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Boolean-type retractable state-finite automata without outputs

By MÁRK FÜZESDI (Budapest)

Abstract. An automaton A is called a retractable automaton if, for every sub-

automaton B of A, there is at least one homomorphism of A onto B which leaves

the elements of B fixed (such homomorphism is called a retract homomorphism of A

onto B). We say that a retractable automaton A=(A,X,δ) is Boolean-type if there

exists a family {λB | B is a subautomaton of A} of retract homomorphisms λB of A

such that, for arbitrary subautomata B1 and B2 of A, the condition B1 ⊆ B2 implies

KerλB2 ⊆ KerλB1 . In this paper, we describe the Boolean-type retractable state-finite

automata without outputs.

1. Introduction and motivation

Let A = (A,X, δ) be an automaton without outputs. A subautomaton B

of A is called a retract subautomaton if there is a homomorphism of A onto B

which leaves the elements of B fixed. A homomorphism with this property is

called a retract homomorphism of A onto B.

In [5], A. Nagy introduced the notion of the retractable automaton. An au-

tomaton A (without outputs) is called a retractable automaton if every subau-

tomaton of A is a retract subautomaton. In [5, Theorem 3], he proved that if the

lattice L(A) of all congruences of an automaton A is complemented, then A is a

retractable automaton. He also defined the notion of the Boolean-type retractable

automaton. We say that a retractable automaton A=(A,X,δ) is Boolean-type if

there exists a family {λB | B is a subautomaton of A} of retract homomorphisms

λB of A such that, for arbitrary subautomata B1 and B2 of A, the condition

B1 ⊆ B2 implies KerλB2
⊆ KerλB1

. In [5, Theorem 5], he proved that if the
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lattice L(A) of all congruences of an automaton A is a Boolean algebra, then A

is a Boolean-type retractable automaton.

In [5], A. Nagy investigated the not necessarily state-finite Boolean-type

retractable automata containing traps (a state c is called a trap of an automaton

A=(A,X,δ) if δ(c, x) = c for every x ∈ X). He proved that every Boolean-

type retractable automaton containing traps has a homomorphic image which is

a Boolean-type retractable automaton containing exactly one trap. Moreover,

he gave a complete description of Boolean-type retractable automata containing

exactly one trap.

In [2], the authors defined the notion of the strongly retract extension of

automata. They proved that every state-finite Boolean-type retractable automa-

ton without outputs is a direct sum of Boolean-type retractable automata whose

principal factors form a tree. Moreover, a state-finite automaton A is a Boolean-

type retractable automaton, whose principal factors form a tree if and only if

it is a strongly retract extension of a strongly connected subautomaton of A

by a Boolean-type retractable automaton containing exactly one trap (which is

described in [5]).

In [5] and [2], some theorems give only necessary conditions for special re-

tractable or Boolean-type retractable state-finite automata without outputs. Pa-

per [6] is the first to provide a complete description of state-finite retractable

automata without outputs. Using the results of [6], we give a complete descrip-

tion of Boolean-type retractable state-finite automata without outputs.

2. Basic notations

By an automaton without outputs we mean a system (A,X, δ) where A andX

are non-empty sets, and δ maps from the Cartesian product A × X to A. We

will refer to A, X and δ as the state set, the input set and the transition function

of A, respectively. An automaton A is said to be state-finite, if the set A is

finite. In this paper by an automaton we always mean a state-finite automaton

without outputs. We note that if the state set is finite, then there are only finite-

many transformations of the state set generated by the elements of the input set.

An obvious consequence of this fact is that we get the same results of this paper

considering finite automata (without outputs) instead of state-finite automata

(without outputs). We will follow the definitions and notations of [6].

An automaton B=(B,X,δB) is called a subautomaton of an automaton A =

(A,X, δ) if B is a subset of A, and δB is the restriction of δ to B × X.
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A subautomaton B of an automaton A contained by every subautomaton of A

is called the kernel of A.

By a homomorphism of an automaton (A,X, δ) into an automaton (B,X, γ)

we mean a map φ of the set A into the set B such that φ(δ(a, x)) = γ(φ(a), x),

for all a ∈ A and x ∈ X.

A congruence of an automaton (A,X, δ) is an equivalence α of the set A

such that, for every states a, b ∈ A and every input sign x ∈ X, the assumption

(a, b) ∈ α implies (δ(a, x), δ(b, x)) ∈ α. A congruence class α containing a ∈ A will

be denoted by [a]α. The kernel of a homomorphism φ : (A,X, δ) 7→ (B,X, γ),

which is denoted by Kerφ, is defined as the following relation on A: Kerφ :=

{(a, b) ∈ A×A : φ(a) = φ(b)}. It is clear that Kerφ is a congruence on A.

We will denote the lattice of all congruences of an automaton A by L(A).

For every α, β ∈ L(A), let α ∧ β := α ∩ β and α ∨ β = (α ∪ β)T , where

(α ∪ β)T = (α ∪ β) ∪ ((α ∪ β) ◦ (α ∪ β)) ∪ · · ·

is the transitive closure of α ∪ β (here ◦ denotes the usual operation on the

semigroup of all binary relations on A, see [3].

Let B=(B,X,δB) be a subautomaton of an automaton A=(A,X, δ). The

relation

%B = {(b1, b2) ∈ A× A : b1 = b2 or b1, b2 ∈ B}

is a congruence on A. This congruence is called the Rees congruence on A defined

by B. The %B-classes of A are B itself and every one-element set {a} with

a ∈ A \B.

3. Retractable automata

Definition 1. A subautomaton B of an automaton A=(A,X, δ) is called

a retract subautomaton if there exists a homomorphism λB of A onto B which

leaves the elements of B fixed. An automaton is said to be retractable if its every

subautomaton is retract ([5]).

Theorem 1. A Rees-congruence %Bdefined by a subautomaton B=(B,X,δB)

of an automaton A=(A,X, δ) has a complement in the lattice (L(A),∨,∧) if and

only if B is a retract subautomaton.

Proof. Let A=(A,X, δ) be an automaton. Assume that B is a subautoma-

ton of A such that the Rees congruence %B has a complement in L(A). By the

proof of [5, Theorem 3], B is a retract subautomaton of A.
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Conversely, assume that B is a retract subautomaton of A. We will show that

the kernel KerλB of a retract homomorphism λB of A onto B is the complement

of the Rees congruence %B on A defined by B. We show this by proving that, for

every states a 6= b of A, we have (a, b) /∈ ηB ∧ %B and (a, b) ∈ ηB ∨ %B . Let a, b

be arbitrary elements in A with the condition a 6= b.

Case (a, b ∈ B). Then (a, b) /∈ ηB ⇒ (a, b) /∈ ηB∩%B = ηB∧%B . Furthermore,

a%Bb⇒ (a, b) ∈ %B ∪ ηB ⊆ %B ∨ ηB .

Case (a ∈ A \B, b ∈ B). In this case (a, b) /∈ %B , and so (a, b) /∈ ηB ∩ %B =

ηB ∧ %B .

• If λB(a) = λB(b), that is, (a, b) ∈ ηB , then (a, b) ∈ ηB ∪ %B ⊆ ηB ∨ %B .

• If λB(a) 6= λB(b), then there is a c ∈ B such that λB(a) = λB(c), that

is, (a, c) ∈ ηB ⊆ %B ∪ ηB . As (c, b) ∈ %B ⊆ %B ∪ ηB , we have (a, b) ∈
(%B ∪ ηB) ◦ (%B ∪ ηB) ⊆ %B ∨ ηB .

Case (a ∈ B, b ∈ A \B). This case is similar to the previous case.

Case (a, b ∈ A \ B). In this case (a, b) /∈ %B , and so (a, b) /∈ %B ∩ ηB =

%B ∧ ηB . Since λB maps A onto B and leaves the elements of B fixed, there are

elements c, d ∈ B such that λB(a) = c = λB(c) and λB(b) = d = λB(d). Then

(a, c) ∈ ηB ⊆ %B∪ηB , (c, d) ∈ %B ⊆ %B∪ηB , (d, b) ∈ ηB ⊆ %B∪ηB , and so (a, b) ∈
(%B ∪ ηB) ◦ (%B ∪ ηB) ◦ (%B ∪ ηB) ⊆ %B ∨ ηB . �

4. Boolean-type retractable automata

Definition 2. We say that a retractable automaton A = (A,X, δ) is Boolean-

type if there exists a family {λB | B is a subautomaton of A} of retract homo-

morphism λB of A such that, for arbitrary subautomata B1 and B2 of A, the

condition B1 ⊆ B2 implies KerλB2 ⊆ KerλB1 .

In the next, if we suppose that A is a Boolean-type retractable automaton

and C is a subautomaton of A, then λC will denote the retract homomorphism

of A onto C belonging to a fix family {λB | B is a subautomaton of A} of retract

homomorphisms λB of A satisfying the conditions of Definition 2.

In this section, we shall discuss Boolean-type retractable state-finite au-

tomata without outputs. We describe these automata using the concepts and

constructions of [6].
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Definition 3. We say that an automaton A = (A,X, δ) is a direct sum of

subautomata Ai = (Ai, X, δi) (i ∈ I) if Ai ∩ Aj = ∅ for every i, j ∈ I with i 6= j,

and, moreover, A = ∪
i∈I

Ai.

Theorem 2 ([6]). For a state-finite automaton A = (A,X, δ), the following

statements are equivalent:

(i) A is retractable.

(ii) A is the direct sum of finitely many state-finite retractable automata, which

contain kernels isomorphic to each other.

The next lemma will be used in the proof of Theorem 3 several times.

Lemma 1. If D ⊆ B are subautomata of a Boolean-type retractable au-

tomaton A such that λB(a) ∈ D for some a ∈ A, then λB(a) = λD(a).

Proof. Let c = λB(a). As c ∈ D ⊆ B, we have λB(c) = c. Thus a and c

are in the same KerλB-class of A. As every KerλB-class is in a KerλD-class, we

have that a and c are in the same KerλD-class, and so λD(a) = λD(c). As c ∈ D,

we have λD(c) = c, and so λD(a) = λD(c) = c = λB(a). �

Theorem 3. For a state-finite automaton A = (A,X, δ), the following state-

ments are equivalent:

(i) A is a Boolean-type retractable automaton.

(ii) A is the direct sum of finitely many state-finite Boolean-type retractable

automata containing kernels isomorphic to each other.

Proof. (i) 7→ (ii): Let A be a Boolean-type retractable state-finite automa-

ton. By Theorem 2, A is a direct sum of finitely many state-finite retractable

automata Ai (i ∈ I) containing kernels isomorphic to each other. We show that

Ai is a Boolean-type retractable automaton for every i ∈ I. If C is a subautoma-

ton of Ai (i ∈ I), then C is a subautomaton of A. Let λC,i be the restriction of the

retract homomorphism λC to Ai, where λC denotes the retract homomorphism

of A onto C, belonging to a fixed family {λB | B is a subautomaton of A} of re-

tract homomorphisms of A satisfying conditions of Definition 2. It is clear that

{λC,i| C is a subautomaton of Ai} is a family of retract homomorphisms of Ai

which satisfies conditions of Definition 2. Thus, Ai is a Boolean-type retractable

automaton for every i ∈ I.

(ii) 7→ (i): Assume that the automaton A is a direct sum of Boolean-type re-

tractable automata Ai (i ∈ I = {1, 2, . . . , n}) whose kernels Ti are isomorphic

to each other. Let (·)ϕi,i denote the identical mapping of Ti (i = 1, . . . , n). For



324 Márk Füzesdi

arbitrary i = 1, . . . , n−1, let (·)ϕi,i+1 denote the corresponding isomorphism of Ti
onto Ti+1. For arbitrary i, j ∈ I with i < j, let (·)Φi,j = ϕi,i+1 ◦ · · · ◦ ϕj−1,j . For

arbitrary i, j ∈ I with i > j, let (·)Φi,j = Φ−1
j,i = ϕ−1

i−1,i ◦ · · · ◦ ϕ
−1
j,j+1. It is clear

that Φi,j is an isomorphism of Ti onto Tj for every i, j ∈ I. Moreover, for every

i, j, k ∈ I, Φi,j ◦ Φj,k = Φi,k.

Let B be a subautomaton of A. Let B denote the set of all indexes i from

1, 2, . . . , n which satisfy Bi = B∩Ai 6= ∅. If i ∈ B, then Ti ⊆ Bi. Let iB = minB.

We give a retract homomorphism ΛB of A onto B. If i ∈ B, then let ΛB(a) =

λBi
(a) for every a ∈ Ai. If i ∈ I \ B (that is, Bi = ∅), then, for every a ∈ Ai,

let ΛB(a) = (λTi
(a))Φi,iB . It is a matter of checking to see that ΛB is a retract

homomorphism of A onto B.

We show that the set {ΛB | B is a subautomaton of A} satisfies the con-

ditions of Definition 2. Let D ⊆ B be arbitrary subautomata of A. We note

that D ⊆ B and iB ≤ iD. Assume (a, b) ∈ Ker ΛB for some a, b ∈ A (with

a ∈ Ai, b ∈ Aj). Then

ΛB(a) = ΛB(b).

Case 1. i ∈ D. In this case iD ≤ i. We have two subcases. If j ∈ B, then

λBi(a) = ΛB(a) = ΛB(b) = λBi(b),

and so j = i. From this, it follows that

λDi(a) = λDi(b),

and so

ΛD(a) = λDi
(a) = λDi

(b) = ΛD(b).

If j ∈ I \ B, then

λBi
(a) = ΛB(a) = ΛB(b) = (λTj

(b))Φj,iB ∈ TiB ,

and so i = iB ≤ iD. This and the above iD ≤ i together imply i = iB = iD.

Then, by Lemma 1,

ΛD(a) = λDi
(a) = λBi

(a).

As

ΛD(b) = (λTj (b))Φj,iD ,

we have

ΛD(a) = λBi
(a) = (λTj

(b))Φj,iB = (λTj
(b))Φj,iD = ΛD(b).
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Case 2. i /∈ D, but i ∈ B. If j ∈ B, then

λBi
(a) = ΛB(a) = ΛB(b) = λBj

(b),

and so j = i. Then ΛD(a) = ΛD(b) (see the first subcase of Case 1). If j /∈ B,

then

λBi(a) = ΛB(a) = ΛB(b) = (λTj (b))Φj,iB ,

and so i = iB . Thus, λBi(a) ∈ Ti, and so (by Lemma 1)

λBi
(a) = λTi

(a).

If iD = iB(= i), then Ti ⊆ Di ⊆ Bi, and so (by Lemma 1) λBi(a) = λDi(a) =

λTi(a). Thus,

ΛD(a) = λDi
(a) = λBi

(a) = (λTj
(b))Φj,iB = (λTj

(b))Φj,iD = ΛD(b).

If iD > iB(= i), then Ai ∩D = ∅, and so

ΛD(a) = (λTi
(a))Φi,iD ,

and

ΛD(b) = (λTj (b))Φj,iD .

As

λTi
(a) = λBi

(a) = (λTj
(b))Φj,iB ,

we have

ΛD(b) = (λTj (b))Φj,iD = (λTj (b))(Φj,iB ◦ ΦiB ,iD ) = ((λTj (b))Φj,iB )ΦiB ,iD

= (λTi
(a))ΦiB ,iD = (λTi

(a))Φi,iD = ΛD(a).

Case 3. i /∈ B. If j ∈ B, then we can prove (as in the second subcases of

Case 1 and Case 2) that ΛD(a) = ΛD(b). Consider the case when j /∈ B. Then

(λTi
(a))Φi,iB = ΛB(a) = ΛB(b) = (λTj

(b))Φj,iB .

Hence,

ΛD(a) = (λTi
(a))Φi,iD = (λTi

(a))(Φi,iB ◦ ΦiB ,iD ) = ((λTi
(a))Φi,iB )ΦiB ,iD

= ((λTj
(b))Φj,iB )ΦiB ,iD =(λTj

(b))(Φj,iB ◦ ΦiB ,iD )=(λTj
(b))Φj,iD =ΛD(b).

In all cases, we have that ΛB(a) = ΛB(b) implies ΛD(a) = ΛD(b) for every

a, b ∈ A. Consequently,

Ker ΛB ⊆ Ker ΛD.

Hence, A is a Boolean-type retractable automaton. �
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By Theorem 3, we can focus our attention on a Boolean-type retractable

automaton containing a kernel. In our investigation two notions will play an im-

portant role. These notions are the dilation of automata and the semi-connected

automata.

Definition 4. Let B be an arbitrary subautomaton of an automaton A =

(A,X, δ). We say that A is a dilation of B if there exists a mapping φdil(·) of A

onto B that leaves the elements of B fixed, and fulfils δ(a, x) = δB(φdil(a), x) for

all a ∈ A and x ∈ X ([5]).

If a is an arbitrary state of an automaton A, then let R(a) denote the subau-

tomaton generated by the element a (the smallest subautomaton containing a).

It is easy to see that

R(a) = {δ(a, x) : x ∈ X∗},

where X∗ is the free monoid over X. Let us define the following relation:

R := {(a,b) ∈ A×A : R(a) = R(b)}.

It is evident that R is an equivalence relation on A. The R class containing

a particular a element is denoted by Ra. The set R(a) \ Ra is denoted by R[a].

It is clear that R[a] is either an empty set or R[a] a subautomaton of A. The

factor automaton R{a} = R(a)/ρR[a] is called a principal factor of A. If R[a] is

an empty set, then consider R{a} as R(a) ([6]).

An A automaton is said to be strongly connected if, for any a, b ∈ A, there

exists a word p ∈ X+ such that δ(a, p) = b; (X+ is the free semigroup over X).

Remark. For a word p = x1x2 . . . xn and an element a, the transition function

is defined as the following:

δ(a, p) = δ (. . . δ(δ(a, x1), x2) . . . , xn) .

An automaton is called strongly trap-connected if it contains exactly one trap,

and, for every a ∈ A \ {trap} and b ∈ A, there is a word p ∈ X+ such that

δ(a, p) = b.

An automaton is said to be semi-connected if its every principal factor is

either strongly connected or strongly trap-connected ([6]).

Theorem 4 ([6]). A state-finite automaton without outputs is a retractable

automaton if and only if it is a dilation of a semi-connected retractable automaton.

The next theorem is the extension of Theorem 4 to the Boolean-type re-

tractable case.
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Theorem 5. A state-finite automaton without outputs is a Boolean-type

retractable automaton if and only if it is a dilation of a semi-connected Boolean-

type retractable automaton.

Proof. Let A be a Boolean-type retractable state-finite automaton without

outputs. Then, by Theorem 4, A is a dilation of the retractable semi-connected

automaton B. For a subautomaton C of B, let λ′C denote the restriction of λC
to B. It is easy to see that B is a Boolean-type retractable automaton with the

family {λ′C | C is a subautomaton of B}.
Conversely, let the automaton A = (A,X, δ) be a dilation of the (sub)autom-

aton B = (B,X, δB). Let φdil(·) denote the corresponding dilation of A onto B.

Assume that B is Boolean-type retractable (with a fixed family FB = {λC | C is a

subautomaton of B} of retract homomorphisms of B). Let C be a subautomaton

of A. For every c ∈ C and x ∈ X, C 3 δ(c, x) = δ(φdil(c), x) ∈ B. Thus, C ∩B 6=
∅. Define the mapping ΛC of A onto C as follows (see the proof of [6, Theorem 5]):

if a ∈ C, then let ΛC(a) = a. If a /∈ C, then let ΛC(a) = λC∩B(φdil(a)),

where λC∩B is the element of FB corresponding to the subautomaton C ∩ B

of B. By the proof of [6, Theorem 5], ΛC is a retract homomorphism of A

onto C. We show that the family {ΛC | C is a subautomaton of A} satisfies the

conditions of Definition 2. Let C1 ⊆ C2 be arbitrary subautomata of A. As B is

a Boolean-type retractable automaton, we have KerλC2∩B ⊆ KerλC1∩B . Assume

(a, b) ∈ Ker ΛC2
for some a, b ∈ A with a 6= b. Then ΛC2

(a) = ΛC2
(b), and so

a, b /∈ C2 or a ∈ C2, b /∈ C2 or a /∈ C2, b ∈ C2.

If a, b /∈ C2, then

λC2∩B(φdil(a)) = ΛC2
(a) = ΛC2

(b) = λC2∩B(φdil(b)),

and so

(φdil(a), φdil(b)) ∈ KerλC2∩B ⊆ KerλC1∩B ,

from which it follows that

ΛC1
(a) = λC1∩B(φdil(a)) = λC1∩B(φdil(b)) = ΛC1

(b),

because a, b /∈ C1. Thus, (a, b) ∈ Ker ΛC1
.

If a ∈ C2, b /∈ C2, then λC2
(a) = a ∈ C2, and

a = ΛC2
(a) = ΛC2

(b) = λC2∩B(φdil(b)) ∈ B ∩ C2.

Thus,

λC2∩B(a) = a = λC2∩B(φdil(b)),
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and so (a, φdil(b)) ∈ KerλC2∩B . Hence, (a, φdil(b)) ∈ KerλC1∩B , that is,

λC1∩B(a) = λC1∩B(φdil(b)) = ΛC1(b).

If a ∈ C1, then λC1∩B(a) = a = ΛC1(a), and so

ΛC1(a) = ΛC1(b).

If a /∈ C1, then

ΛC1(a) = λC1∩B(φdil(a)) = λC1∩B(a) = ΛC1(b).

In both subcases (a, b) ∈ Ker ΛC1 .

Similar to the previous case, the assumption a /∈ C2, b ∈ C2 implies (a, b) ∈
Ker ΛC1 . In all three cases we have (a, b) ∈ Ker ΛC1 . Hence, Ker ΛC2 ⊆ Ker ΛC1 .

Thus, A is a Boolean-type retractable automaton. �

By Theorem 5 and Theorem 3, we can concentrate our attention on semi-

connected automata containing kernels.

Definition 5. Let (T,≤) be a partially ordered set, in which every two element

subset has a lower bound, and every non-empty subset of T having an upper bound

contains a maximal element. Consider the operation on T which maps a couple

(t1, t2) ∈ T × T to the (unique) greatest upper bound of the set {t1, t2}. T is a

semilattice under this operation. This semilattice is called a tree. It is clear that

every finite tree has a least element ([7]).

If a non-trivial state-finite automaton A contains exactly one trap a0, then A0

will denote the set A \ a0. If A is a trivial automaton, then let A0 = A. On the

set A0×X we consider a partial (transition) function δ0 which is defined only on

couples (a, x) for which δ(a, x) ∈ A0; in this case, δ0(a, x) = δ(a, x). We shall say

that (A0,X,δ0) is the partial automaton derived from the automaton A.

If A0 and B0 are partial automata, then a mapping φ of A0 into B0 is called

a partial homomorphism of A0 into B0 if, for every a ∈ A0 and x ∈ X, the

condition δA(a, x) ∈ A0 implies δB(φ(a), x) ∈ B0 and δB(φ(a), x) = φ(δ(a, x)).

Construction ([6]). Let (T,≤) be a finite tree with the least element i0.

Let i � j (i, j ∈ T ) denote the fact that i ≥ j, and, for all k ∈ T , the condition

i ≥ k ≥ j implies i = k or j = k. Let Ai = (Ai, X, δi), i ∈ T be a family of

pairwise disjoint automata satisfying the following conditions:

(i) Ai0 is strongly connected, and Ai is strongly trap-connected for every i ∈
T, i 6= i0.
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(ii) Let φi,i denote the identical mapping of Ai. Assume that, for every i, j ∈
T, i � j, there exists a homomorphism φi,j which maps A0

i into A0
j such that

(iii) for every i � j there exist elements a ∈ A0
i and x ∈ X such that δi(a, x) /∈ A0

i ,

δj(φi,j(a), x) ∈ A0
j .

For arbitrary elements i, j ∈ T with i ≥ j, we define a partial homomorphism

Φi,j(·) of A0
i into A0

j as follows: Φi,i = φi,i, and, if i > j such that i � k1 �
. . . kn � j, then let

Φi,j = φkn,j ◦ φkn−1,kn ◦ · · · ◦ φk1,k2 ◦ φi,k1 .

(We note that if i ≥ j ≥ k are arbitrary elements of T , then Φi,k = Φj,k ◦ Φi,j .)

Let A = ∪
i∈T

A0
i . Define a transition function δ′ : A × X 7→ A as follows.

If a ∈ A0
i and x ∈ X, then let

δ′(a, x) = δi′[a,x](Φi,i′[a,x](a), x),

where i′[a, x] denotes the greatest element of the set {j ∈ T : δj(Φi,j(a), x) ∈ A0
j}.

It is clear that A = (A,X, δ′) is an automaton which will be denoted by (Ai, X, δi;

φi,j , T ).

Theorem 6 ([6]). A state-finite automaton without outputs is a semi-

connected retractable automaton containing a kernel if and only if it is isomorphic

to an automaton (Ai, X, δi;φi,j , T ) defined in the Construction.

Remark 1. By the proof of [6, Theorem 7], if R is a subautomaton of an

automaton (Ai, X, δi;φi,j , T ) constructed as above, then there is an ideal Γ ⊆ T

such that R = ∪
j∈Γ

A0
j . As T is a tree,

π : i 7→ max{γ ∈ Γ : γ ≤ i}

is a well-defined mapping of T onto Γ, which leaves the elements of Γ fixed. By the

proof of [6, Theorem 7], λR defined by λR(a) = Φi,π(i)(a) (a ∈ A0
i ) is a retract

homomorphism of A onto R. This fact will be used in the proof of the next

Theorem.

Theorem 7. A state-finite automaton without outputs is a semi-connected

Boolean-type retractable automaton containing a kernel if and only if it is iso-

morphic to an automaton (Ai, X, δi;φi,j , T ) defined in the Construction.
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Proof. Let A be a state-finite automaton without outputs which contains

a kernel. Assume that A is also semi-connected and Boolean-type retractable.

Then, by Theorem 6, A is isomorphic to an automaton A=(Ai, X, δi;φi,j , T )

which is defined in the Construction.

The main part of the proof is to show that every automaton A=(Ai, X, δi;

φi,j , T ) defined in the Construction is Boolean-type retractable. According to

Theorem 6, the automaton A=(Ai, X, δi;φi,j , T ) is retractable. Let B be a sub-

automaton of A. By Remark 1, there is an ideal ΓB ⊆ T such that B = ∪i∈ΓB
A0
i .

Let πB(·) be the mapping of T into itself, defined by πB : i 7→ max{γ ∈ ΓB ; γ ≤ i}.
For an element a ∈ A0

i (i ∈ T ), let λB(a) = Φi,πB(i)(a). Using also Re-

mark 1, it is easy to see that λB is a retract homomorphism of A onto B.

Let B1 and B2 be arbitrary subautomata of B1 ⊆ B2 resp. We will show that

KerλB2
⊆ KerλB1

. Assume λB2
(a) = λB2

(b), for some a ∈ A0
i and b ∈ A0

j . Then

Φi,πB2
(i)(a) = Φj,πB2

(j)(b), from which it follows that πB2
(i) = πB2

(j), and so

πB1
(i) = πB1

(j) because B1 ⊆ B2. Thus,

λB1
(a) = Φi,πB1

(i)(a) = (ΦπB2
(i),πB1

(i) ◦ Φi,πB2
(i))(a) = ΦπB2

(i),πB1
(i)(λB2

(a))

= ΦπB2
(i),πB1

(i)(λB2(b)) = (ΦπB2
(i),πB1

(i) ◦ Φj,πB2
(j))(b)

= (ΦπB2
(i),πB1

(i) ◦ Φj,πB2
(i))(a) = Φj,πB1

(j)(b) = λB1
(b).

Consequently, KerλB2 ⊆ Ker ΛB1 . Hence, A=(Ai, X, δi;φi,j , T ) is a Boolean-type

retractable automaton with the family {λB | B is a subautomaton of A}. �
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