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Isotropy index for the connected sum and the direct
product of manifolds

By IRINA GELBUKH (Mexico City)

Abstract. A subspace or subgroup is isotropic under a bilinear map if the restric-

tion of the map on it is trivial. We study maximal isotropic subspaces or subgroups under

skew-symmetric maps and, in particular, the isotropy index – the maximum dimension

of an isotropic subspace or maximum rank of an isotropic subgroup. For a smooth closed

orientable manifold M , we describe the geometric meaning of the isotropic subgroups of

the first cohomology group with different coefficients under the cup product. We calcu-

late the corresponding isotropy index, as well as the set of ranks of all maximal isotropic

subgroups, for the connected sum and the direct product of manifolds. Finally, we study

the relationship of the isotropy index with the first Betti number and the co-rank of the

fundamental group. We also discuss applications of these results to the topology of

foliations.

1. Introduction

Let M be a smooth closed orientable connected n-dimensional manifold.

We study isotropic subgroups (subspaces) H of its cohomology group (space)

H1(M ;R), where R is a field or the ring of integers, under the cup-product

^ : H1(M ;R)×H1(M ;R)→ H2(M ;R), (1)

i.e., H ⊆ H1(M ;R) such that H ^ H = 0. To avoid duplication of terminology,

such as “rank (dimension)”, we will refer to Hi(M ;R) as modules over the ring R.
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Specifically, we study the set H(M ;R) of ranks of maximal isotropic sub-

modules of H1(M ;R) and the corresponding isotropy index

h(M ;R) = maxH(M ;R), (2)

the maximum rank of an isotropic submodule. We study the structure of (maxi-

mal) isotropic submodules for finite connected sums and direct products of man-

ifolds. In particular, we show (Theorems 21 and 27) that

H(M1 # M2;R) = H(M1;R) +H(M2;R) and

H(M1 ×M2;R) = {1} ∪ H(M1;R) ∪H(M2;R), (3)

and thus

h(M1 # M2;R) = h(M1;R) + h(M2;R) and

h(M1 ×M2;R) = max{h(M1;R), h(M2;R)} (4)

under certain conditions and with certain exceptions described in the correspond-

ing theorems (here the sum of sets is understood element-wise).

Isotropy index bounds the co-rank b′1(M) of the fundamental group, i.e., the

maximum rank of a free homomorphic image of π1(M) [9], and, obviously, is

bounded by the first Betti number b1(M) = rkH1(M ;Z):

b′1(M) ≤ h(M ;Z) ≤ b1(M). (5)

In [21], for a field F , upper and lower bounds on h(M ;F ) were given in terms of

Betti numbers; see Proposition 16. Using (3) and (4), for a given R we describe

all possible sets H(M ;R) (Proposition 30) and all possible values of h(M,R)

with different M in terms of b1(M ;R) = rkH1(M ;R) (Theorem 33), as well as

extend (5) to fields of characteristic zero and show that in this case these bounds

are exact (Proposition 39).

The notion of isotropy has been studied in the context of algebraic geome-

try. For instance, isotropic subspace theorems by Catanese [4] and Bauer [3]

establish relations between isotropic subspaces of H1(M ;C) for a smooth quasi-

projective variety M and certain irrational pencils. These theorems have been

studied in [5], [7].

The isotropy index has numerous applications to the topological study of

manifolds and foliations. As we show, isotropy for manifolds has a clear geo-

metric meaning: (maximal) isotropic subgroups of H1(M ;Z) of rank k corre-

spond to (maximal) systems of k homologically independent, homologically non-

intersecting closed orientable codimension-one submanifolds, h(M ;Z) being the
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maximum number of such submanifolds (Theorem 13). While this geometric

meaning is defined for R = Z, we show that the relevant aspects of isotropy

coincide for R = Z and R = Q (Lemma 7), which enables the use of simpler,

vector space-based techniques in geometric applications of isotropy.

Consider a foliation defined on M by a Morse form ω, i.e., a closed one-

form that is locally the differential of a Morse function. Such foliations have

important applications in modern physics, for example, in supergravity [1], [2].

A Morse form foliation defines a decomposition of M into a finite number m(ω)

of minimal components and a finite number M(ω) of maximal components, i.e.,

connected components of the union of compact leaves, which are cylinders over

a compact leaf. These two numbers are bounded by h(M ;Z): M(ω) + m(ω) ≤
h(M ;Z) + |Singω| − 1, where Singω is the singular set, which is finite [10].

In homological terms, for the number c(ω) of homologically independent compact

leaves it holds c(ω) +m(ω) ≤ h(M ;Z) [10].

A sufficient condition of existence of a minimal component has been given

in [20] in terms of rkω, the rank of the group of the periods: if rkω > h(M ;Z),

then the foliation has a minimal component, i.e., m(ω) ≥ 1. Also, in case of strong

inequality in the upper bound in (5), i.e., if h(M ;Z) < b1(M), the foliation of a

Morse form in general position has a minimal component [11].

If the subgroup Hω ⊆ Hn−1(M) generated by the homology classes of all

compact leaves of a Morse form foliation is maximal isotropic, then the folia-

tion has no minimal components, i.e., m(ω) = 0 [19]. Subgroups of Hn−1(M)

are related, by Poincaré duality, with those of H1(M ;Z). In particular, if the

homology classes of some compact leaves of a Morse form foliation generate

a maximal isotropic subgroup, then m(ω) = 0 [19]. This is the case when

the foliation has h(M ;Z) homologically independent compact leaves. However,

ifM = M1×M2, then in some cases our results allow us to conclude thatm(ω) = 0

by examining only one leaf (Examples 31 and 32).

Isotropic submodules of L can be defined for arbitrary bilinear map ϕ :

L×L→ V , where L, V are finitely generated groups or finite-dimensional vector

spaces. This gives the corresponding notions of H(ϕ) and the isotropy index h(ϕ)

as in (2). In order to establish our main results (3) and (4), we study the behavior

of isotropic submodules for skew-symmetric maps under operations of extension

of scalars (Proposition 8) and direct sum L1 ⊕ L2 (Lemmas 20 and 26).

For dimM = 2, by Poincaré duality, H(M ;Z) and h(M ;Z) can be equiv-

alently defined in terms of the intersection map ◦ : H1(M) × H1(M) → Z in-

stead of the cup product (1). For a closed one-form ω on M , the isotropy index

h(ω) is defined by the restriction ◦|ker[ω]×ker[ω] of the intersection map to the
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group ker[ω] ⊆ H1(M), where [ω] is the integration map. This notion has been

extensively used to study the structure of Morse form foliations on closed ori-

entable surfaces M2
g of genus g. For example, c(ω) ≤ h(ω); if the foliation has

no minimal components, then h(ω) = g [12]. For so-called weakly generic forms,

m(ω) ≥ g − 1
2k(ω)− h(ω), where k(ω) is the number of singularities surrounded

by a minimal component [14]. Since h(ω) ≤ h(M ;Z), these inequalities hold also

for h(M ;Z).

The paper is organized as follows. In Section 2, we give basic facts on isotropy

in finite-dimensional vector spaces and finitely generated abelian groups. In Sec-

tion 3, we introduce the isotropy index for manifolds and consider its properties

and geometric meaning. In Section 4, we calculate the isotropy index of the con-

nected sum of two manifolds. In Section 5, we calculate the isotropy index of the

direct product of two manifolds and describe the possible sets H(M ;R). In Sec-

tion 6, we completely characterize the relation between h(M ;R) and b1(M ;R).

Finally, in Section 7 we consider the relations between h(M ;R) and b′1(M).

2. Isotropy index for vector spaces and abelian groups

In this section, we will define the isotropy index and discuss how it changes

from groups to vector fields or between vector fields with different scalars.

We will deal with finite-dimensional vector spaces and finitely generated

abelian groups. To avoid duplication of terminology, such as “any subspace or

subgroup” or “its dimension or rank”, we will use terminology from R-modules,

where R will be a field or Z, correspondingly. In particular, submodule will stand

for subspace or subgroup; rank will stand for the dimension of a space or the rank

of a group.

2.1. Definitions. Let L, V be finitely generated R-modules and ϕ : L×L→ V

a bilinear map; R is a field or R = Z.

Definition 1. A submodule H ⊆ L is called isotropic under the map ϕ if

ϕ|H×H = 0, i.e., ϕ(l1, l2) = 0 for any l1, l2 ∈ H.

If R is a field, R-modules L and V are finite-dimensional vector spaces, so

we deal with isotropic subspaces; if R = Z, then R-modules L, V are finitely

generated abelian groups, so we have isotropic subgroups.

Since L is Noetherian, every isotropic submodule is contained in some maxi-

mal isotropic submodule, not necessarily unique. Denote by H(ϕ) the set of ranks

of maximal isotropic submodules under the map ϕ:
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H(ϕ) = {rkH | H is a maximal isotropic submodule of L}.

Obviously, H(ϕ) is a finite set of non-negative integers such that

0 /∈ H(ϕ) or H(ϕ) = {0}. (6)

Proposition 30 below shows that these are the only restrictions on H(ϕ).

Definition 2. The isotropy index h(ϕ) is the maximum rank of an isotropic

submodule of L:

h(ϕ) = maxH(ϕ).

Example 3. Consider the skew-symmetric map ϕ : R3 × R3 → R3, ϕ(x, y) =

[[x, y], l], where l is a fixed vector and [ , ] is the vector product. For any vector

x 6⊥ l, for example x = l, the subspace L1 = 〈x〉, dimL1 = 1, is maximal isotropic,

and so is L2 = l⊥, dimL2 = 2. Thus H(ϕ) = {1, 2}, and h(ϕ) = 2.

For skew-symmetric maps, usually h(ϕ) ≥ 1, and thus 0 /∈ H(ϕ):

Lemma 4. Let ϕ be skew-symmetric. Then h(ϕ) = 0, i.e., H = {0}, iff

either

• L = 0 or

• L = R, charR = 2, and ϕ 6≡ 0.

Proof. Let h(ϕ) = 0, then ϕ(l, l) 6= 0 for any 0 6= l ∈ L. Unless L = 0,

for a skew-symmetric map this implies charR = 2. Suppose rkL ≥ 2. Consider

independent l1, l2 ∈ L; ϕ(li, li) = 1. Then, for l = l1 + l2 6= 0, we have ϕ(l, l) = 0,

a contradiction. �

The kernel of a bilinear map ϕ : L× L→ V is

kerϕ = {l ∈ L | ϕ(l, l′) = 0 for any l′ ∈ L}.

Obviously, kerϕ is an isotropic submodule; moreover, any maximal isotropic sub-

module contains kerϕ, so h(ϕ) ≥ dim kerϕ.

2.2. Isotropy index for different coefficients. Generally speaking, the iso-

tropy index depends on the coefficients. Namely, let L, V be finitely generated

abelian groups and ϕ : L×L→ V a skew-symmetric bilinear map. For a field F ,

consider the corresponding vector spaces

LF = F ⊗ L, VF = F ⊗ V,
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and the induced skew-symmetric bilinear map

ϕF : LF × LF → VF , ϕF (α1 ⊗ x1, α2 ⊗ x2) = α1α2 ⊗ ϕ(x1, x2).

The isotropy index depends on the field F , and generally h(ϕ) 6= h(ϕF ):

Example 5. Consider ϕ : Z×Z→ Z2 = Z/2Z, ϕ(1, 1) = 1. It has an isotropic

subgroup 2Z, thus h(ϕ) = 1. Similarly, for F = Q, we have ϕQ : Z×Z→ 0, thus

again h(ϕ) = 1, in accordance with (8) below. However, for F = Z2, we have

LF = Z2 ⊗ Z = Z2, VF = Z2 ⊗ Z2 = Z2, so ϕZ2 : Z2 × Z2 → Z2, ϕ(1, 1) = 1;

obviously, ϕ−1Z2
(0) = 0, and thus h(ϕZ2) = 0:

h(ϕZ2) < h(ϕ) = h(ϕQ).

On the other hand, consider ϕ : Z2 × Z2 → Z defined by the matrix
(

0 k
−k 0

)
,

k ≥ 2. Then h(ϕ) = hQ(ϕ) = 1, but ϕZp
: Z2

p×Z2
p → 0 (thus h(ϕZp

) = 2) iff p | k.

So for p | k and q - k we have:

h(ϕ) = h(ϕQ) = h(ϕZq
) < h(ϕZp

).

However, extension of scalars for vector spaces does not decrease h(ϕF ):

Lemma 6. Let LF , VF be finite-dimensional vector spaces over a filed F ,

and ϕF : LF × LF → VF be a skew-symmetric bilinear map. Let F ′ be a field,

F ⊆ F ′,
LF ′ = F ′ ⊗F L, VF ′ = F ′ ⊗F V

vector spaces obtained from LF , VF by extension of scalars, and ϕF ′ the induced

map:

ϕF ′ : LF ′ × LF ′ → VF ′ , ϕF ′(α′1 ⊗ x1, α′2 ⊗ x2) = α′1α
′
2 ⊗ ϕF (x1, x2). (7)

Then

h(ϕF ) ≤ h(ϕF ′).

Proof. Consider an isotropic subspace HF ⊆ LF , dimHF = h(ϕF ) = k.

A basis 〈e1, . . . , ek〉 = HF can be be extended to a basis for LF ; thus HF = F k.

Extension of scalars from F to F ′ gives HF ′ = F ′ ⊗F HF = F ′ ⊗F F k = (F ′)
k
,

so dimHF ′ = dimHF . By (7), the subspace HF ′ is isotropic, i.e., k = dimHF ′ ≤
h(ϕF ′). We obtain h(ϕF ) ≤ h(ϕF ′). �

A stronger fact holds for groups and Q:
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Lemma 7. Let L, V be finitely generated abelian groups, and ϕ : L×L→ V

be a skew-symmetric bilinear map. Denote by

LZ = L, LQ = Q⊗ L, VZ = V, VQ = Q⊗ V

the corresponding Z- and Q-modules. Let

ϕQ : LQ × LQ → VQ, ϕQ(q1 ⊗ x1, q2 ⊗ x2) = q1q2 ⊗ ϕ(x1, x2)

be the induced skew-symmetric bilinear map. Then

(i) for every maximal isotropic subgroup H ⊆ L, the subspace HQ = Q⊗H ⊆ LQ
is maximal isotropic;

(ii) for every maximal isotropic subspace HQ ⊆ LQ, there is a maximal isotropic

subgroup H ⊆ L such that HQ = Q⊗H.

In particular,

H(ϕ) = H(ϕQ), h(ϕ) = h(ϕQ). (8)

Proof. (i) Let H ⊆ L be a maximal isotropic subgroup, H = 〈h1, . . . , hn〉.
Then HQ = Q ⊗ H ⊆ LQ is an isotropic subspace, dimHQ = rkH. Consider

0 6= q ⊗ x ∈ LQ such that ϕQ(q ⊗ x,HQ) = 0, i.e., all ϕ(x, hi) ∈ VT , the torsion

subgroup. Then for some k 6= 0, we have ϕ(kx, hi) = 0. Since H is maximal,

kx ∈ H, and thus q ⊗ x ∈ HQ. Therefore, HQ is maximal.

(ii) Let HQ ⊆ LQ be a maximal isotropic subspace, HQ = 〈q1 ⊗ h1, . . . , qn ⊗
hn〉, a basis. Consider H ′ = 〈h1, . . . , hn〉. Then all ϕ(hi, hj) ∈ VT ; thus for some

k 6= 0, all ϕ(khi, khj) = 0. We obtain HQ = Q ⊗ H ′′ for an isotropic subgroup

H ′′ = kH ′ = {kx | x ∈ H ′}, k 6= 0.

Consider a maximal isotropic subgroup H ⊇ H ′′. For any x ∈ H, we have

ϕ(x,H ′′) = 0, and thus ϕQ(1 ⊗ x,HQ) = 0. Since HQ is maximal, 1 ⊗ x ∈ HQ.

We obtain HQ = Q⊗H. �

Lemma 7 allows formulating Lemma 6 for fields or Z:

Proposition 8. Let LR, VR be finitely generated R-modules, R being a field

or Z, and ϕR : LR × LR → VR be a skew-symmetric bilinear map. Let R′ be a

field, R ⊆ R′,
LR′ = R′ ⊗R L, VR′ = R′ ⊗R V

modules obtained by extension of scalars, and ϕR′ : LR′ ×LR′ → VR′ the induced

map. Then

h(ϕR) ≤ h(ϕR′). (9)

In particular, in addition to extension of scalars of vector spaces, (9) holds for

a group and a corresponding vector space over F , charF = 0, since Z ⊂ Q ⊆ F .
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3. Isotropy index for manifolds

In this section, we introduce maximal isotropic subgroups (subspaces) of the

first cohomology group (space) and the isotropy index for manifolds, and discuss

their geometric meaning and properties.

3.1. Definitions. Let M be a smooth closed orientable n-dimensional manifold.

Consider the cup product

^ : H1(M ;R)×H1(M ;R)→ H2(M ;R),

where R = Z or R is a field. It is a skew-symmetric bilinear map, and Hk(M ;R)

are finitely generated R-modules; in case of a field, Hk(M ;R) are vector spaces.

Definition 9. A submodule H ⊆ H1(M ;R) is called isotropic if it is isotropic

under ^ in the sense of Definition 1, i.e., if the restriction of the cup-product to

H ×H is zero: ^|H×H = 0.

Accordingly, we denote by H(M ;R) the set of ranks of maximal isotropic

submodules:

H(M ;R) = {rkH | H is a maximal isotropic submodule of H1(M ;R)};

Proposition 30 below shows that (6) is still the only restriction on H(M ;R),

i.e., that almost any set of non-negative integers isH(M ;R) for some manifold M .

The isotropy index

h(M ;R) = maxH(M ;R)

is the maximum rank of an isotropic submodule of H1(M ;R).

Lemma 7 allows us to work interchangeably with H1(M ;Z) and H1(M ;Q):

Lemma 10. For a smooth closed orientable manifold M , there exists a

maximal isotropic subgroup H ⊆ H1(M ;Z), rkH = k, iff there exists a maximal

isotropic subspace HQ ⊆ H1(M ;Q), dimHQ = k, i.e.,

H(M ;Z) = H(M ;Q), h(M ;Z) = h(M ;Q).
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3.2. Geometric meaning of h(M ;Z). The notions of H(M ;Z) and h(M ;Z)

have a clear geometric meaning, which can be characterized as follows:

Definition 11. An isotropic system on a manifold M , dimM ≥ 2, is a set

of homologically non-intersecting, homologically independent smooth closed ori-

entable connected codimension-one submanifolds X1, . . . , Xk ⊂ M , intersecting

transversely:

[Xi ∩Xj ] = 0, i 6= j; i, j = 1, . . . , k. (10)

The requirement (10) cannot be simplified to Xi ∩ Xj = ∅, since on some

manifolds there exist submanifolds with non-empty, but homologically trivial,

intersection:

Example 12. On the Heisenberg 3-nilmanifold, any two homologically inde-

pendent smooth closed orientable 2-submanifolds have non-empty, but homolog-

ically trivial, intersection. This will be shown as Example 40 below; here we only

give a graphical illustration.

a

b c

a+ c

(a)

 

T1

T2

(b)

Figure 1. The Heisenberg nilmanifold H3, represented as a T 2-bundle

over the circle S1. The circle is shown as the vertical line b; T 2 is shown

as a horizontal square with the sides a and c, the opposite sides of the

square being identified. The top is identified with the bottom with

the Dehn twist: a ∼ a + c, c ∼ c; all four vertical lines are identified.

(a) The curve realizing c is the boundary of a 2-submanifold shown as

the hatched rectangle, triangle, and another rectangle; thus c = 0. The

triangle forms a disk with two holes, which are glued to the cylinder

formed by the two rectangles; the resulting figure is a torus with a

disk removed, whose boundary realizes c. (b) The two tori T1, T2

intersect by a curve realizing c, thus [T1 ∩ T2] = 0. They cannot be

made non-intersecting; see Example 40.
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The Heisenberg 3-nilmanifold H3 is a T 2-bundle over the circle S1, with the

monodromy being a Dehn twist f : T 2 → T 2, defined as the quotient space

H3 =
[0, 1]× T 2

(1, x) ∼ (0, f(x))
, f =

(
1 0

1 1

)
.

For the basis cycles a, c of the torus T 2, we have

f∗(a) = a+ c, f∗(c) = c;

see Figure 1(a). The cycle c is homologically trivial, being realized by the bound-

ary of a 2-submanifold (torus without a disk) shown in Figure 1(a). However, for

the two submanifolds Ti = T 2 shown in Figure 1(b), we have [T1 ∩ T2] = c.

An algebraic model of H3 can be given as follows: consider the 3-dimensional

Heisenberg group over a ring R,

H(R) =


1 x z

0 1 y

0 0 1

 | x, y, z ∈ R
 ;

then the Heisenberg nilmanifold H3 = H(R)/H(Z) is the quotient of the real

Heisenberg group by the discrete Heisenberg subgroup. It is a compact orientable

connected 3-manifold with Nil geometry.

Definition 11 implies the cardinality of an isotropic system k ≤ b1(M), the

Betti number; thus each isotropic system is contained in a maximal isotropic

system.

The following theorem relies on the fact that homology classes z ∈ Hn−1(M)

can be realized by smooth closed orientable connected codimension-one subman-

ifolds.

Theorem 13. Let M be a smooth closed orientable connected manifold,

dimM ≥ 2, and D : H1(M ;Z)→ Hn−1(M) be the Poincaré duality map. Then:

(i) Let {Xi} be a (maximal) isotropic system. Then {D−1[Xi]} form a basis of

a (maximal) isotropic subgroup H ⊆ H1(M ;Z).

(ii) Let {xi} be a basis of a (maximal) isotropic subgroup H ⊆ H1(M ;Z). Then

{Dxi} can be realized by submanifolds Xi that form a (maximal) isotropic

system.

In particular,

• H(M ;Z) = {k | X1, . . . , Xk ⊂M is a maximal isotropic system};
• the isotropy index h(M ;Z) is the maximum cardinality of an isotropic system

of submanifolds of M .
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Proof. Consider an isotropic subgroup H ⊂ H1(M ;Z), rkH = k. Since

H1(M ;Z) is torsion-free, it has a basis, H = 〈u1, . . . , uk〉. The cup product

^ : H1(M ;Z)×H1(M ;Z)→ H2(M ;Z)
is dual to the homology classes intersection map

◦ : Hn−1(M)×Hn−1(M)→ Hn−2(M);
namely,

D(ui ^ uj) = Dui ◦Duj ,
where D is the Poincaré duality map.

Realize the cycles Dui ∈ Hn−1(M) by suitable submanifolds Xi ⊂M , Dui =

[Xi], choosing them to intersect transversely. Then

±[Xi ∩Xj ] = [Xi] ◦ [Xj ] = Dui ◦Duj = D(ui ^ uj),

where the sign depends on the choice of orientation in Xi and Xj . Since H

is isotropic, all ui ^ uj = 0; thus [Xi ∩ Xj ] = 0 for any i 6= j. Since ui
are independent, so are [Xi]. If H is maximal, then so is this system, because

expanding it would, by duality, expand H.

Similarly, given a (maximal) system of k such submanifolds Xi ⊂ M , the

group H=〈D−1[Xi]〉⊆H1(M ;Z) is a (maximal) isotropic subgroup, rkH=k. �

Examples 40 and 41 below show that the homological interpretation of the

non-intersection requirement 10 is important for Theorem 13: some manifolds

have fewer non-intersecting submanifolds, Xi ∩Xj = ∅, with the properties listed

in Definition 11, than homologically non-intersecting such submanifolds, [Xi ∩
Xj ] = 0. For discussion of systems with Xi ∩Xj = ∅, see Section 7.

3.3. Properties and examples. Recall that the Betti number bk(M ;R) =

rkHk(M ;R); by definition, bk(M) = bk(M ;Z). By the universal coefficient theo-

rem, if R is a field with charR = 0, then bk(M ;R) = bk(M). Since Hk(M ;R) =

Hk(M ;R) = 0 for k > dimM , the following statements apply to S1 and a point ∗.

Lemma 14. Let M be a smooth closed orientable manifold; R = Z or R be

a field. Then

1 ≤ h(M ;R) ≤ b1(M ;R), (11)

except that

h(M ;R) = 0 (12)

iff any of the following conditions holds:

• b1(M ;R) = 0, or

• b1(M ;R) = 1, charR = 2, and the cup product ^ 6≡ 0.



298 Irina Gelbukh

Theorem 33 below states that this lemma gives the only relation between

h(M ;R) and b1(M ;R).

Proof. By definition, we have h(M ;R) ≤ rkH1(M ;R). For Z, by Poincaré

duality, H1(M ;Z) ∼= Hn−1(M), so rkH1(M ;Z) = bn−1(M) = b1(M). For a

field F , H1(M ;F ) ∼= H1(M ;F ), so dimH1(M ;F ) = dimH1(M ;F ) = b1(M ;F ).

Since the cup product is skew-symmetric, (12) is given by Lemma 4. �

Example 15. Consider M = RP 3; it is orientable. Its cohomology ring is

H∗(RP 3;Z2) ∼=
Z2[α]

(α4)
,

where |α| = 1. Thus each Hi(RP 3;Z2) is a free Z2-module with generator αi,

i.e., Hi(RP 3;Z2) = Z2. We have bi(RP 3;Z2) = 1, and for α ∈ H1(RP 3;Z2) it

holds α ^ α 6= 0, i.e., h(RP 3;Z2) = 0.

Obviously, h(M ;R) = b1(M ;R) iff ^ ≡ 0. Since ker^ ⊆ H1(M ;R) is an

isotropic submodule, h(M ;R) ≥ dim ker^. There are, though, better estimates:

Proposition 16. Let M be a smooth closed orientable manifold and k =

dim ker^. For R = Z or R being a field, with the exception specified below, we

have:

(1) It holds

b1(M ;R) + k b2(M ;R)

b2(M ;R) + 1
≤ h(M ;R) ≤ b1(M ;R) b2(M ;R) + k

b2(M ;R) + 1
; (13)

in particular, if b2(M ;R) = 1, then

h(M ;R) =
1

2
(b1(M ;R) + k). (14)

(2) If ^ is surjective, then

h(M ;R) ≤ k +
1

2
+

√(
b1(M ;R)− k − 1

2

)2

− 2 b2(M ;R). (15)

As an exception, if 
charR = 2,

b1(M ;R) = 1,

k = 0,

(16)

then h(M ;R) = 0, and of (13)–(15), only the upper bound in (13) holds.

Proof. If h(M ;R) 6= 0, for a field this has been shown in [21]; for Z it

follows from Lemma 10.
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If h(M ;R) = 0, then by Lemma 14, either b1(M ;R) = 0 or (16) holds. In

the former case, (13)–(15) happen to hold; in (15), we have b2(M ;R) = 0. In the

latter case, (14) and the lower bound in (13) do not hold, while in (15), we have

b2(M ;R) = 1 and the square root does not exist. �

The exception is illustrated by Example 15. In fact, (14) and the lower

bound in (13) would not need an exception if we took the floor function of the

corresponding expressions, which in all other cases except (16) happen to be

integer anyway.

Example 17. For a closed orientable surface of genus g, (14) gives h(M2
g ;R) =

g; for n-torus, n ≥ 2, (15) gives h(Tn;R) = 1. Both cases do not fall under

exception (16), since b1(M2
g ) = 2g 6= 1 and b1(Tn;R) = n 6= 1.

Example 18. Thus, H(Tn;R) = {1}. Indeed, (6) gives

h(M ;R) = 1 iff H(M ;R) = {1}.

The following example shows a non-singleton H(M ;R):

Example 19. H(M2
2 × S1;Z) = {1, 2}. This is seen in Figure 2, but can also

be formally proved by Theorem 27 below.

� �

T1 

N 

z1 z2 

T2 

N 

Figure 2. Maximal systems of non-intersecting submanifolds of dif-

ferent cardinality: H(M2
2 × S1;Z) = {1, 2}. The double torus

M2
2 = T 2 # T 2, labeled by N , is shown as two horizontal squares,

sides of each one being pairwise identified, glued together by a re-

moved circle in the center; S1 is shown as vertical lines. The two

maximal systems of homologically non-intersecting, homologically in-

dependent submanifolds are {N}, a double torus, and {T1, T2}, two

tori zi × S1, z1 and z2 being two homologically independent cycles in

the M2
2 .
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4. Isotropy index of the connected sum of manifolds

For sets, we denote A+B = {a+ b | a ∈ A, b ∈ B}.

Lemma 20. Let Li, Vi, i = 1, 2, be finite-dimensional vector spaces over

a field F , and ϕi : Li × Li → Vi be bilinear skew-symmetric maps. Denote

L = L1 ⊕ L2, V = V1 ⊕ V2,

and let ϕ : L× L→ V be a bilinear skew-symmetric map such that

ϕ|Li×Li
= ϕi, ϕ|L1×L2

= 0;

i.e., ϕ is defined as component-wise sum of ϕi:

ϕ(x, y) = ϕ1(x1, y1)︸ ︷︷ ︸
∈V1

+ϕ2(x2, y2)︸ ︷︷ ︸
∈V2

, (17)

where xi, yi ∈ Li are projections. Then:

(1) A subspace H ⊆ L is maximal isotropic iff

H = H1 ⊕H2, (18)

where Hi ⊆ Li are maximal isotropic under ϕi.

(2) The set of dimensions of maximal isotropic subspaces

H(ϕ) = H(ϕ1) +H(ϕ2).

(3) The isotropy index

h(ϕ) = h(ϕ1) + h(ϕ2).

Note that these conclusions do not necessarily hold for isotropic subspaces

that are not maximal. For example, each 1-dimensional subspace 〈x〉, x ∈ L \
(L1 ∪ L2) is isotropic, but (18) does not hold for it.

Proof. By (17), if Hi ∈ Li are isotropic, then H = H1 ⊕H2 is isotropic.

(⇒) LetH ⊆ L be a maximal isotropic subspace. Consider x, y ∈ H. By (17),

ϕ(x1, y1) = −ϕ(x2, y2) ∈ V1 ∩ V2 = 0, i.e., both projections pi(H) ⊆ Li are

isotropic. Let Hi ⊇ pi(H) be maximal isotropic subspaces of Li. Then H ′ =

H1 ⊕H2 is isotropic, and since H ⊆ H ′ is maximal, H = H ′.

(⇐) Conversely, let Hi ⊆ Li be maximal isotropic subspaces; then H =

H1⊕H2 is isotropic. Consider x = x1 +x2 ∈ L\H, i.e., say, x1 /∈ H1. Since H1 is

maximal isotropic in L1, there exists y = y1 ∈ H1 ⊆ H such that ϕ(x1, y1) 6= 0.

By (17), ϕ(x, y) = ϕ(x1, y1) + 0 6= 0. Thus H is maximal. �
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Theorem 21. Let M1, M2 be connected closed orientable manifolds with

dimMi ≥ 2, and R be a field or R = Z. Then, for the connected sum M1 # M2:

(1) A submodule H ⊆ H1(M1 # M2;R) is maximal isotropic iff

H = H1 ⊕H2,

where Hi ⊆ H1(Mi;R) are maximal isotropic submodules.

(2) The set of ranks of maximal isotropic submodules

H(M1 # M2;R) = H(M1;R) +H(M2;R).

(3) The isotropy index of the connected sum

h(M1 # M2;R) = h(M1;R) + h(M2;R).

Proof. Let R be a field. Denote L=H1(M1 # M2;R) and Li =H1(Mi;R),

i = 1, 2. Since dimMi ≥ 2, the Mayer–Vietoris sequence gives L = L1 ⊕ L2.

The additive structure is given by the induced maps of the inclusions; the cup

product translates into component-wise product:

x ^ y = (x1 ^ y1) + (x2 ^ y2),

where x, y ∈ L and xi, yi ∈ Li are projections. Then, for fields, Lemma 20 gives

the result. Now for R = Z, the result follows from Lemma 7. �

Example 22. By Theorem 21 and given Example 18, or by (12) if g 6= 0, for

a closed orientable surface of genus g it holds

H(M2
g ;R) = H(#g

i=1 T
2;R) =

g∑
i=1

H(T 2;R) = {g}.

Example 23. Consider M = M2
2 × S1 from Example 19 with H(M ;Z) =

{1, 2}; see Figure 2. Then

H(M # M ;Z) = {2, 3, 4},

and h(M # M ;Z) = 4.

Example 24. Consider M = M2
a ×M2

b , surfaces of genus a and b, 1 ≤ a ≤ b.
Theorem 27 below gives H(M ;R) = {1, a, b}. Therefore,

H(M # M ;R) = {2, a+ 1, b+ 1, a+ b, 2 a, 2 b},

and h(M # M ;R) = 2 b.
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5. Isotropy index of the direct product of manifolds

Lemma 25. Let L be a vector space and x, y, u, v ∈ L; x, y 6= 0. Then

x⊗ v = u⊗ y implies u = ax, v = ay for some a.

Proof. Coordinate-wise, we have

xivj = uiyj (19)

for all i, j. For those i, j for which xi, yj 6= 0, this gives

ui
xi

=
vj
yj

= aij .

Since aij does not depend on i or j, all aij = a. We obtain ui = axi if xi 6= 0,

and vj = ayj if yj 6= 0. If xi = 0, (19) gives 0 = uiyj for all j, thus ui = 0, and

similarly, yj = 0 implies vj = 0. �

While in Lemma 20 we had ϕ|L1×L2
= 0, now consider imϕ|L1×L2

as large

as possible:

Lemma 26. Let Li, Vi, i = 1, 2, be finite-dimensional vector spaces over a

field F , and ϕi : Li × Li → Vi be bilinear skew-symmetric maps. Denote

L = L1 ⊕ L2, V = V1 ⊕ V2 ⊕ V3,

where V3 = L1 ⊗ L2, and let ϕ : L × L → V be a bilinear skew-symmetric map

such that

ϕ|Li×Li
= ϕi, ϕ|L1×L2

= ⊗;

i.e.,

ϕ(x, y) = ϕ1(x1, y1)︸ ︷︷ ︸
∈V1

+ϕ2(x2, y2)︸ ︷︷ ︸
∈V2

+x1 ⊗ y2 − y1 ⊗ x2︸ ︷︷ ︸
∈V3

, (20)

where xi, yi ∈ Li are projections. Then:

(1) A subspace H ⊆ L is isotropic iff

dimH = 1 or H = Hi,

where Hi ⊆ Li is isotropic under ϕi, for i = 1 or 2.
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(2) The set of dimensions of maximal isotropic subspaces

H(ϕ) = {1} ∪ H(ϕ1) ∪H(ϕ2),

except that H(ϕ) = H(ϕi) if h(ϕj) = 0, i.e., if either

• Lj = 0 or

• Lj = F , charF = 2, and ϕj 6≡ 0.

(3) The isotropy index

h(ϕ) = max{h(ϕ1), h(ϕ2)}.

Note that in contrast to Lemma 20, the first conclusion does not require H

to be maximal.

Proof. Let H be an isotropic subspace. We will show that if both projec-

tions pi(H) 6= 0, then dimH = 1. Consider x ∈ H such that both projections

xi 6= 0. Let y ∈ H. Since H is isotropic and the three components of (20) are

independent, we have

ϕ1(x1, y1) = ϕ2(x2, y2) = x1 ⊗ y2 − y1 ⊗ x2 = 0.

By Lemma 25, y ∈ 〈x〉. The conditions for h(ϕj) = 0 in item (2) are given by

Lemma 4. �

Theorem 27. Let M1, M2 be connected closed manifolds, and R be a field

or R = Z. Then for the direct product M1 ×M2:

(1) A submodule H ⊆ H1(M1 ×M2;R) is isotropic iff

rkH = 1 or H = Hi,

where Hi ⊆ H1(Mi;R) is isotropic for Mi, i = 1 or 2.

(2) The set of ranks of maximal isotropic submodules

H(M1 ×M2;R) = {1} ∪ H(M1;R) ∪H(M2;R),

except that H(M1 ×M2;R) = H(Mi;R) if h(Mj ;R) = 0, i.e., if either

• b1(Mj ;R) = 0, the Betti number, or

• b1(Mj ;R) = 1, charR = 2, and ^ 6≡ 0.

(3) The isotropy index of the direct product

h(M1 ×M2;R) = max{h(M1;R), h(M2;R)}.
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Proof. Let R be a field. Denote

Li = H1(Mi, R), i = 1, 2, L = H1(M1 ×M2, R),

Vi = H2(Mi, R), i = 1, 2, V = H2(M1 ×M2, R).

By the Künneth formula,

L = L1 ⊕ L2, V = V1 ⊕ V2 ⊕ V3,
where

V3 = L1 ⊗ L2.

By construction, Li ^ Li ⊆ Vi for i = 1, 2; L1 ^ L2 ⊆ V3, and (20) holds for the

cup-products in M1 ×M2 and Mi, respectively. Lemma 26 gives the result for

fields, and Lemma 7 for R = Z. �

Example 12 shows that in Theorem 27, the direct product cannot be replaced

by an arbitrary fiber bundle.

Example 28. By Lemma 14, h(S1;R) = 1, so, for a torus Tn = ×n
i=1 S

1, we

have h(Tn;R) = 1.

Example 29. By Lemma 14, h(Sn;R) = 0, n ≥ 2, and h(S1;R) = 1, so

h(Sn × S1;R) = 1.

Proposition 30. For any non-empty finite set S ⊂ Z∗ of non-negative in-

tegers, and for R = Z or R being a field, S = H(M ;R) for some smooth closed

orientable connected manifold M iff S = {0} or 0 /∈ S.

Proof. If S = {g}, then S = H(M2
g ;R), a surface of genus g; see Exam-

ple 22. Let now S = {s1, . . . , sN}, N ≥ 2. By the condition, m = minS ≥ 1.

Consider

M1 = M2
s1−m+1 × · · · ×M2

sN−m+1, dimM1 = 2N,

M2 = M2
m−1 × S2N−2, dimM2 = 2N.

By Theorems 21 and 27, we obtain H(M1 # M2;R) = S. �

Another application of Theorem 27 can be found in the study of the topology

of foliations defined by Morse forms. It is known that if the subgroup of Hn−1(M)

generated by the homology classes of all compact leaves of the foliation is maximal

isotropic, then the foliation has no minimal components [19]. This condition
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obviously holds true when the foliation has h(M ;Z) homologically independent

compact leaves. However, if M = M1 ×M2, in some cases Theorem 27 allows to

conclude that the foliation has no minimal components by considering only one

leaf:

Example 31. As has been mentioned in Example 19, H(M2
2 ×S1;Z) = {1, 2};

see Figure 2. Even though h(M2
2 × S1,Z) = 2, if a Morse form foliation has the

submanifold N = M2
2 as a leaf, then it has no minimal components. In con-

trast, nothing can be said about a form that has T1 = T 2 as a leaf, because the

system {T1} is not maximal.

Example 32. H(M2
a ×M2

b ;Z) = {1, a, b}, a, b ≥ 1. Now, consider a cycle z

that winds around the M1 = M2
a and also around the M2 = M2

b , that is, z =

z1 + z2, 0 6= zi ∈ H1(Mi,Z). If a Morse form foliation has a leaf dual to z, then

it has no minimal components.

6. Isotropy index and the first Betti number

By definition of the isotropy index,

h(M ;R) ≤ b1(M ;R);

for example:

h(S1;R) = 1, b1(S1;R) = 1;

h(M2
g ;R) = g, b1(M2

g ;R) = 2g;

h(Tn;R) = 1, b1(Tn;R) = n.

The only relation between h(M ;R), b1(M ;R), and R is given by Lemma 14;

in particular, any gap between h(M ;R) and b1(M ;R) is possible for a given R:

Theorem 33. Let h, b ∈ Z, and R be a field or R = Z. There exists a con-

nected smooth closed orientable manifold M with h(M ;R) = h and b1(M ;R) = b

iff any of the following conditions holds:

• 1 ≤ h ≤ b, or

• h = b = 0, or

• h = 0, b = 1, and charR = 2.

Proof. For h = b = 0, consider M = Sn. For h = 0 and b = 1 with

charR = 2, consider M = RP 3; see Example 15. Let now 1 ≤ h ≤ b. Choose
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mi ≥ 1 such that

h∑
i=1

mi = b. (21)

For large enough n such that n−mi ≥ 2 for all i, consider an n-manifold

M =
h

#
i=1

(
Tmi × Sn−mi

)
.

By Theorem 27, for each summand Mi = Tmi × Sn−mi , we have h(Mi;R) = 1,

while b1(Mi;R) = mi. Then by Theorem 21,

h(M ;R) =

h∑
i=1

h(Mi;R) =

h∑
i=1

1 = h,

b1(M ;R) =

h∑
i=1

b1(Mi, R) =

h∑
i=1

mi = b. �

Note that the construction used in the proof requires n = dimM ≥ 2 + d bhe,
the ceiling here being the smallest possible value for max{mi} under (21). This

condition is not restrictive when h = b, leading to n ≥ 3; it is not very restrictive

when b
2 ≤ h < b, leading to n ≥ 4, etc.; for b

k+1 ≤ h < b
k , k = 1, . . . , b − 1, we

need n ≥ k + 3. This requires high dimension when h� b.

For Z2, however, n = 3 is enough:

Proposition 34. For R = Z2, the manifold in Theorem 33 can be chosen

with any given dimM ≥ 3.

Proof. Let R = Z2 and dimM = 3. For h = b = 0, consider M3 = S3. Let

now b ≥ 1. Consider

M3 =

(
h

#
i=1

(
S1 × S2

))
#

(
b−h
#
i=1

RP 3

)
. (22)

Example 29 shows that h(S1 × S2;Z2) = 1, thus Theorem 21 implies

h(M3;Z2) =

h∑
i=1

h(S1 × S2;Z2) +

b−h∑
i=1

h(RP 3;Z2) =

h∑
i=1

1 +

b−h∑
i=1

0 = h,

b1(M3;Z2) =

h∑
i=1

b1(S1 × S2;Z2) +

h∑
i=1

b1(RP 3;Z2) =

h∑
i=1

1 +

b−h∑
i=1

1 = b.



Isotropy index for the connected sum. . . 307

This trivially generalizes to dim ≥ 5 as

Mn = M3 × Sn−3. (23)

Let now dimM = 4. For 1 ≤ h < b, we use (23) with one summand less

in (22), namely,

M3 =

(
h

#
i=1

(
S1 × S2

))
#

(
b−h−1

#
i=1

RP 3

)
.

For h = b, consider M4 = #h
i=1(S1 × S3).

Finally, for h = 0, b = 1, consider an Enriques surface X. Indeed,1 X =

K3/σ, where σ is an orientation-preserving fixed point-free involution; note that

a K3 surface is simply connected. Then H1(X;Z2) = Hom(π1(X),Z2) = Z2;

thus b1(X;Z2) = 1. For 0 6= x ∈ H1(X;Z), x ^ x is a reduction (mod 2) of

βx, where β : H1(X;Z2)→ H2(X;Z) is the Bockstein homomorphism. Suppose

x ^ x = 0, i.e., for some y ∈ H2(X;Z), we have βx = 2y with βx 6= 0 because

H1(X;Z) = 0. Since βx is 2-torsion, we obtain that 0 6= π∗y ∈ H2(K3;Z) is 4-

torsion, where π is the quotient map, while the latter group is torsion-free. Thus

h(X;Z) = 0. �

7. Isotropy index and the co-rank of the fundamental group

In this section, we give a lower bound on h(M ;R) stronger than 1 from (11).

Definition 35. The co-rank of the fundamental group of a smooth closed

connected manifold M is the maximum rank of a free quotient group of π1(M);

we denote it by b′1(M).

While h(M ;Z) is the maximum number of homologically non-intersecting

submanifolds [Xi ∩ Xj ] = 0 (Theorem 13), b′1(M) strengthens the condition to

Xi ∩Xj = ∅:

Theorem 36 ([16, Theorem 2.1]). The co-rank of the fundamental group

b′1(M) is the maximum number of non-intersecting homologically independent

smooth closed orientable connected codimension-one submanifolds Xi ⊂M :

Xi ∩Xj = ∅, i 6= j; i, j = 1, . . . , b′1(M).

1Example contributed by a colleague who preferred not to be named.
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Accordingly, properties of b′1(M) closely resemble those of h(M ;Z). Similarly

to (11)–(12), it holds [13]:

b′1(M) = 0 iff b1(M) = 0, (24)

and otherwise,

1 ≤ b′1(M) ≤ b1(M); (25)

in particular, h(M ;Z) = 0 iff b′1(M) = 0. Exactly as in Theorems 21 and 27,

for the connected sum, dimMi ≥ 2, except for non-orientable surfaces, and the

direct product it holds

b′1(M1 # M2) = b′1(M1) + b′1(M2), see [15],

b′1(M1 ×M2) = max{b′1(M1), b′1(M2)}, see [13].

Example 37. Non-surprisingly, for many manifolds b′1(M) = h(M ;R):

• for the closed orientable surface, b′1(M2
g ) = g [18] and h(M2

g ;R) = g [21]; see

Example 22.

• for n-torus, b′1(Tn) = 1 [8] and h(Tn;R) = 1 [21]; see Example 28.

• for manifolds with quasi-Kähler and 1-formal fundamental group, for exam-

ple, for compact Kähler manifolds, b′1(M) = h(M ;C) [6].

• for M = #h
i=1 (Tmi × Sn−mi) from Theorem 33, it holds b′1(M) = h(M ;R).

A non-trivial theorem from [13] implies that (24)–(25) represent the only

relation between b′1(M) and b1(M) for any given dimM . The last item in Exam-

ple 37 shows that the construction from Theorem 33 gives an elementary proof

of this fact for large enough dimM :

Theorem 38. Let b′, b ∈ Z. There exists a connected smooth closed ori-

entable manifold M with b′1(M) = b′ and b1(M) = b iff either

b′ = b = 0, see (24), or 1 ≤ b′ ≤ b, see (25).

Comparing Theorems 13 and 36 gives

b′1(M) ≤ h(M ;Z); (26)

together with (11) this gives a geometric proof of lower and upper bounds on the

isotropy index h(M ;Z), which have been obtained indirectly in [9]. We extend

this to fields of characteristic zero:
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Proposition 39. Let R = Z or R be a field, charR = 0. For the co-rank

of the fundamental group b′1(M), the isotropy index h(M ;R), and the first Betti

number b1(M), it holds

b′1(M) ≤ h(M ;R) ≤ b1(M). (27)

Proof. By Proposition 8, for a field F with charF = 0, we have h(M ;Z) ≤
h(M ;F ). Equations (26) and (11) complete the proof:

b′1(M) ≤ h(M ;Z) ≤ h(M ;F ) ≤ b1(M). �

Both bounds in (27) are exact (see Example 37 and Theorem 33); in par-

ticular, as we have shown, in many cases b′1(M) is a very strong lower bound

for h(M). However, both inequalities can also be strict:

Example 40. Consider the Heisenberg nilmanifold H3. Its fundamental group

π1(H3) is nilpotent, so b′1(H3) = 1. Since H1(H3,Z) = Z2 with zero cup-

product [17], we have

1 = b′1(H3) < h(H3;Z) = b1(H3) = 2.

Example 41. The Kodaira–Thurston nilmanifold M = H3 × S1 gives an

example of

b′1(M) < h(M ;Z) < b1(M).

Indeed, the fundamental group π1(M) is nilpotent, so b′1(M) = 1; by Theorem 27

and given Example 40, h(M ;Z) = 2; and, obviously, b1(M) = 3.
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