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Jordan triple product homomorphisms on
Hermitian matrices of dimension two

By DAMJANA KOKOL BUKOVŠEK (Ljubljana) and BLAŽ MOJŠKERC (Ljubljana)

Abstract. We characterise all Jordan triple product homomorphisms, that is,

mappings Φ satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A)

on the set of all Hermitian 2 × 2 complex matrices.

1. Introduction

In order to understand the geometry of matrix spaces, mappings with cer-

tain properties are often studied. Among such properties is (anti-)multiplica-

tivity. The structure of (anti-)multiplicative mappings on the algebra Mn(F)

of n × n matrices over field F is well understood [6], but less is known about

(anti-)multiplicative mappings from Mn(F) to Mm(F) for m > n.

In a well-known survey paper [13], Šemrl presented many facts and prop-

erties of such mappings, along with properties of preservers of Jordan and Lie

product. Šemrl exposed a related problem, that is, to characterize maps that

are multiplicative with respect to Jordan triple product (J.T.P. for short), namely

maps Φ on Mn(F) satisfying

Φ(ABA) = Φ(A)Φ(B)Φ(A)

for all A,B ∈Mn(F). Such mappings were studied under additional assumption

of additivity on quite general domain of certain rings [1]. In response to Šemrl,
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Kuzma characterized nondegenerate J.T.P. homomorphisms on the set Mn(F)

in [8] for n ≥ 3, in [2] Dobovǐsek characterized J.T.P. homomorphisms from

Mn(F) to F, and in [3] he characterized J.T.P. homomorphisms from M2(F) to

M3(F).

In this paper, we focus on J.T.P. homomorphisms on the set of all Hermitian

complex 2× 2 matrices. By A∗ denote the complex conjugate of the transpose of

matrix A, and by H2(C) the set of all Hermitian complex 2× 2 matrices

H2(C) = {A ∈M2(C);A = A∗}.

We cannot study multiplicative or anti-multiplicative maps on Hermitian matri-

ces, since they are not closed under multiplication. But they are closed under

J.T.P., so studying J.T.P. homomorphisms on Hermitian matrices makes perfect

sense. Characterization of J.T.P. homomorphisms on the set of Hermitian ma-

trices may shed a new light on the structure of Hermitian matrices, and may

be useful in the areas where only Hermitian or positive (semi)definite matrices

appear, such as some areas of financial mathematics.

Jordan triple product homomorphisms were already studied on the set of

positive definite matrices, Gselmann [4] characterized mappings from the set of

positive definite real or complex matrices to the field of real numbers. In the pa-

per [7], similar result was proved, namely Jordan triple product homomorphisms

from the set of all Hermitian n × n complex matrices to the field of complex

numbers, and Jordan triple product homomorphisms from the field of complex or

real numbers or the set of all nonnegative real numbers to the set of all Hermitian

n×n complex matrices were characterized. Further, Hao et al. [5] characterized

injective Jordan triple product endomorphisms on the set of complex symmetric

matrices, and Molnár in [9] described continuous Jordan triple endomorphisms

on the set of complex positive definite matrices of size at least 3. The special

case of 2× 2 positive definite complex matrices was considered separately in [10].

One may think that in this case the solution can be found straightforwardly, but

this is far from being true. We generalize this result by omitting the continuity

assumption and enlarging the set of matrices to all complex Hermitian matrices.

The paper is organized as follows. In Section 2, we state the characterization

theorem for J.T.P. homomorphisms on H2(C). In Section 3, we list some results

on J.T.P. homomorphisms on the set Hn(C) and main results from [7], which

we will find useful later on. In Sections 4–7, we treat different cases of J.T.P.

homomorphisms, namely irregular, scalar, nondegenerate and degenerate cases.

The proof of characterization is very long and technical. It consists of many

lemmas, whose proofs are straightforward multiplications of matrices. Thus, we
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leave it to the readers. If a reader wants to check the procedures, he or she can

find the full length paper at arXiv.org under the identifier arXiv:1512.02849.

2. Characterization theorem

We first introduce some notation. By I we denote the identity matrix of an

appropriate dimension, by detA the determinant, and by rankA the rank of a

matrix A. By σ(A) we denote the spectrum of a matrix A, and by Syl(A) the

inertia of A, that is, the number of positive eigenvalues of A. The direct sum

A⊕ B is a block diagonal matrix

[
A 0

0 B

]
. The notation A > 0 means that a

matrix A ∈ H2(C) is positive definite, A < 0 is a negative definite matrix, and

A <> 0 is an invertible nondefinite matrix.

We can now state our main result.

Theorem 2.1. Let Φ : H2(C) → H2(C). Then Φ(ABA) = Φ(A)Φ(B)Φ(A)

if and only if there exists some unitary matrix U ∈ M2(C) such that Φ has one

of the following forms:

(i) Φ(A) = U

[
ϕ1(A) 0

0 ϕ2(A)

]
U∗, where ϕ1, ϕ2 : H2(C) → R are J.T.P. ho-

momorphisms having the form ϕi(A) = ψi(|detA|)ηi(Syl(A)) for i = 1, 2,

with ψ1, ψ2 : [0,∞)→ C multiplicative functions, η1, η2 : {0, 1, 2} → {−1, 1}
arbitrary mappings, and Syl(A) the inertia of A;

(ii) Φ(A) = ±UAU∗;

(iii) Φ(A) = ±UĀU∗ = ±UATU∗;

(iv) Φ(A) =

{
±β(detA) · U Φ̃(A)U∗; rankA = 2

0; rankA ≤ 1,

where β : R∗ → R∗ is a unital multiplicative map, and Φ̃ has one of the

following forms:

• Φ̃(A) = A;

• Φ̃(A) = Ā;

• Φ̃(A) = A−1;

• Φ̃(A) = Ā−1;

• Φ̃(A) = η(A)A;

• Φ̃(A) = η(A)Ā;

• Φ̃(A) = η(A)A−1;

• Φ̃(A) = η(A)Ā−1;
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with

η(A) =

{
1; A > 0 or A <> 0

−1; A < 0 .

It is obvious that mappings of the forms described in (i)–(iv) are J.T.P. homo-

morphisms on H2(C).

3. Preliminaries

In this section, we present some properties of J.T.P. homomorphisms on the

set Hn(C) we will use later on. These properties with proofs can be found in [7].

We start with a simple lemma.

Lemma 3.1 ([7] Lemma 2.1). Let A ∈ H2(C) be a Hermitian matrix. Then

there exists a unitary Hermitian matrix B ∈ H2(C) such that A = B(λ1 ⊕ λ2)B

with λ1, λ2 ∈ R.

We continue with the characterization of J.T.P. homomorphisms mapping

from H2(C) to C.

Lemma 3.2 ([7] Lemma 3.1). Let Φ : H2(C) → C be a J.T.P. homomor-

phism with Φ(I) = 1 and Φ(0) = 0. Then Φ(A) = 0 for every A ∈ H2(C) with

rankA < 2.

Proposition 3.3 ([7] Theorem 3.3). Let Φ be a mapping from H2(C) to C.

Then Φ satisfies the identity Φ(ABA) = Φ(A)Φ(B)Φ(A) if and only if Φ has the

form

Φ(A) = Ψ(|detA|)η(Syl(A)),

where Ψ : [0,∞) → C is a multiplicative function, η : {0, 1, 2} → {−1, 1} an

arbitrary mapping, and Syl(A) the inertia of A.

We also need the characterization of J.T.P. homomorphisms from matrices

of dimension one to n× n Hermitian matrices.

Lemma 3.4 ([7] Lemma 4.1). Let a mapping Φ : A → Hn(C) be a J.T.P.

homomorphism, where A is the set C∗, R∗, or R+, such that Φ(λ) is invertible for

every λ ∈ A and Φ(1) = I. Then there exist a unitary matrix U and multiplicative

maps ϕ1, ϕ2 : A → R∗ with ϕi(1) = 1, such that

Φ(λ) = U(ϕ1(λ)⊕ ϕ2(λ))U∗, λ ∈ A.



Jordan triple product homomorphisms. . . 231

Proposition 3.5 ([7] Theorem 4.2). Let a mapping Φ : A → Hn(C) be

a J.T.P. homomorphism, where A is the set C, R, or R+ ∪ {0}. Then there

exist a unitary matrix U , a diagonal matrix D with ±1’s on its diagonal and

multiplicative maps ϕ1, ϕ2 : A → R, such that

Φ(λ) = UD(ϕ1(λ)⊕ ϕ2(λ))U∗, λ ∈ A.

4. Irregular cases

In this section, we start with the study J.T.P. homomorphisms that map from

2×2 Hermitian matrices to 2×2 Hermitian matrices. Since Φ(0) = Φ(03) = Φ(0)3,

it must be that σ(Φ(0)) ⊂ {−1, 0, 1}. So, we consider several cases.

Case 1. If Φ(0) is invertible, then it follows from

Φ(0) = Φ(0 ·A · 0) = Φ(0)Φ(A)Φ(0)

that Φ(A) = Φ(0)−1 = Φ(0) for every A ∈ H2(C) with Φ(0) some involution in

H2(C).

Case 2. If rank Φ(0) = 1, then it follows from Φ(0) = Φ(0)3 that σ(Φ(0)) =

{0, α} with α ∈ {−1, 1}. Hence, we can write

Φ(0) = U

[
α 0

0 0

]
U∗

for some unitary matrix U ∈M2(C). Choose an arbitrary A ∈ H2(C) and write

Φ(A) = U

[
a b

b̄ c

]
U∗.

Then

Φ(0) = Φ(0)Φ(A)Φ(0) = U

[
α 0

0 0

][
a b

b̄ c

][
α 0

0 0

]
U∗ = U

[
a 0

0 0

]
U∗.

Hence a = α. On the other hand,

Φ(0) = Φ(A)Φ(0)Φ(A) = U

[
a b

b̄ c

][
α 0

0 0

][
a b

b̄ c

]
U∗ = U

[
α b

b̄ α|b|2

]
U∗,

from which it follows b = 0. We conclude that, for every A ∈ H2(C),

Φ(A) = U

[
α 0

0 ϕ(A)

]
U∗

for some J.T.P. homomorphism ϕ : H2(C)→ R with ϕ(0) = 0.
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We split the remaining case Φ(0) = 0 into several subcases, depending on

the image Φ(I). Since Φ(I) = Φ(I)3, it must be that σ(Φ(I)) ⊂ {−1, 0, 1}.

Case 3. Let Φ(I) = 0. Then Φ(A) = Φ(I)Φ(A)Φ(I) = 0 for everyA ∈ H2(C).

Case 4. If rank Φ(I) = 1, we write

Φ(I) = U

[
α 0

0 0

]
U∗

for α ∈ {−1, 1} and a unitary matrix U ∈M2(C). Write

Φ(A) = U

[
a b

b̄ c

]
U∗.

Then for every A ∈ H2(C) we get

Φ(A) = Φ(I)Φ(A)Φ(I) = U

[
α 0

0 0

][
a b

b̄ c

][
α 0

0 0

]
U∗

= U

[
a 0

0 0

]
U∗ = U

[
ϕ(A) 0

0 0

]
U∗,

for some J.T.P. homomorphism ϕ : H2(C)→ R with ϕ(0) = 0 and ϕ(I) = α.

Case 5. Let Φ(I) be invertible. From Φ(I) = Φ(I)3 it follows that Φ(I)2 = I.

Denote P := Φ(I). Then

Φ(A) = Φ(I)Φ(A)Φ(I) = PΦ(A)P

for every A ∈ H2(C), hence Φ(A)P = PΦ(A) for every A ∈ H2(C). If P 6= ±I,

we can write P = U

[
1 0

0 −1

]
U∗ for some unitary U ∈ M2(C). Since Φ(A)

commutes with P , we have

Φ(A) = U

[
ϕ1(A) 0

0 ϕ2(A)

]
U∗,

for some J.T.P. homomorphisms ϕ1, ϕ2 : H2(C) → R. If P = −I, define a

mapping Φ′(A) = −Φ(A). Φ′ is a J.T.P. homomorphism from H2(C) to H2(C)

with Φ′(0) = 0 and Φ′(I) = I. This translates directly to the last case in need of

considering, Case 6.
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Case 6. Φ : H2(C) → H2(C) is a J.T.P. homomorphism with Φ(0) = 0 and

Φ(I) = I. We refer to this case as a regular case.

Cases 1–6 amount to the following proposition.

Proposition 4.1. Let Φ : H2(C) → H2(C) be a J.T.P. homomorphism.

Then Φ is regular, or −Φ is regular, or there exists a unitary matrix U , such that

Φ(A) = U

[
ϕ1(A) 0

0 ϕ2(A)

]
U∗,

where ϕ1, ϕ2 : H2(C) → R are J.T.P. homomorphisms characterised in Proposi-

tion 3.3, possibly constant mappings ϕi(A) = c ∈ {−1, 0, 1} for all A ∈ H2(C).

All cases when Φ(I) 6= ±I or Φ(0) 6= 0 are covered by the form (i) of The-

orem 2.1. In the case when −Φ is regular, we get the negative sign in the forms

(ii)–(iv) of Theorem 2.1.

5. Nontrivial involution to a scalar

In Sections 5–7, we assume Φ : H2(C) → H2(C) to be a regular J.T.P.

homomorphism, that is, Φ(0) = 0 and Φ(I) = I. We now consider the image of a

nontrivial involution J =

[
1 0

0 −1

]
. Since J2 = I, it is mapped to an involution.

So, Φ(J) is a matrix similar to J , or a scalar matrix I or −I. In this section, we

assume that Φ(J) ∈ {−I, I}.
The proofs of the following lemmas can be found at arXiv.org under the

identifier arXiv:1512.02849.

Lemma 5.1. Let Φ : H2(C) → H2(C) be a regular J.T.P. homomorphism

and Φ(J) ∈ {−I, I}. Then every nontrivial involution is mapped to ±I. If matri-

ces A,B ∈ H2(C) are similar, then Φ(A) = Φ(B).

Lemma 5.2. If Φ : H2(C)→ H2(C) is a regular J.T.P. homomorphism and

Φ(J) ∈ {−I, I}, then Φ(A) = 0 for every matrix A ∈ H2(C) with rankA = 1.

Lemma 5.3. Let Φ : H2(C) → H2(C) be a regular J.T.P. homomorphism

with Φ(J) ∈ {−I, I}. Let A ∈ H2(C) be invertible. If A is positive definite or

A is nondefinite, then

Φ(A) = Φ

([
detA 0

0 1

])
.
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If A is negative definite, then

Φ(A) = Φ(−I)Φ

([
detA 0

0 1

])
.

Proposition 5.4. Let Φ : H2(C) → H2(C) be a regular J.T.P. homomor-

phism with Φ(J) ∈ {−I, I}. Then there exist a unitary matrix U , unital multi-

plicative maps ψ1, ψ2 : [0,∞) → [0,∞) with ψi(0) = 0 for i ∈ {1, 2}, and maps

η1, η2 : {0, 1, 2} → {−1, 1} which satisfy η1(2) = η2(2) = 1 and η1(1) = η2(1),

such that Φ(A) has the form

Φ(A) = U

[
ψ1(|detA|)η1(Syl(A)) 0

0 ψ2(|detA|)η2(Syl(A))

]
U∗,

for every A ∈ H2(C), where Syl(A) is the inertia of A.

Proof. Consider all matrices of the form

[
x 0

0 1

]
∈ H2(C). They are iso-

morphic to the semigroup of real numbers for multiplication, so Φ induces a J.T.P.

homomorphism from R to H2(C). From Proposition 3.5 we know its form, and

by the previous Lemma it follows that there exist a unitary matrix U , a diagonal

matrix D with ±1’s on its diagonal and multiplicative maps ϕ1, ϕ2 : R→ R, such

that

Φ(A) = UD

[
ϕ1(detA) 0

0 ϕ2(detA)

]
U∗,

for every positive definite or nondefinite matrix A ∈ H2(C). This can be written

in the form

Φ(A) = U

[
ψ1(|detA|)η1(Syl(A)) 0

0 ψ2(|detA|)η2(Syl(A))

]
U∗,

where ψ1, ψ2 : [0,∞)→ [0,∞) are multiplicative maps, and Syl(A) is the inertia

of A. Since Φ(I) = I, we obtain η1(2) = η2(2) = 1, and since Φ maps a nontrivial

involution to a scalar, we obtain η1(1) = η2(1).

We now have to prove this form also for negative definite matrices. If ψ1(x) =

ψ2(x) for every x ≥ 0, then Φ(A) is scalar for every positive definite or nondefinite

matrix A ∈ H2(C). In this case, matrix U is still arbitrary. There exists a

unitary matrix U and a diagonal matrix D with ±1’s on its diagonal, so that

Φ(−I) = UDU∗.
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On the other hand, if ψ1(x) 6= ψ2(x) for some x ≥ 0, then Φ(−I) commutes

with Φ

([
x 0

0 1

])
by the previous Lemma, and again Φ(−I) = UDU∗. Now,

let η1(0) and η2(0) be defined by diagonal entries of matrix D. Every negative

definite matrix A ∈ H2(C) can be written in the form A =
√
−A(−I)

√
−A, so

Φ(A) = Φ(
√
−A)Φ(−I)Φ(

√
−A)

= U

[
ψ1(
√

detA) 0

0 ψ2(
√

detA)

][
η1(0) 0

0 η2(0)

]

×

[
ψ1(
√

detA) 0

0 ψ2(
√

detA)

]
U∗

= U

[
ψ1(|detA|)η1(Syl(A)) 0

0 ψ2(|detA|)η2(Syl(A))

]
U∗,

which completes the proof. �

The case when a nontrivial idempotent is mapped to a scalar is covered by

the form (i) of Theorem 2.1.

6. Nondegenerate case

In this section, we assume that for a regular J.T.P. homomorphism Φ :

H2(C) → H2(C) there exists A ∈ H2(C) with rankA = 1 such that Φ(A) 6= 0.

We refer to such regular Φ as nondegenerate J.T.P. homomorphism.

From Lemmas 5.1 and 5.2 it follows that nontrivial involutions cannot be

mapped to scalar matrices. Thus,

σ

(
Φ

([
0 1

1 0

]))
= {−1, 1}.

Let Φ : H2(C) → H2(C) be a nondegenerate J.T.P. homomorphism. We

proceed by proving the following steps. The proofs can be found at arXiv.org

under the identifier arXiv:1512.02849.

Step 1. rank Φ(A) = 1 for every A ∈ H2(C) with rankA = 1.
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Step 2. If there exists λ ∈ R such that Φ(λI) is not a scalar, then there exists

a unitary matrix U such that

Φ(A) = U

[
ϕ1(A) 0

0 ϕ2(A)

]
U∗ for all A ∈ H2(C),

where ϕ1, ϕ2 : H2(C)→ R are distinct unital J.T.P. homomorphisms.

Step 3. There exists a multiplicative map Ψ : R → R with Ψ(1) = 1 such

that Φ(λI) = Ψ(λ)I for every λ ∈ R.

A matrix

[
1 0

0 0

]
is an idempotent of rank 1, hence it is mapped to an idem-

potent of rank 1 by Step 1. So Φ

([
1 0

0 0

])
= U

[
1 0

0 0

]
U∗ for some U ∈ H2(C)

unitary. By taking Φ′(A) = UΦ(A)U∗, we may assume without the loss of gen-

erality that Φ

([
1 0

0 0

])
=

[
1 0

0 0

]
. In other words, Φ preserves E11 =

[
1 0

0 0

]
.

Let Φ : H2(C)→ H2(C) be a nondegenerate J.T.P. homomorphism preserv-

ing E11. We proceed by proving the following steps.

Step 4. Φ

([
a b

b̄ c

])
=

[
Ψ(a) ∗
∗ ∗

]
for every a ∈ R.

Step 5. Φ

([
a b

b̄ c

])
=

[
∗ ∗
∗ Ψ(c)

]
for every c ∈ R.

Step 6. Φ

([
a 0

0 b

])
=

[
Ψ(a) 0

0 Ψ(b)

]
for every a, b ∈ R.

Now, take x, y > 0. Then

[
x− y √

xy
√
xy 0

]
= B

[
x 0

0 −y

]
B for some Hermit-

ian unitary matrix B ∈ H2(C) by Lemma 3.1. Thus,

Φ

([
x− y √

xy
√
xy 0

])
=

[
Ψ(x− y) ∗
∗ 0

]
= Φ(B)

[
Ψ(x) 0

0 Ψ(−y)

]
Φ(B).

Hence Ψ(x−y) = Ψ(x)+Ψ(−y), since trace of matrix is preserved under similarity

action. Taking y = x, we get Ψ(−x) = −Ψ(x) for x > 0, hence for all x ∈ R. But

then the equality Ψ(x − y) = Ψ(x) + Ψ(−y) also holds for all x, y ∈ R. Taking

z = −y, we obtain additivity of Ψ. Since a multiplicative function Ψ : R → R is

additive, it must be an identity by [12, Theorem 1.10].
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Lemma 6.1. Let Φ : H2(C)→ H2(C) be a nondegenerate J.T.P. homomor-

phism preserving E11. Then Φ(λI) = λI for every λ ∈ R.

Suppose Φ : H2(C) → H2(C) is a nondegenerate J.T.P. homomorphism

preserving E11. We know that Φ

([
a b

b̄ c

])
=

[
a ∗
∗ c

]
. Define

Φ

([
1 1

1 0

])
=

[
1 γ

γ̄ 0

]
and Φ

([
0 1

1 0

])
=

[
0 δ

δ̄ 0

]
.

Take a > 0. Then [√
a 0

0 1√
a

][
1 1

1 0

][√
a 0

0 1√
a

]
=

[
a 1

1 0

]
,

hence Φ

([
a 1

1 0

])
=

[
a γ

γ̄ 0

]
. We apply Φ on both hand sides of

[
1 1

1 0

][
0 1

1 0

][
1 1

1 0

]
=

[
2 1

1 0

]
to obtain

Φ

([
1 1

1 0

])
Φ

([
0 1

1 0

])
Φ

([
1 1

1 0

])
=

[
1 γ

γ̄ 0

][
0 δ

δ̄ 0

][
1 γ

γ̄ 0

]

=

[
γδ̄ + γ̄δ γ2δ̄

γ̄2δ 0

]
= Φ

([
2 1

1 0

])
=

[
2 γ

γ̄ 0

]
.

Thus, we get γ2δ̄ = γ. Since

[
0 1

1 0

]
is an involution, so is Φ

([
0 1

1 0

])
=

[
0 δ

δ̄ 0

]
.

This gives us |δ| = 1, hence γ = δ.

The next step is taking arbitrary x, y, z ∈ R, y, z 6= 0, such that sign y =

sign z. Note that [
x y

y z

]
=

[
y
z 1

1 0

][
z 0

0 x− y2

z

][
y
z 1

1 0

]
,

hence

Φ

([
x y

y z

])
=

[
x yγ

yγ̄ z

]
. (1)
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On the other hand,

Φ

([
x −y
−y z

])
= Φ

([
−1 0

0 1

][
x y

y z

][
−1 0

0 1

])
=

[
x −yγ
−yγ̄ z

]
,

hence the equation (1) holds for all x, y, z ∈ R.

Denote with Γ the unit circle of C. From Steps 4 and 5 we know that there

exists ω : Γ → C such that Φ

([
0 β

β̄ 0

])
=

[
0 ω(β)

ω(β) 0

]
for every β ∈ Γ.

Since

[
0 ω(β)

ω(β) 0

]
is an involution, it must be that |ω(β)| = 1, hence ω : Γ →

Γ. Define ρ : Γ → Γ with ρ(β) = ω(β)
βγ . Then it holds that Φ

([
0 β

β̄ 0

])
=[

0 βγρ(β)

βγρ(β) 0

]
. Also, ρ(1) = 1.

Take α ∈ Γ to obtain

Φ

([
0 αβ2

αβ2 0

])
=Φ

([
0 β

β̄ 0

][
0 ᾱ

α 0

][
0 β

β̄ 0

])
=

[
0 αβ2γρ(αβ2)

αβ2γρ(αβ2) 0

]

=

[
0 βγρ(β)

βγρ(β) 0

][
0 ᾱγρ(ᾱ)

ᾱγρ(ᾱ) 0

][
0 βγρ(β)

βγρ(β) 0

]

=

[
0 αβ2γρ(β)2ρ(ᾱ)

αβ2γρ(β)2ρ(ᾱ) 0

]
,

so

ρ(αβ2) = ρ(ᾱ)ρ(β)2. (2)

If we insert α = 1 and arbitrary β, we get ρ(β2) = ρ(β)2. On the other hand, if

we insert β = 1 and arbitrary α, we get ρ(ᾱ) = ρ(α). Using these two expressions

on (2), we get ρ(αβ2) = ρ(α)ρ(β)2 = ρ(α)ρ(β2). Denoting β′ := β2, we get

ρ(αβ′) = ρ(α)ρ(β′) (3)

for every α, β′ ∈ Γ, thus a function ρ is multiplicative.

Take arbitrary x, z ∈ R and y ∈ C. Write y = |y|eiφ for φ ∈ [0, 2π). Then

Φ

([
x y

ȳ z

])
= Φ

([
0 ei

φ
2

e−i
φ
2 0

][
z |y|
|y| x

][
0 ei

φ
2

e−i
φ
2 0

])
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=

[
0 ei

φ
2 γρ(ei

φ
2 )

ei
φ
2 γρ(ei

φ
2 ) 0

][
z |y|γ
|y|γ̄ x

][
0 ei

φ
2 γρ(ei

φ
2 )

ei
φ
2 γρ(ei

φ
2 ) 0

]

=

[
x |y|eiφγρ(ei

φ
2 )ρ(ei

φ
2 )

|y|eiφγρ(ei
φ
2 )ρ(ei

φ
2 ) z

]
=

[
x yγρ(eiφ)

yγρ(eiφ) z

]
,

where the last equality holds due to (3).

Now, take β ∈ Γ and calculate[
1 1

1 1

][
1 β

β̄ 0

][
1 1

1 1

]
=

[
1 + β + β̄ 1 + β + β̄

1 + β + β̄ 1 + β + β̄

]
.

Applying Φ on both hand sides, we obtain[
1 γ

γ̄ 1

][
1 βγρ(β)

βγρ(β) 0

][
1 γ

γ̄ 1

]

=

[
1 + βρ(β) + β̄ρ(β̄) γ(1 + βρ(β) + β̄ρ(β̄))

γ̄(1 + βρ(β) + β̄ρ(β̄)) 1 + βρ(β) + β̄ρ(β̄)

]
=

[
1 + β + β̄ γ(1 + β + β̄)

γ̄(1 + β + β̄) 1 + β + β̄

]
,

which gives us β + β̄ = βρ(β) + β̄ρ(β̄). Then Reβ = Reβρ(β), and since |β| =

|ρ(β)| = 1, it must be that |Imβ| = |Imβρ(β)|. Hence Imβρ(β) = ±Imβ. Thus,

we have either βρ(β) = β or βρ(β) = β̄. We obtain that either

Φ

([
x y

ȳ z

])
=

[
x yγ

ȳγ̄ z

]
=

[
1 0

0 γ̄

][
x y

ȳ z

][
1 0

0 γ

]
or

Φ

([
x y

ȳ z

])
=

[
x ȳγ

yγ̄ z

]
=

[
1 0

0 γ̄

][
x ȳ

y z

][
1 0

0 γ

]
.

It is clear that these two forms of Φ cannot exist simultaneously, hence Φ always

takes a single form for every matrix in H2(C).

These findings give us the following lemma.

Lemma 6.2. Let Φ : H2(C)→ H2(C) be a nondegenerate J.T.P. homomor-

phism preserving E11. Then there exists a diagonal unitary matrix U such that

either Φ(A) = UAU∗ or Φ(A) = UATU∗ = UĀU∗.

The main result of this section characterizes nondegenerate regular J.T.P.

homomorphisms on H2(C).

Proposition 6.3. Let Φ : H2(C)→ H2(C). The map Φ is a nondegenerate

J.T.P. homomorphism if and only if there exists a unitary matrix U such that

Φ(A) = UAU∗ or Φ(A) = UATU∗ = UĀU∗.

The nondegenerate case is covered by the forms (ii) and (iii) of Theorem 2.1.
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7. Degenerate case

In this section, we consider regular J.T.P. homomorphisms Φ : H2(C) →
H2(C) such that Φ(A) = 0 for every A ∈ H2(C) with rankA ≤ 1. We refer to

such regular Φ as degenerate J.T.P. homomorphism.

Further, we assume that

σ

(
Φ

([
0 1

1 0

]))
= {−1, 1}.

The other possibility was already considered in Section 5.

Lemma 7.1. If there exists λ ∈ R such that Φ(λI) is not a scalar, then

there exist unitary matrix U , distinct unital multiplicative maps ψ1, ψ2 : [0,∞)→
[0,∞) with ψi(0) = 0 for i ∈ {1, 2}, and maps η1, η2 : {0, 1, 2} → {−1, 1} which

satisfy η1(2) = η2(2) = 1 and η1(1) 6= η2(1), so that Φ(A) has the form

Φ(A) = U

[
ψ1(|detA|)η1(Syl(A)) 0

0 ψ2(|detA|)η2(Syl(A))

]
U∗,

for every A ∈ H2(C), where Syl(A) is the inertia of A.

Remark 1. Notice that in this case we get a similar form as in the Proposi-

tion 5.4.

If Φ(λI) is a scalar matrix for every λ ∈ R, then there exists Ψ : R → R
multiplicative such that Φ(λI) = Ψ(λ)I. In the remainder of this section, we

assume that Φ(λI) = Ψ(λ)I. Due to regularity of Φ it holds that Ψ(0) = 0 and

Ψ(1) = 1.

A set of matrices

{[
a 0

0 1

]
: a ∈ R∗

}
is isomorphic to the group of nonzero

real numbers for multiplication, so Φ induces a J.T.P. homomorphism from R∗ to

the set of invertible matrices in H2(C). By Lemma 3.4 it then holds that

Φ

([
a 0

0 1

])
= U

[
α(a) 0

0 β(a)

]
U∗,

for some unitary matrix U and α, β : R∗ → R∗ unital multiplicative maps. With-

out the loss of generality we may assume that

Φ

([
a 0

0 1

])
=

[
α(a) 0

0 β(a)

]
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with α(1) = β(1) = 1 and {α(−1), β(−1)} = {−1, 1}. We may also assume that

α(−1) = −1 and β(−1) = 1, hence

Φ

([
−1 0

0 1

])
=

[
−1 0

0 1

]
.

Next, we look at the image of the matrix

[
0 1

1 0

]
and denote its upper right

entry by b. It turns out that we have two cases to consider. The proofs omitted

can be found at arXiv.org under the identifier arXiv:1512.02849.

Lemma 7.2. Let Φ : H2(C) → H2(C) be a degenerate J.T.P. homomor-

phism mapping scalars to scalars such that Φ

([
−1 0

0 1

])
=

[
−1 0

0 1

]
. Then

Φ

([
0 1

1 0

])
=


±

[
1 0

0 −1

]
; or[

0 b

b̄ 0

]
; |b| = 1.

Remark 2. In the first case, where b = 0, images of involutions

[
−1 0

0 1

]
and[

0 1

1 0

]
commute. In the second case, where |b| = 1, images do not commute. We

will consider these cases in Subsections 6.1 and 6.2.

Lemma 7.3. For an invertible matrix A ∈ H2(C) define

η(A) =

{
1; A > 0 or A <> 0

−1; A < 0 .

If Φ : H2(C)→ H2(C) is a J.T.P. homomorphism, then so is

Φ′(A) =

{
η(A)Φ(A); detA 6= 0

0; detA = 0 .

7.1. Case b = 0. In this subsection, we have the following assumptions (C1):

• Φ : H2(C)→ H2(C) a regular J.T.P. homomorphism;
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• Φ(A) = 0 for every A ∈ H2(C) with rankA ≤ 1;

• Φ(λI) = Ψ(λ)I for some Ψ : R→ R multiplicative with Ψ(0) = 0;

• Φ

([
a 0

0 1

])
=

[
α(a) 0

0 β(a)

]
for α, β : R → R unital multiplicative maps

with α(−1) = −1 and β(−1) = 1;

• Φ

([
0 1

1 0

])
= ±

[
1 0

0 −1

]
.

We have Φ

([
1 0

0 a

])
=

[
α(a) 0

0 β(a)

]
. Let a > 0. It follows that

Φ

([
a 0

0 a

])
= Ψ(a)I = Φ

([√
a 0

0 1

][
1 0

0 a

][√
a 0

0 1

])
=

[
α(a)2 0

0 β(a)2

]
.

Thus α(a)2 = β(a)2, hence α(a) = ±β(a).

It also holds that

[
α(a) 0

0 β(a)

]
=

[
α(
√
a)2 0

0 β(
√
a)2

]
, hence it follows that

α(a) > 0 and β(a) > 0, which in turn implies that α(a) = β(a) for all a > 0.

By initial assumptions it also holds that α(−1) = −1 and β(−1) = 1. Thus, for

a < 0, we have α(a) = −α(|a|) and β(a) = β(|a|). Hence α(−x) = −α(x) and

β(−x) = β(x) for all x ∈ R with α(x) = β(x) > 0 for all x > 0.

We can conclude that

• Φ

([
a 0

0 1

])
=

[
−α(|a|) 0

0 α(|a|)

]
= Φ

([
1 0

0 a

])
for a < 0;

• Φ

([
a 0

0 b

])
=

[
α(ab) 0

0 α(ab)

]
for a, b > 0;

• Φ

([
a 0

0 b

])
=

[
−α(|ab|) 0

0 α(|ab|)

]
=

[
α(ab) 0

0 α(|ab|)

]
for a < 0 and b > 0

or a > 0 and b < 0.

From −I an involution and Φ(λI) = Ψ(λ)I it follows that Φ(−I) = ±I. If

Φ(−I) = −I, define Φ′(A) = η(A)Φ(A), so Φ′(−I) = I. Hence we can assume

without the loss of generality that Φ(−I) = I. Thus,

Φ

([
a 0

0 b

])
=

[
α(ab) 0

0 α(|ab|)

]

for every a, b ∈ R, which gives us the following lemma.
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Lemma 7.4. Under assumptions (C1) and Φ(−I) = I, there exists a unital

odd multiplicative function α : R→ R with α(−1) = −1

Φ

([
a 0

0 b

])
=

[
α(ab) 0

0 α(|ab|)

]

for all a, b ∈ R.

We proceed by proving the following steps under assumptions (C1) and

Φ(−I) = I.

Step 1. Φ

([
a b

b a

])
=

[
α(a2 − b2) 0

0 α(|a2 − b2|)

]
for all a, b ∈ R.

Step 2. Φ

([
x y

y z

])
=

[
α(xz − y2) 0

0 α(|xz − y2|)

]
for all x, y, z ∈ R with

xz > 0.

Step 3. Φ

([
±
√

1− a2 a

a ∓
√

1− a2

])
=

[
−1 0

0 1

]
for every a ∈ (0, 1).

Step 4. Every involution maps into a diagonal involution.

Now, take an arbitrary A ∈ H2(C). We know by Lemma 3.1 that A = BDB

for some involution B and some diagonal matrix D. Hence

Φ(A) = ±

[
−1 0

0 1

]
Φ(D)

(
±

[
−1 0

0 1

])
= Φ(D) =

[
α(detA) 0

0 α(|detA|)

]
.

Case b = 0 amounts to the following proposition.

Proposition 7.5. Let Φ : H2(C) → H2(C) be a regular J.T.P. homomor-

phism such that

• Φ(A) = 0 for every A ∈ H2(C) with rankA ≤ 1;

• Φ maps scalars to scalars;

• images of

[
0 1

1 0

]
and

[
−1 0

0 1

]
commute.

Then there exist a unitary matrix U and α : R → R a unital multiplicative map

with α(−1) = −1 such that

Φ(A) = U

[
α(detA) 0

0 α(|detA|)

]
U∗ for every A ∈ H2(C),
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or

Φ(A) = η(A)U

[
α(detA) 0

0 α(|detA|)

]
U∗ for every A ∈ H2(C),

where η is the function defined in Lemma 7.3.

This case is covered by the form (i) of Theorem 2.1.

7.2. Case |b| = 1. In this subsection, we consider Φ as in Lemma 7.2 such that

Φ

([
0 1

1 0

])
=

[
0 b

b̄ 0

]
for some b ∈ Γ.

Lemma 7.6. Let Φ : H2(C) → H2(C) be a degenerate J.T.P. homomor-

phism mapping scalars to scalars such that Φ maps

[
a 0

0 1

]
to a diagonal matrix

for every a ∈ R. Then there exists a unitary matrix U such that Φ

([
0 1

1 0

])
=

U

[
0 1

1 0

]
U∗.

Define Φ′ = U∗ΦU . Thus, Φ′

([
0 1

1 0

])
=

[
0 1

1 0

]
. Since Φ′ preserves the

other assumptions of the lemma, we can substitute Φ for Φ′, if necessary, so we

can safely assume that Φ

([
0 1

1 0

])
=

[
0 1

1 0

]
.

We have Φ

([
a 0

0 1

])
=

[
α(a) 0

0 β(a)

]
for α, β : R→ R unital multiplicative

maps with α(−1) = −1 and β(−1) = 1. If a 6= 0, we write it as

Φ

([
a 0

0 1

])
= β(a)

[
α(a)
β(a) 0

0 1

]
.

Define γ : R∗ → R∗ with γ(a) = α(a)
β(a) . Then γ is a unital multiplicative map with

γ(−1) = −1.

We now have the following assumptions (C2):

• Φ : H2(C)→ H2(C) a regular J.T.P. homomorphism;

• Φ(A) = 0 for every A ∈ H2(C) with rankA ≤ 1;

• Φ(λI) = Ψ(λ)I for some Ψ : R→ R multiplicative with Ψ(0) = 0;
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• Φ

([
a 0

0 1

])
= β(a)

[
γ(a) 0

0 1

]
for β, γ : R∗ → R∗ unital multiplicative maps

with β(−1) = 1 and γ(−1) = −1;

• Φ

([
0 1

1 0

])
=

[
0 1

1 0

]
.

Lemma 7.7. Under assumptions (C2), it holds that

Φ

([
1 0

0 a

])
= β(a)

[
1 0

0 γ(a)

]

for every a ∈ R∗.

We know that

• Φ

([
1 0

0 1

])
=

[
1 0

0 1

]
;

• Φ

([
−1 0

0 1

])
=

[
−1 0

0 1

]
;

• Φ

([
1 0

0 −1

])
=

[
1 0

0 −1

]
;

• Φ

([
−1 0

0 −1

])
= ±

[
1 0

0 1

]
.

If Φ(−I) = I, we multiply Φ by η from Lemma 7.3 to get Φ(−I) = −I.

So, we may assume without the loss of generality that Φ(−I) = −I.

We proceed by proving the following steps under assumptions (C2).

Step 1. If Φ(−I) = −I, then Φ

([
a 0

0 b

])
= β(ab)

[
γ(a) 0

0 γ(b)

]
for every

a, b ∈ R.

Step 2. Φ

(
1√
2

[
1 1

1 −1

])
= ± 1√

2

[
1 1

1 −1

]
.

Step 3. If a, b ∈ R are arbitrary, then Φ

([
a+ 2b b

b a

])
=

[
a′ + 2b′ b′

b′ a′

]
for

some a′, b′ ∈ R.

Lemma 7.8. Under assumptions (C2), the function γ : R+ → R+ satisfies

functional equation

γ

(
x− 1 +

√
2x2 + 2

x+ 1

)
=
γ(x)− 1 +

√
2γ(x)2 + 2

γ(x) + 1
. (f.e.)
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Proof. Take x, a > 0. Then

Φ

([
a 0

0 1

]
1√
2

[
1 1

1 −1

][
x 0

0 1

]
1√
2

[
1 1

1 −1

][
a 0

0 1

])

= β(a2x)

[
γ(a) 0

0 1

](
± 1√

2

[
1 1

1 −1

])[
γ(x) 0

0 1

](
± 1√

2

[
1 1

1 −1

])[
γ(a) 0

0 1

]

= β(a2x)

[
γ(a2)γ(x)+1

2 γ(a)γ(x)−12

γ(a)γ(x)−12
γ(x)+1

2

]
= Φ

([
a2 x+1

2 ax−12

ax−12
x+1
2

])
.

We would like the matrix A =

[
a2 x+1

2 ax−12

ax−12
x+1
2

]
to have the form as in Step 3,

hence choose a ∈ R such that

a2
x+ 1

2
=
x+ 1

2
+ 2a

x− 1

2
.

Taking for a the positive solution of this quadratic equation, we get

a =
x− 1 +

√
2x2 + 2

x+ 1
.

The matrix A is therefore mapped to a matrix of the same form by Step 3, hence

γ(a2)
γ(x) + 1

2
= 2γ(a)

γ(x)− 1

2
+
γ(x) + 1

2
.

Since a is positive, it is mapped by γ to a positive solution of the new quadratic

equation, thus

γ(a) = γ

(
x− 1 +

√
2x2 + 2

x+ 1

)
=
γ(x)− 1 +

√
2γ(x)2 + 2

γ(x) + 1
,

which concludes the proof. �

Lemma 7.9. Under assumptions (C2), the function γ has one of the follow-

ing forms:

γ(x) = x for every x ∈ R∗ or γ(x) = x−1 for every x ∈ R∗.
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Proof. Let us prove the lemma for x > 0 first. For x < 0 it will then follow,

since γ(−x) = −γ(x).

We know that γ : R+ → R+ is a multiplicative function satisfying (f.e.).

By [12, Theorem 2.4] γ has the form γ(x) = ef(log x) for every x > 0, where

f : R→ R is additive. From (f.e.) it follows that

e
f

(
log

x−1+
√

2x2+2
x+1

)
=
ef(log x) − 1 +

√
2e2f(log x) + 2

ef(log x) + 1
,

hence

f

(
log

x− 1 +
√

2x2 + 2

x+ 1

)
= log

ef(log x) − 1 +
√

2e2f(log x) + 2

ef(log x) + 1
.

Taking x ∈ (1,∞), we get z = log x−1+
√
2x2+2

x+1 ∈ (0, log(1 +
√

2)). Substituting

y = f(log x), we get

f(z) = log
ef(log x) − 1 +

√
2e2f(log x) + 2

ef(log x) + 1
= log

ey − 1 +
√

2e2y + 2

ey + 1
.

Then, for t > 0 the following estimation manipulation

2t2 + 2 ≤ (
√

2t+ 2 +
√

2)2,
√

2t2 + 2 ≤
√

2t+ 1 +
√

2 + 1,

t− 1 +
√

2t2 + 2 ≤ (1 +
√

2)(t+ 1),
t− 1 +

√
2t2 + 2

t+ 1
≤ 1 +

√
2

shows that f(z) ≤ log(1 +
√

2).

Thus, additive function f is bounded on an open interval (0, log(1 +
√

2)),

hence by [12, Theorem 1.8] it is linear. Since it has the form f(z) = cz for some

c ∈ R, it follows that γ(x) = xc.

We get (
x− 1 +

√
2x2 + 2

x+ 1

)c
=
xc − 1 +

√
2x2c + 2

xc + 1

for every x > 0. If c > 0, by taking limx→∞ we get (1 +
√

2)c = 1 +
√

2.

Thus, c = 1. If c < 0, again, by taking limx→∞ we get (1 +
√

2)c = −1 +
√

2,

which implies c = −1. The last solution is c = 0. By taking c = 0, we get

Φ

([
x 0

0 1

])
= I for every x > 0, which is a contradiction with our assumptions,

hence c ∈ {−1, 1}. �
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Next, we show that in the case c = −1, we can reduce the proof to the case

c = 1. We have γ(x) = 1
x . Under assumptions (C2) and Φ(−I) = −I, we have

Φ

([
a 0

0 b

])
= β(ab)

[
1
a 0

0 1
b

]
=
β(ab)

ab

[
b 0

0 a

]
for every a, b ∈ R∗. Define

Φ′(A) =

{
Φ(A−1); rankA = 2

0; rankA ≤ 1.

Then, introducing new notation Ψ′(t) = Ψ(t−1) and β′(t) = β(t−1), we have

• Φ′(0) = 0;

• Φ′(I) = I;

• Φ′(−I) = −I;

• Φ′(λI) = Ψ(λ−1)I = Ψ′(λ)I;

• Φ′

([
0 1

1 0

])
=

[
0 1

1 0

]
;

• Φ′

([
a 0

0 b

])
= Φ

([
1
a 0

0 1
b

])
= β

(
1
ab

) [a 0

0 b

]
= β′(ab)

[
a 0

0 b

]
;

• Φ′

(
1√
2

[
1 1

1 −1

])
= Φ

(
1√
2

[
1 1

1 −1

])
= ± 1√

2

[
1 1

1 −1

]
;

• Φ′

([
a+ 2b b

b a

])
=

[
a′ + 2b′ b′

b′ a′

]
.

So, taking Φ′ instead of Φ, if necessary, we may assume that γ(x) = x.

We proceed by proving the following steps under assumptions (C2), Φ(−I) =

−I and γ(x) = x.

Step 4. Φ

([
a b

b a

])
= β(a2 − b2)

[
a b

b a

]
.

Step 5. Φ

([
a b

b c

])
= β(ac− b2)

[
a b

b c

]
for every a, b, c ∈ R.

Step 6. For arbitrary x ∈ Γ we have Φ

([
0 x

x̄ 0

])
=

[
0 λ

λ̄ 0

]
, where λ ∈ Γ.

From the previous step it follows that there exists a function on a unit circle

λ : Γ→ Γ with λ(1) = 1 such that Φ

([
0 x

x̄ 0

])
=

[
0 λ(x)

λ(x) 0

]
.
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Step 7. For arbitrary x, y ∈ Γ, we have λ(xy) = λ(x)λ(y) and λ(x̄) = λ(x).

Step 8. The function λ has one of the following forms:

λ(x) = x for every x ∈ Γ or λ(x) = x̄ for every x ∈ Γ.

If λ(x) = x̄, define Φ′(A) = Φ(Ā). Therefore, we can assume without the

loss of generality that λ(x) = x.

Step 9. If λ ≡ id, then Φ

([
a b

b̄ c

])
= β(ac− bb̄)

[
a b

b̄ c

]
.

These findings amount to the following proposition. This case is covered by

the form (iv) of Theorem 2.1.

Proposition 7.10. Let Φ : H2(C) → H2(C) be a regular J.T.P. homomor-

phism such that

• Φ(A) = 0 for every A ∈ H2(C) with rankA ≤ 1;

• Φ maps scalars to scalars;

• images of

[
0 1

1 0

]
and

[
−1 0

0 1

]
do not commute.

Then there exist a unitary matrix U and β : R → R a unital multiplicative map

with β(−1) = 1 such that

Φ(A) =

{
β(detA) · U Φ̃(A)U∗; rankA = 2

0; rankA ≤ 1,

where Φ̃ has one of the following forms:

• Φ̃(A) = A;

• Φ̃(A) = Ā;

• Φ̃(A) = A−1;

• Φ̃(A) = Ā−1;

• Φ̃(A) = η(A)A;

• Φ̃(A) = η(A)Ā;

• Φ̃(A) = η(A)A−1;

• Φ̃(A) = η(A)Ā−1;

for every A ∈ H2(C), where η is the function defined in Lemma 7.3.
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