1. Introduction

Let G be a finite group. Then, we have the following characteristic subgroups

of the automorphism group of G:

Autc(G) denotes the class-preserving automorphism group of G, in which every

automorphism sends g ∈ G to some conjugate of g;

AutCol(G) denotes the Coleman automorphism group of G, in which the restric-

tion of every automorphism to each Sylow subgroup of G equals the

restriction of some inner automorphism of G;

AutZ(G) denotes the group of automorphisms of G each of which induces an

inner automorphism of ZG, the integral group ring of G over Z.
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Set

Outc(G) = Autc(G)/Inn(G); OutCol(G) = AutCol(G)/Inn(G);

OutZ(G) = AutZ(G)/Inn(G).

Interest in class-preserving Coleman automorphisms arises from the fact that

these two kinds of automorphisms play an important role in the study of the

normalizer problem of integral group rings. We denote by U(ZG) the group of

units of ZG, by Z(U(ZG)) the center of U(ZG), and by NU(ZG)(G) the normalizer

of G in U(ZG). Obviously, G and Z(U(ZG)) are subgroups of NU(ZG)(G). Then a

question arising naturally is: does NU(ZG)(G) = G · Z(U(ZG)) hold for any finite

group G? Historically, this question is referred to as the normalizer problem (see

[1, problem 43]). If the question has a positive answer for G, then we say that

the normalizer property holds for G. It is known that the normalizer property

holds for G if and only if OutZ(G) = 1. It is also known by Coleman’s lemma [2]

that OutZ(G) ≤ Outc(G) ∩ OutCol(G). In addition, a result due to Krempa

states that OutZ(G) is an elementary abelian 2-group. Thus, if we can show that

Outc(G)∩OutCol(G) is an odd group under some conditions, then OutZ(G) = 1,

i.e., the normalizer property holds for G. Recently, many positive results on

the normalizer problem have been presented by many authors. For instance, Li,

Sehgal and Parmenter [3] proved that the normalizer property holds for finite

Blackburn groups. Petit Lobão and Sehgal [4] showed that the normalizer

property holds for the wreath product G = NwrSm of finite nilpotent group N

by symmetric group Sm. In addition, other confirmative results on this problem

can also be found in [5]–[19].

Glauberman [20] was the first to study the groups of those automorphisms

of G that fix every element of a Sylow 2-subgroup and their connection with

Schreier’s conjecture. The aim of this paper is to investigate class-preserving

Coleman automorphisms of the semidirect products G = N o H, where N is a

finite nilpotent group of even order and H is a finite group. Marciniak and

Roggenkamp [18] constructed a finite metabelian group G = (C4
2×C3)oC3

2 for

which Outc(G)∩OutCol(G) is of even order. This example also illustrates that if

G = N oH, where N is a finite nilpotent group of even order and H is a finite

group, then in general it is not the case that Outc(G)∩OutCol(G) is of odd order.

However, in this paper we shall prove the following main result.

Theorem 1.1. Let G = N oH be the semidirect product of N by H, where

N is a finite nilpotent group of even order and H is a finite group. Assume that H



On class-preserving Coleman automorphisms of semidirect products. . . 219

acts faithfully on the center of each Sylow subgroup of N . Then every class-

preserving Coleman automorphism of 2-power order of G is inner, i.e., Outc(G)∩
OutCol(G) is of odd order.

As direct consequences of Theorem 1.1, we have the following result.

Corollary 1.2. Let G = NwrH be the wreath product of N by H, where

N is a finite nilpotent group of even order and H is a finite group. Then ev-

ery class-preserving Coleman automorphism of 2-power order of G is inner, i.e.,

Outc(G)∩OutCol(G) is of odd order. In particular, the normalizer property holds

for G.

We fix some notation used in this paper. Let σ be an automorphism of

a finite group G, and H be a subgroup of G. Denote by σ|H the restriction of σ

to H. Let N be a normal subgroup of G. If σ fixes N , i.e., Nσ = N , then

σ induces an automorphism of G/N , which is denoted by σ|G/N . Let x ∈ G

be a fixed element. Denote by conj(x) the automorphism of G induced by x via

conjugation, i.e., gconj(x) = gx for any g ∈ G. Denote by π(G) the set of all primes

dividing the order of G. For any p ∈ π(G), we use Op(G) to denote the largest

normal p-subgroup of G, and Op′(G) to denote the largest normal p′-subgroup of

G, respectively. Denote by Sylp(G) the set of all Sylow p-subgroups of G. Other

notation used will be mostly standard, see [1], [22].

2. Preliminaries

In this section, we present some results which will be used in the proof of the

main theorem.

Lemma 2.1. Let G = N oH be the semidirect product of a finite nilpotent

group N by a finite group H. Assume that P is an arbitrary Sylow subgroup of N ,

and H acts faithfully on Z(P ). Then CG(P ) ≤ N . In particular, CG(N) ≤ N.

Proof. Let g ∈ CG(P ). Note that G = N oH, so we may set g = xh with

x ∈ N and h ∈ H. Since N is a finite nilpotent group, thus N = ×p∈π(N)P, and

Z(P ) 6= 1, where P ∈ Sylp(N). For any y ∈ Z(P ), on the one hand, we have

yg = y. On the other hand, we have yg = yxh = yh. Consequently, we obtain

yh = y. Note that H acts faithfully on Z(P ), which implies that h = 1, and

thus g = x ∈ N, i.e., CG(P ) ≤ N. In particular, CG(N) ≤ CG(P ) ≤ N, we are

done. �
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Recall that a finite group G is said to be p-constrained if CḠ(Op(Ḡ)) ≤
Op(Ḡ), where Ḡ = G/Op′(G).

Lemma 2.2 ([21], Corollary 2.4). Let G be a finite group such that G is a

p-constrained group and Op′(G) = 1. Assume that P is a Sylow p-subgroup of G,

and σ is an automorphism of G such that σ|P = id|P . Then σ = conj(x) for some

x ∈ Z(P ).

Lemma 2.3. Let G be a finite group, H be a subgroup of G, and let σ be an

automorphism of G of p-power order, where p is a prime. If there is x ∈ G such

that σ|H = conj(x)|H , then there exists some γ ∈ Inn(G) such that σγ|H = id|H ,

and σγ is still of p-power order.

Proof. Set o(σ) = pi, where i ∈ N. Write β := conj(x). Then σ|H = β|H ,

i.e., σβ−1|H = id|H . Let n ∈ N such that (σβ−1)n be the p-part of σβ−1 with

(n, p) = 1. Then there exists s, t ∈ Z such that sn+ tpi = 1. Obviously, (σβ−1)sn

is of p-power order and (σβ−1)sn|H = id|H . Note that Inn(G) E Aut(G), so there

exists some γ ∈ Inn(G) such that (σβ−1)sn = σsnγ = σ1−tpiγ = σγ. Hence, γ is

the desired inner automorphism. �

Lemma 2.4. Let G be a finite group, and let N be a subgroup of G. Let σ be

an automorphism of G of p-power order with p a prime. Suppose that σ fixes N ,

and σ|N = conj(x)|N for some x ∈ G. Then there exists a p-element y ∈ G such

that σ|N = conj(y)|N .

Proof. Let o(σ) = pi, o(x) = pjt, where i, j, t ∈ N and (p, t) = 1. Set

k = max{i, j}. Since (pk, t) = 1, it follows that there exists u, v ∈ Z such that

upk + vt = 1. Write y = xvt. Then it is obvious that y is a p-element. For any

z ∈ N , since z = zσ
upk

= zx
upk

, it follows that zσ = zx = zx
upk+vt

= (zx
upk

)x
vt

=

zx
vt

= zy, namely, σ|N = conj(y)|N . �

Lemma 2.5. Let G be a finite group, and let N be a normal subgroup of G.

Let σ be an automorphism of G of p-power order with p a prime. If σ induces

an inner automorphism of G/N , i.e., σ|G/N = conj(x)|G/N for some x ∈ G, then

there exists a p-element y ∈ G such that σ|G/N = conj(y)|G/N .

Proof. The proof is similar to that of Lemma 2.4, so we omit it. �

Lemma 2.6 ([22], Lemma 3.2.8). Let N be a normal subgroup of G with

factor group Ḡ = G/N , and let P be a p-subgroup of G. Assume that (|N |, p) = 1.

Then CḠ(P̄ ) = CG(P ).
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Lemma 2.7 ([13], Lemma 2). Let p be a prime, and σ an automorphism

of G of p-power order. Assume further that there is N E G such that σ fixes

all elements of N , and that σ induces the identity on G/N . Then σ induces

the identity on G/Op(Z(N)). If σ fixes in addition a Sylow p-subgroup of G

element-wise, then σ is an inner automorphism.

Let Nm be the direct product of m copies of a finite group N . We say a

subgroup H of Nm is extensive in Nm if the intersection of H with (1, · · · , 1, N︸︷︷︸
i−th

,

1, · · · , 1) is nontrivial for any i ∈ {1, 2, · · · ,m}.

Lemma 2.8 ([16], Lemma 2.2). Suppose that Nm is the direct product

of m copies of a finite nilpotent group N . Then the center of any Sylow p-

subgroup of Nm is extensive in Nm for any p ∈ π(N).

Lemma 2.9 ([7], [8]). If Sylow 2-subgroups of G are cyclic, dihedral or

generalized quaternion, then Outc(G) ∩OutCol(G) is of odd order.

3. Proof of the main theorem

In this section, we shall present a proof of the main theorem. For readers’

convenience, we shall rewrite it here as

Theorem 3.1. Let G = N oH be the semidirect product of N by H, where

N is a finite nilpotent group of even order and H is a finite group. Assume that H

acts faithfully on the center of each Sylow subgroup of N . Then every class-

preserving Coleman automorphism of 2-power order of G is inner, i.e., Outc(G)∩
OutCol(G) is of odd order.

Proof. Let σ ∈ Autc(G)∩AutCol(G) be of 2-power order. We have to show

that σ ∈ Inn(G). The proof of Theorem 3.1 splits into two cases according to the

order of N :

Case 1. O2(N) 6= 1, but O2′(N) = 1, i.e., N is a finite 2-group.

In this case, N is a normal 2-subgroup of G. Since O2′(G) is a normal 2′-

subgroup of G, it follows that [N,O2′(G)] ≤ N ∩ O2′(G) = 1. Thus, O2′(G) ≤
CG(N). By Lemma 2.1, CG(N)≤N, so O2′(G)≤N , which forces O2′(G) = 1.

Since O2(G) is the largest normal 2-subgroup of G, we have N ≤ O2(G). It follows

that CG(O2(G)) ≤ CG(N). Again by Lemma 2.1, CG(N) ≤ N, so CG(O2(G)) is a

normal 2-subgroup of G. Consequently, we obtain that G is a 2-constrained group

with O2′(G) = 1. Let P be a Sylow 2-subgroup of G. Then, by the definition of
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Coleman automorphisms, there exists some x ∈ G such that σ|P = conj(x)|P ,

or, equivalently, σconj(x−1)|P = id|P . Now, by Lemma 2.2, we obtain that

σconj(x−1) ∈ Inn(G), implying further that σ ∈ Inn(G), we are done.

Case 2. O2(N) 6= 1 and O2′(N) 6= 1.

Let H2 be a Sylow 2-subgroup of H, and let N2 be the Sylow 2-subgroup

of N , respectively. Write P := N2 oH2. Then P is a Sylow 2-subgroup of G.

Claim 1. We may assume that σ|P = id|P , and σ is of 2-power order.

Since σ ∈ AutCol(G), there exists some g ∈ G such that σ|P = conj(g)|P .

By Lemma 2.3, there exists some γ ∈ Inn(G) such that σγ|P = id|P , and σγ is

still of 2-power order. Without loss of generality, substituting σ with σγ, we may

assume that σ|P = id|P , and σ is of 2-power order, as claimed.

Claim 2. σ|N = id|N .
Let π(N) = {p1, p2, . . . , pr}, where r ≥ 2. By hypothesis, N is nilpotent, so

we may set N = P1 × · · · × Pr, where Pi is the Sylow pi-subgroup of N for each

i ∈ {1, 2, . . . , r}. Since σ ∈ Autc(G), for each Pi and each xi ∈ Pi, there exist

ni ∈ N and hi ∈ H such that

xσi = n−1
i h−1

i xihini. (3.1)

Note thatN=P1×· · ·×Pr, so we can decompose each ni as ni=ni1ni2 · · ·nii · · ·nir
with nik ∈ Pk, where k = 1, 2, . . . , r. Since Pi E G and h−1

i xihi ∈ Pi, (3.1) may

be written as

xσi = n−1
ii h

−1
i xihinii. (3.2)

For any zi ∈ Z(Pi), by (3.2), we have

zσi = h−1
i zihi. (3.3)

Now, take any two distinct Sylow subgroups Pi and Pj of N . Then, on the one

hand, by (3.3), for any zi ∈ Z(Pi) and any zj ∈ Z(Pj) we have

(zizj)
σ = zσi z

σ
j = h−1

i zihih
−1
j zjhj . (3.4)

On the other hand, since σ ∈ Autc(G), there exist n ∈ N and h ∈ H such that

(zizj)
σ = n−1h−1zizjhn = h−1zihh

−1zjh. (3.5)

Consequently, (3.4) and (3.5) yield that

(h−1
i zihi)(h

−1
j zjhj) = (h−1zih)(h−1zjh). (3.6)
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But note that h−1
i zihi, h

−1zih ∈ Pi and h−1
j zjhj , h

−1zjh ∈ Pj , so (3.6) implies

that h−1
i zihi = h−1zih and h−1

j zjhj = h−1zjh, or, equivalently,

(hih
−1)−1zi(hih

−1) = zi, (3.7)

and

(hjh
−1)−1zj(hjh

−1) = zj . (3.8)

Since H acts faithfully on Z(Pi) and Z(Pj), the equations (3.7) and (3.8) imply

that hi = h = hj . As Pi and Pj are arbitrary, we actually proved that h = h1 =

h2 = · · · = hr. Thus, we may rewrite (3.2) as

xσi = n−1
ii h

−1xihnii. (3.9)

Write n := n11n22 · · ·nrr. Then, by (3.9), for any x = x1x2 · · ·xr ∈ N with

xi ∈ Pi,

xσ =

r∏
i=1

xσi = n−1h−1xhn. (3.10)

To complete the proof of Claim 2, we consider the action of σ on Z(N2), where

N2 is the Sylow 2-subgroup of N . Take any x ∈ Z(N2). Then, on the one hand,

by Claim 1, we have

xσ = x. (3.11)

On the other hand, by (3.10), we have

xσ = n−1h−1xhn = h−1xh. (3.12)

Consequently, (3.11) and (3.12) yield that h−1xh = x, from which one gets that

h = 1 since H acts faithfully on Z(N2). Thus, by (3.10), we have

σ|N = conj(n)|N . (3.13)

Without loss of generality, by Lemma 2.4, we may assume that n is a 2-element

in N . We now consider the action of σ on N2, the Sylow 2-subgroup of N . On the

one hand, by Claim 1, we have

σ|N2
= id|N2

. (3.14)

On the other hand, by (3.13), we have

σ|N2
= conj(n)|N2

. (3.15)
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Consequently, (3.14) and (3.15) yield that n ∈ Z(N2), and hence n ∈ Z(N).

It follows from (3.13) that σ|N = id|N , as claimed.

Claim 3. σ|G/N = id|G/N .
Note that G/O2′(N) ∼= N2 o H is the semidirect product of N2 by H, so,

by Case 1, Outc(G/O2′(N)) ∩ OutCol(G/O2′(N)) is of odd order. Note fur-

ther that σ ∈ Autc(G) ∩ AutCol(G) implies σ|G/O2′ (N) ∈ Autc(G/O2′(N)) ∩
AutCol(G/O2′(N)). Consequently, we have σ|G/O2′ (N) ∈ Inn(G/O2′(N)). Thus,

there exists some x ∈ G such that

σ|G/O2′ (N) = conj(x)|G/O2′ (N). (3.16)

Without loss of generality, by Lemma 2.5, we may assume that x is a 2-element

in G, and hence x belongs to some Sylow 2-subgroup of G. By Sylow’s theorem,

there exists some g ∈ G such that x ∈ P g = N2 oHg
2 , where P is the fixed Sylow

2-subgroup of G as above. Set x = abg with a ∈ N2 and b ∈ H2. Then we may

write (3.16) as

σ|G/O2′ (N) = conj(abg)|G/O2′ (N). (3.17)

Thus, on the one hand, by (3.17), we have

σ|N/O2′ (N) = conj(abg)|N/O2′ (N). (3.18)

On the other hand, since by Claim 2 σ|N = id|N , it follows that

σ|N/O2′ (N) = id|N/O2′ (N). (3.19)

Consequently, for any y ∈ Z(N2), where N2 is the Sylow 2-subgroup of N ,

(3.18) and (3.19) yield that (ȳḡ
−1

)b̄ = ȳḡ
−1

. By Lemma 2.6, we obtain that

b̄ = 1. Thus, (3.17) turns into σ|G/O2′ (N) = conj(a)|G/O2′ (N), which implies that

σ|G/N = conj(a)|G/N = id|G/N , as claimed.

Claim 4. σ ∈ Inn(G).

By Lemma 2.7, Claims 1 and 3 yield that σ ∈ Inn(G). This completes the

proof of Theorem 3.1. �

As immediate consequences of Theorem 3.1, we have the following results:

Corollary 3.2. Let G = NwrH be the wreath product of N by H, where

N is a finite nilpotent group of even order and H is a finite group. Then ev-

ery class-preserving Coleman automorphism of 2-power order of G is inner, i.e.,

Outc(G)∩OutCol(G) is of odd order. In particular, the normalizer property holds

for G.
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Proof. Let |H| = m. Then G = NwrH = Nm o H, where Nm is the

direct product of m copies of N. Let p ∈ π(N), and let P ∈ Sylp(N
m). We will

show that H acts faithfully on Z(P ). Since N is a nilpotent group, Nm is also

a nilpotent group. Obviously, H acts on Z(P ), CH(Z(P )) is the kernel of the

action of H on Z(P ). Let h ∈ CH(Z(P )), we have yh = y for any y ∈ Z(P ).

By Lemma 2.8, Z(P ) is extensive in Nm, so h = 1 showing that H acts faithfully

on Z(P ). Thus, the assertion follows from Theorem 3.1. �

Corollary 3.3. LetG = NoH be the semidirect product of a finite nilpotent

group N by a finite group H whose Sylow 2-subgroups are either cyclic, dihedral

or generalized quaternion. Assume that H acts faithfully on the center of each

Sylow subgroup of N . Then Outc(G) ∩OutCol(G) is of odd order.

Proof. If N is of odd order, then the Sylow 2-subgroups of G are necessarily

either cyclic, dihedral or generalized quaternion. Thus, the assertion follows from

Lemma 2.9. If N is of even order, the assertion follows from Theorem 3.1. �
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Comm. Algebra 32 (2004), 1705–1714.

[10] M. Hertweck and W. Kimmerle, On the F ∗-theorem, In: Groups St. Andrews 1997 in
Bath, I, London Mathematical Society Lecture Note Series, Vol. 260, Cambridge University
Press, Cambridge, 1999, 346–352.



226 J. Hai and S. Ge : On class-preserving Coleman automorphisms. . .

[11] M. Hertweck and W. Kimmerle, Coleman automorphisms of finite groups, Math. Z. 242
(2002), 203–215.

[12] M. Hertweck and E. Jespers, Class-preserving automorphisms and the normalizer prop-
erty for Blackburn groups, J. Group Theory 12 (2009), 157–169.

[13] M. Hertweck, Class-preserving automorphisms of finite groups, J. Algebra 241 (2001),

1–26.

[14] Y. Li, The normalizer of a metabelian group in its integral group ring, J. Algebra 256

(2002), 343–351.

[15] J. Hai and Z. Li, On Coleman automorphisms of wreath products of finite nilpotent groups

by abelian groups, Sci. China Math. 54 (2011), 2253–2257.

[16] Z. Li and J. Hai, Coleman automorphisms of standard wreath products of finite abelian

groups by 2-closed groups, Publ. Math. Debrecen 82 (2013), 599–605.

[17] J. Hai and Z. Li, On class-preserving Coleman automorphisms of finite separable groups,
J. Algebra Appl. 13 (2014), 1–8.

[18] Z. S. Marciniak and K. W. Roggenkamp, The normalizer of a finite group in its integral
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