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On distance functions induced by Finsler metrics
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Abstract. In this paper, we find the necessary and sufficient condition under which

a distance function is induced by a Finsler metric. Then, we study some analytical

properties of distance functions induced by Finsler metrics. Projectively flat Finsler

metrics on a convex domain in Rn are regular solutions to Hilbert’s Fourth Problem.

We find necessary and sufficient condition for a Finsler metric to be projectively flat

through its induced distance function.

1. Introduction

One of the important problems in Finsler geometry is to find interesting

properties of the distance function induced by a Finsler metric. Let %F be the

distance function induced by a Finsler metric F on a manifold M . Then (M,%F )

is a metric space if F is absolutely homogeneous, and it is a quasi-metric space if F

is homogeneous. Quasi-metric spaces often occur in the investigations of metriz-

ability of topological spaces [9], [11], [12]. According to the Busemann–Mayer

relation, there is a one-one relation between Finsler spaces (M,F ) and (quasi-)

metric spaces (M,%F ).

In [14], Tamássy shows that an arbitrary distance function % is not necessar-

ily induced by a Finsler metric F , and then it needs not to be equal to %F . This

means that the family of quasi-metric spaces {(M,%)} is wider than {(M,F )}.
Then he gives a necessary and sufficient condition for a quasi-metric % to be equal
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to %F , i.e., a (quasi-)metric space (M,%) to be equivalent (with respect to the

distance) with a Finsler space (M,F ).

In [5], Burago–Burago–Ivanov study the mentioned problem in the case

that one consider a Finsler metric as a length structure. Loosely speaking, their

analytical approach concludes that “a metric structure coincides with a length

structure (for example, Finsler metric) if one can travel between any two points

in the metric space in a way that two sides of triangle inequality get arbitrary

close enough. For more details, see [5, Theorem 2.4.16].

In this paper, we provide a simple criterion to derive significant properties of

the quasi-metric induced by a Finsler metric (Theorem 3.2). It is based on a simple

fact about geodesics: “a distance function increases at its highest possible rate,

along a geodesic”. First, we prove the mentioned fact (Proposition 3.1), and then

provide our criterion by means of so-called “parallelism property”, introduced

in [14, Propositions 3.1 and 3.2]. This not only gives a better understanding

on the relation between Finsler spaces and quasi-metric spaces, but also obtains

a suitable geometrical point of view about the geodesics that have been stated

before. Indeed, it provides a new presentation for a geodesic without any ODE

(though still footmark of derivation is obvious). Also, we find a kind of duality

results that can be applied if one needs to find Finsler metric associated with a

distance function (see Subsection 3.1).

A Finsler metric is said to be locally projectively flat if at any point there is

a local coordinate system in which the geodesics are straight lines as point sets.

The origin of the problem of projectively flat Finsler metrics is formulated in

Hilbert’s Fourth Problem that asked to determine the metrics on an open subset

in Rn, whose geodesics are straight lines [6]. Let (M,F ) be an n-dimensional

Finsler manifold, and %F be the distance induced by F . Suppose that p, q ∈ M
such that q has a length minimizing geodesic to p. In Section 4, we show that

the rank of the matrix
[
%F (y, x)

]
yjxi is equal to n − 1 (Lemma 4.1). Using this

fact, we find a necessary and sufficient condition for the quasi-metric induced by

a Finsler metric under which the Finsler metric is projectively flat (Theorem 4.2).

2. Preliminaries

Let % : A × A −→ R be a real function, where A is a nonempty set. Then

% is called quasi-metric if it satisfies the following conditions:

(i) %(a, b) ≥ 0, ∀a, b ∈ A;

(ii) %(a, b) = 0 if and only if a = b;
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(iii) %(a, b) + %(b, c) ≥ %(a, c), ∀a, b, c ∈ A.

See [7], [11], [12] and [14].

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈M , by TM = ∪x∈MTxM the tangent bundle ofM , and by TM0 = TM\{0}
the slit tangent bundle. A function F : TM −→ [0,+∞) is called a Finsler metric

if it satisfies the following conditions: (i) F is C∞ on TM0, and is continuous

on TM ; (ii) F (x, λy) = λF (x, y), ∀λ > 0; (iii) gij is a positive definite matrix,

where

gij =
1

2

∂2F (x0, y)2

∂yi∂yj
,

and y = yi ∂
∂xi is an arbitrary chart containing x0.

In [14], Tamássy introduces the notion of “parallelism property” for an arbi-

trary curve. He proves the following result which simplifies parallelism property,

and we explicitly state it here for our further considerations.

Proposition 2.1. Let g : [a, b] −→M be a C∞ curve, and % a quasi-metric

on a manifold M . Then g satisfies parallelism property if and only if

∂I

∂t

(
a, τ
)

=
∂I

∂t

(
s, τ
)

=
∂I+

∂t

(
τ, τ
)

(∀ a ≤ s < τ < b),

where

I(s, t) := %
(
g(s), g(t)

)
,

∂I+

∂t

(
τ, τ
)

:= lim
t→τ+

∂I

∂t

(
τ, t
)
.

Proof. See the definition of parallelism property in [14, page 489]. �

In [14], it is shown that a quasi-metric induced by a Finsler metric has the

following properties:

(a) %(p0, q) is continuous at p0 = q;

(b) %(p0, q) is C∞ on a slit open domain containing p0;

(c) for every smooth curve c, the following limit exists:

F%
(
p0, ċ(0)

)
= lim
t→0+

d%
(
p0, c(t)

)
dt

, (1)

where c(0) = p0. By the nature of directional derivative, it is easy to see that

the above definition is meaningful. Also F%(p0, y) is continuous at y = 0, and

F%(p0, y) is C∞ when y 6= 0.

(d) The function F% defined by (1) is a Finsler metric.

If % does not satisfy one of the above conditions, then it is not obtained from

a Finsler metric. In the rest of this article, we suppose that every quasi-metric

satisfies the above properties.
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3. Finslerian geodesics

Here, we state some results which are our special favourites because they

construct our viewpoint to the problem of the equality of Finsler metrics and

quasi-metrics. First, we give some new definitions.

Definition 3.1. Let A ⊆ Rn be a nonempty set. For an arbitrary positive

real number c, let us define

KM
c (A) :=

{
Λ ∈ (Rn)∗ | sup

a∈A
Λ(a) ≤ c

}
, IMc (A) :=

{
Λ ∈ (Rn)∗ | sup

a∈A
Λ(a) = c

}
.

Since Rn = (Rn)∗, it follows that

KM
c (A) =

{
x ∈ Rn | sup

a∈A
(x · a) ≤ c

}
, IMc (A) =

{
x ∈ Rn | sup

a∈A
(x · a) = c

}
,

where “ · ” denotes the ordinary inner product on Rn.

A supporting hyperplane of a set A in Euclidean space Rn is a hyperplane

that has the following two properties: (i) A is entirely contained in one of the two

closed half-spaces bounded by the hyperplane; (ii) A has at least one boundary-

point on the hyperplane.

Let us put

Rn0 := Rn − {0}, (Rn)∗0 := (Rn)∗ − {0}, (Rn)∗∗0 := (Rn)∗∗ − {0}.

Suppose that co(A) denotes the convex hull of the set of A. Then we have the

following.

Lemma 3.1. Let f : Rn → R be a smooth map with ∇f 6= 0 on Rn0 , and

A = f−1(b) ⊆ Rn0 be a nonempty compact set. Suppose that co(A) is a strictly

convex set containing 0 and ∂
(
co(A)

)
= A. Then, for any c > 0, the following

hold:

(i) For any functional Λ ∈ (Rn)∗0, there is a unique x0 ∈ co(A) such that Λ(x0) =

supa∈co(A) Λ(a) > 0 and x0 ∈ A.

(ii) For each y ∈ A, there is a unique supporting hyperplane of co(A) such as L

which crosses y, and ∇f(y) is a normal vector of L.

(iii) If Λ1,Λ2 ∈ (Rn)∗0 are not collinear, then they take their maximum on co(A)

at different points.

(iv) Let Λ =
∑r
i=1 λiΛi be a convex combination of mutually different elements

of IMc
(
co(A)

)
such that {λi}1≤i≤r 6= {0, 1}. Then the following holds:

sup
a∈co(A)

Λ(a) < c.
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(v) KM
c

(
co(A)

)
is a nonempty compact strictly convex set, and the following

holds:

∂KM
c

(
co(A)

)
= IMc

(
co(A)

)
.

(vi) Let Λ ∈ (Rn)∗ be the unique linear functional, which satisfies the following:

ker(Λ) = ∇f(y)⊥, Λ(y) = c,

for an y ∈ A. Then

sup
a∈co(A)

Λ(a) = c.

(vii) Let a1, a2 ∈ Rn0 = (Rn)∗∗0 be not collinear. Then they take their maximum

on KM
c

(
co(A)

)
at different points of IMc

(
co(A)

)
.

(viii) The following hold:

KM
c

(
co(A)

)
= KM

c

(
A
)
, IMc

(
co(A)

)
= IMc

(
A
)
.

Also, the following map is a bijection from IMc
(
A
)

to A:{
max : IMc

(
A
)
−→ A,

Λ 7−→ z,

where Λ takes its maximum over co(A) at z, i.e., Λ(z) = c.

Proof. (i) Let Λ denote the set of all non-zero elements of (Rn)∗. Suppose

that z ∈ Rn is its dual (i.e., Λ(a) = z ·a,∀a ∈ Rn). Since ∂
(
co(A)

)
= A, it follows

that co(A) − A = int
(
co(A)

)
contains 0. This means that there is a positively

scaled multiple of z in co(A) such that

sup
a∈co(A)

Λ(a) ≥ Λ(λz) > 0, (for an λ > 0).

Compactness of A implies that co(A) is a compact set. This fact guarantees the

existence of x0 with the following property

Λ(x0) = sup
a∈co(A)

Λ(a). (2)

Now, we are going to prove the uniqueness of x0. On the contrary, assume

that x1 is another point in co(A) that satisfies (2). By assumption, co(A) is a

strictly convex set, and then there are elements in int
(
co(A)

)
where Λ reaches its

maximum value on co(A). Let x2 be such an element. Obviously, for an ε > 0,
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(1 + ε)x2 remains in co(A), which is not possible. This contradiction implies the

uniqueness of x0.

(ii) The supporting hyperplane theorem states that if S is a convex set in the

topological vector space X = Rn, and x0 is a point on the boundary of S, then

there exists a supporting hyperplane containing x0 [4]. Since co(A) is a convex

set, the mentioned theorem implies the existence of a supporting hyperplane of

co(A) such as L which crosses y.

Let L′ be an arbitrary supporting hyperplane of co(A) that crosses y. If V ′

is a normal vector of L′, then we have

L′ =
{
z ∈ Rn | V ′ · z = α

}
for a real number α. Since L′ is a supporting hyperplane of co(A), then, without

loss of generality (i.e., replacing V ′ with −V ′ if necessary) one can assume that

the following holds:

V ′ · z ≤ α, ∀z ∈ co(A).

Let γ : (c, d)→ A be an arbitrary smooth curve on A such that γ(t0) = y. Then,

we get

V ′ · γ(t) ≤ α and V ′ · γ(t0) = α.

Let us put ψ(t) := V ′ · γ(t). Then ψ′(t0) = 0. In this case, we have

V ′ · γ̇(t0) = 0,

where γ̇(t0) is an arbitrary vector in TyA. By [3, Theorem 5.5], which is known

as preimage theorem, A is a regular submanifold of Rn of dimension n− 1. This

means that TyA is a subspace of TyRn = Rn. It follows that

L′ = y + V ′⊥ = TyA.

Since A = f−1(constant) implies that ∇f(y) has the same property as V ′, it

follows that

L′ = y +∇f(y)⊥ = TyA.

This shows that ∇f(y) is a normal vector of every supporting hyperplane of co(A)

at y, and then TyA is the only possible supporting hyperplane of co(A) at y.

(iii) Let Λ1,Λ2 ∈ (Rn)∗0 be not collinear. We are going to show that they take

their maximum on co(A) at different points. On the contrary, suppose that there

is a z ∈ co(A) where both Λ1 and Λ2 take their maximum values on co(A). Let

z1 and z2 be duals of Λ1 and Λ2, respectively. It is easy to see that both of z1 and



On distance functions induced by Finsler metrics 339

z2 cannot be collinear with ∇f(z). Without loss of generality, suppose that z1
is not collinear with ∇f(z). Part (ii) shows that z + ker(Λ1) is not a supporting

hyperplane of co(A). Thus, co(A) has members in both sides of z + ker(Λ1).

This implies that there is an element in co(A) at which Λ1 has greater value than

Λ1(z). This is a contradiction. Then, we get the proof.

(iv) Let Λ =
∑r
i=1 λiΛi be a convex combination of mutually different ele-

ments of IMc
(
co(A)

)
such that {λi}1≤i≤r 6= {0, 1}. We are going to show that

supa∈co(A) Λ(a) < c holds. On the contrary, suppose that Λ satisfies

sup
a∈co(A)

Λ(a) ≥ c.

Then, for a unique z ∈ A, we get

r∑
i=1

λiΛi(z) = Λ(z) ≥ c,

where Λi ∈ IMc
(
co(A)

)
, (1 ≤ i ≤ r). Then Λi(z) ≤ c. This implies Λi(z) = c.

However, Λi, 1 ≤ i ≤ r are different functionals in IMc
(
co(A)

)
, not collinear and

necessarily non-zero. These functionals take their maximums on co(A) at the

same point, which is not possible.

(v) By the Cauchy–Schwartz inequality, the functional norms and Euclidean

norms coincide on Rn. More precisely, ‖Λ‖ = ‖z‖, where z is the dual of Λ.

Let x ∈ co(A) and Λ1, Λ2 ∈ (Rn)∗. Then, we have

|Λ1(x)− Λ2(x)| ≤ ‖Λ1 − Λ2‖ ×M,

where M := supa∈co(A) ‖a‖. Without loss of generality, one can suppose that

Λ1(z1) = sup
a∈co(A)

Λ1(a) ≥ sup
a∈co(A)

Λ2(a) = Λ2(z2), z1, z2 ∈ co(A).

It follows that∣∣ sup
a∈co(A)

Λ1(a)− sup
a∈co(A)

Λ2(a)
∣∣ ≤ Λ1(z1)− Λ2(z2) ≤ Λ1(z1)− Λ2(z1)

≤ |Λ1(z1)− Λ2(z1| ≤ ‖Λ1 − Λ2‖ ×M.

It shows that {
ζ : (Rn)∗ −→ R
Λ 7−→ supa∈co(A) Λ(a)
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is a continuous map. Now, consider Λ ∈ KM
c

(
co(A)

)
such that Λ /∈ IMc

(
co(A)

)
.

Then

sup
a∈co(A)

Λ(a) < c.

Thus, for some supa∈co(A) Λ(a) < ε0 < c, we have Λ ∈ ζ−1(0, ε0). This implies

that Λ is an interior point of KM
c

(
co(A)

)
. Therefore,

∂KM
c

(
co(A)

)
⊆ IMc

(
co(A)

)
. (3)

Now, suppose that Λ is an arbitrary element of IMc
(
co(A)

)
. Every neighbourhood

of Λ contains (1 + ε)Λ, for an ε > 0. Obviously, the following holds:

sup
a∈co(A)

(1 + ε)Λ(a) = (1 + ε)c. (4)

By (4), we get (1 + ε)Λ /∈ KM
c

(
co(A)

)
. Consequently, there is not any neighbour-

hood of Λ which lies in KM
c

(
co(A)

)
. Then

IMc
(
co(A)

)
⊆ ∂KM

c

(
co(A)

)
. (5)

By (3) and (5), we get ∂KM
c

(
co(A)

)
= IMc

(
co(A)

)
.

KM
c

(
co(A)

)
= ζ−1[0, c] is a closed set. Now, we are going to show that

it is a bounded set. On the contrary, suppose that KM
c

(
co(A)

)
is unbounded.

By assumption, there is an ε0 > 0 neighbourhood of 0 such as Nε0(0) lies in co(A).

Let Λ ∈ KM
c

(
co(A)

)
satisfy following:

‖Λ‖ > 2c

ε0
.

Obviously, there is a scaled version of the dual of Λ, namely z, such that ‖z‖ =

ε0/2. Clearly, z ∈ co(A). Then we get

|Λ(z)| = ‖Λ‖ ‖z‖ > c,

which is not possible. Thus, KM
c

(
co(A)

)
is a bounded set. Finally, we are going

to prove that KM
c

(
co(A)

)
is a strictly convex set. Let Λ1,Λ2 ∈ KM

c

(
co(A)

)
.

If Λ1,Λ2 ∈ IMc
(
co(A)

)
, then, by part (iv), we get the proof. Suppose that at least

one of them is not a member of IMc
(
co(A)

)
. By the similar method used in the

proof of (iv), one can show that the following inequality holds:

sup
a∈co(A)

(
λΛ1 + (1− λ)Λ2

)
(a) ≤ max

{
sup

a∈co(A)

Λ1(a), sup
a∈co(A)

Λ2(a)
}
,
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where 0 < λ < 1. This means that

sup
a∈co(A)

(
λΛ1 + (1− λ)Λ2

)
(a) < c,

and thus

λΛ1 + (1− λ)Λ2 ∈ int
(
KM
c

(
co(A)

))
.

(vi) Let L be the unique supporting hyperplane of co(A) which crosses y, and

∇f(y) be its normal vector as proved in (ii). We want to prove that the following

holds:

sup
a∈co(A)

Λ(a) = c.

On the contrary, suppose that supa∈co(A) Λ(a) 6= c. Then we have

sup
a∈co(A)

Λ(a) > c.

This implies that for some z ∈ co(A), Λ(z) > c hold. Since Λ(0) = 0, Λ(y) = c

and Λ(z) > c, it follows that y + L is not an affine supporting hyperplane. But

this is a contradiction.

(vii) With the same argument used in the proof of (i), one can show that a ∈
Rn0 = (Rn)∗∗0 takes its maximum over KM

c

(
co(A)

)
at a unique point in IMc

(
co(A)

)
.

First, we prove that if y0 ∈ A takes its maximum over KM
c

(
co(A)

)
at Λ0, then

Λ0 takes its maximum over co(A) at y0. On the contrary, suppose that Λ0 takes

its maximum at y1. Let Λ denote a functional defined in (vi) considering y0, then

Λ(y0) = c and Λ ∈ KM
c

(
co(A)

)
. Since y0 takes it maximum over KM

c

(
co(A)

)
at

Λ0, it follows that

Λ0(y0) ≥ Λ(y0) = c.

Since y1 6= y0, by (i) we get that Λ0(y0) < Λ0(y1). This contradicts with Λ0 ∈
KM
c

(
co(A)

)
. Thus, our claim holds. Now, let us back to (vii), and suppose

that a1 and a2 are two non-zero elements of Rn which are not collinear. Note

that every non-zero functional, with every positive rescaled multiple of itself,

over KM
c

(
co(A)

)
reaches its maximum at the same point. Then, without loss of

generality, one can assume that a1, a2 ∈ A. We want to show that a1 and a2 reach

their maximum at different points of KM
c

(
co(A)

)
. On the contrary, suppose that

a1 and a2 take their maximum at Λ ∈ IMc
(
co(A)

)
. On the other hand, Λ takes

its maximum over co(A) at a1 and a2. This contradicts with (i), and we get the

result.
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(viii) KM
c

(
co(A)

)
= KM

c

(
A
)
, and IMc

(
co(A)

)
= IMc

(
A
)

are simple consequences

of (i), which means that every functional takes its maximum at boundary.

(i) shows that max is a well-defined function. (iii) proves that it is an injective

one. By (vi), max is an onto function. This completes the proof. �

Now, we are going to consider some optimizing properties of geodesics with

respect to their tangent spaces.

Proposition 3.1. Let (M,F ) be a Finsler manifold. Suppose that ε0 > 0,

and the curve c : [a, b+ε0] −→M is the length minimizing geodesic from p = c(a)

to c(b + ε0) and q = c(b). Let Vq be tangent to c with the same direction at q,

i.e., Vq = λċ for an λ > 0. Then, the following holds:

Vq.%
F (p, x) ≥ Vq.%F (p′, x), ∀ p′ ∈M, (6)

where %F is the distance function induced by F .

Proof. In the case of dim(M) = 1, it is easy to see that (6) holds. Then,

suppose that dim(M) ≥ 2.

Without loss of generality, one can assume that λ = 1, which means Vq = ċ.

Then,

d%F
(
p, c(t)

)
dt

∣∣∣∣
t=b

= Vq.%
F (p, x),

d%F
(
p′, c(t)

)
dt

∣∣∣∣
t=b

= Vq.%
F (p′, x),

and for an arbitrary 0 < ε < ε0, we have

%F
(
p, c(b+ ε)

)
= %F (p, q) + %F

(
q, c(b+ ε)

)
.

By triangle inequality, for any p′ ∈M , the following holds:

%F
(
p′, c(b+ ε)

)
≤ %F (p′, q) + %F (q, c

(
b+ ε)

)
.

Then,

%F
(
p, c(b+ ε)

)
− %F (p, q) ≥ %F

(
p′, c(b+ ε)

)
− %F (p′, q). (7)

By dividing (7) to ε and letting ε −→ 0, one can obtain

d%F
(
p, c(t)

)
dt

∣∣∣∣
t=b

≥ d%F
(
p′, c(t)

)
dt

∣∣∣∣
t=b

.

Now, it is easy to see that the restriction λ = 1 does not stop any progress in the

process of the proof. This completes the proof. �
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Proposition 3.2. Let (M,F ) be a Finsler manifold. Suppose that (x, U) is

a chart of M containing q ∈ M , such that there is a unique length minimizing

geodesic that connects each two distinct elements of it. Let us put

−→
S r(q) :=

{
p ∈M

∣∣ %F (p, q) = r
}
⊆ U,

where r > 0, and let Indq(F ) denote the indicatrix of F at q, which is given by

Indq(F ) :=
{
Vq ∈ TqM

∣∣ F (q, Vq) = 1
}
.

Then, the following hold:

(i) Let Vq, Wq ∈ Indq(F ), p ∈ −→S r(q) and Vq be a tangent vector to the geodesic

passed from p to q. Then,

Vq.%
F (p, x) ≥Wq.%

F (p, x). (8)

(ii) The following holds:

IM1
(

Indq(F )
)

=
{
d%F (p, x)

∣∣
x=q

∣∣∣ p ∈ −→S r(q)
}
.

(iii) Let p ∈ −→S r(q), and p0 be an arbitrary element of U crossed by the geodesic

from p to q. Then

d%F (p, x)
∣∣
x=q

= d%F (p0, x)
∣∣
x=q

.

In particular, ∂%F (p,x)
∂xi

∣∣
x=q

is constant along the geodesic sufficiently close

to q.

Proof. (i) Let c : [a, b] −→ M be a geodesic passed from p to q, and

parameterized by arc length. Thus ċ(b) = Vq. We have

d%F
(
p, c(t)

)
dt

∣∣∣
t=b

= 1 = Vq.%
F (p, x) = d%F (p, x)

∣∣
x=q

(
Vq
)
.

We are going to show that (8) holds. On the contrary, suppose that the following

holds:

Vq.%
F (p, x) < Wq.%

F (p, x).

Consider p0 ∈
−→
S r(q) such that Wq be a tangent vector to the geodesic passed

from p0 to q. Then, by Proposition 3.1, we get

Wq.%
F (p0, x) ≥Wq.%

F (p′, x), ∀p′ ∈M.
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Then, we have

Wq.%
F (p0, x) ≥Wq.%

F (p, x).

This means that

1 = Wq.%
F (p0, x) ≥Wq.%

F (p, x) > Vq.%
F (p, x) = 1,

which is a contradiction. Thus (8) holds.

(ii) Let Vq ∈ Indq(F ). As mentioned in (i), there is a p ∈ −→S r(q) such that

Vq is tangent to the geodesic passed from p to q at point q. Then, for any other

elements of Indq(F ) such as Wq, the following holds:

Vq.%
F (p, x) ≥Wq.%

F (p, x).

It is equal to the following:

d%F (p, x)
∣∣
x=q

(
Vq
)
≥ d%F (p, x)

∣∣
x=q

(
Wq

)
.

It shows that d%F (p, x)
∣∣
x=q

= max−1(Vq), where max is the function defined in

part (viii) of Lemma 3.1. Since max is a bijection and Vq is arbitrary, we get the

proof.

(iii) Let us put

B+(p′, s) :=
{
q′ ∈M

∣∣ %F (p′, q′) ≤ s
}
⊆ U.

It is obvious that B+
(
p0, %(p0, q)

)
⊆ B+

(
p, %(p, q)

)
, and q is in boundary of

both sets. It follows that they have the same tangent hyper-plane at q, which

is the kernel of both d%F (p, x)
∣∣
x=q

and d%F (p0, x)
∣∣
x=q

. Since d%F (p, x)
∣∣
x=q

and

d%F (p0, x)
∣∣
x=q

coincide on the tangent vectors of the geodesic from p to q at q, it

follows that d%F (p, x)
∣∣
x=q

= d%F (p0, x)
∣∣
x=q

. This completes the proof. �

It is remarkable that, by the proof of part (ii) of the previous proposition,

the following holds:

d%F (p, x)
∣∣
x=q

= d%F (p0, x)
∣∣
x=q

= max−1(Vq). (9)

We will use (9) in the proof of Proposition 4.1.

Remark 3.1. Let M := R2 − D be equipped with the Euclidean metric %,

where D is the unit disc. Suppose that F is the restriction of Riemannian metric

of R2 on M . For every point p ∈ M , there is a convex neighbourhood Up such

that p ∈ Up ⊆M . It is easy to see that %F |
Up

= %|
Up

(see Part I in the following

figure). But %F = % does not hold, generally. If we suppose that A = (−2, 0)

and B = (2, 0), then, obviously, %F (A,B) 6= %(A,B) (see Part II in the following

figure).
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Up

•
p

part I

•
B (2, 0)

•
A (−2, 0)

part II

The following result (Theorem 3.2) is the most relevant result together with

[14, Theorem 3B]. Before stating it, we clarify our intention about “% is obtained

from F” (or “% induced by F”). Consider a Finsler manifold (M,F ) and a

quasi-metric % on M . We say that % is obtained from (induced by) F if every

point q ∈ M has a neighbourhood Uq such that %F |
Uq

= %|
Uq

. This point of

view has at least two major advantages. First, we do not require the existence

of a geodesic between any two points on the manifold. It is noted that this

restrictive assumption was used by Tamássy in Theorem 3B. Second, in this case,

the important relation (1) remains valid.

Let M be a smooth manifold and % a quasi-metric on it. Suppose that p and q

are two distinct points in M . Define

−→
Dp,q :=

{
p′ ∈M − {q}

∣∣∣ d%(p′, x)
∣∣
x=q

= d%(p, x)
∣∣
x=q

}
.

Then, we have the following.

Theorem 3.2. Let % be a quasi-metric on a manifold M . Then % is induced

by a Finsler metric F := F% on M if and only if every element of M has a chart

(x, U) with the following property: for every distinct p, q ∈ U there is smooth

curve c : (a0, b0) −→ M with c(a) = p, c(b) = q for some a0 < a < b < b0 such

that

−→
Dc(t0),c(t1) ∩ U = c

(
(a0, t1)

)
, ∀ t0, t1 : a0 < t0 < t1 ≤ b. (10)

Proof. Suppose that % is induced by a Finsler metric F . Then one can

choose a collection Ω of charts of the manifold M such that, for every distinct pair

of elements in their domains, there is a unique geodesic (of F ) connecting them.

Part (iii) of Proposition 3.2 shows that the above property holds for geodesics.
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Conversely, suppose that there is a collection Ω consisting of charts of M

which satisfies (10). Let (x, U) ∈ Ω and p, q ∈ U , such that p 6= q. Let c :

(a, b) −→M be a smooth curve that satisfies c(b) = q, and

−→
Dc(t0),c(t1) ∩ U = c

(
(a, t1)

)
, ∀ t0, t1 : a0 < t0 < t1 ≤ b. (11)

First, we prove that c satisfies parallelism property. By Proposition 2.1, it is

sufficient to show that the following holds:

d%
(
c(s), c(t)

)
dt

∣∣∣
t=t1

=
d%
(
c(t0), c(t)

)
dt

∣∣∣
t=t1

=
d%
(
c(t1), c(t)

)
dt

∣∣∣
t=t+1

(a0 < s < t0 < t1 ≤ b). (12)

Let us rewrite the first equality of (12) as follows:

d%
(
c(s), x

)∣∣
x=c(t1)

(
ċ(t1)

)
= d%

(
c(t0), x

)∣∣
x=c(t1)

(
ċ(t1)

)
,

which is completely known by (11). Also, we have

d%
(
c(t1), c(t)

)
dt

∣∣∣
t=t+1

= lim
t→t+1

d%
(
c(t1), c(t)

)
dt

= lim
t→t+1

d%
(
c(t1), x

)∣∣
x=c(t)

(
ċ(t)
)
.

Then, we get

lim
t→t+1

d%
(
c(t1), x

)∣∣
x=c(t)

(
ċ(t)
)

= lim
t→t+1

d%
(
c(t0), x

)∣∣
x=c(t)

(
ċ(t)
)

= lim
t→t+1

d%
(
c(t0), c(t)

)
dt

=
d%
(
c(t0), c(t)

)
dt

∣∣∣
t=t1

.

Thus c satisfies parallelism property. Now, we are going to show that %(p, q) =

%F (p, q). By part (a) of Proposition 3 in [14], we get

%(p, q) ≤ %F (p, q).

Then, it is sufficient to prove that %(p, q) ≥ %F (p, q) holds. It is easy to see that,

as the following holds:

%(p, q) = %
(
c(a), c(b)

)
=

∫ b

a

d%
(
c(a), c(t)

)
dt

∣∣∣
t=s

ds.
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On the other hand, by the parallelism property and definition of F , we have

d%
(
c(a), c(t)

)
dt

∣∣∣
t=s

=
d%
(
c(s), c(t)

)
dt

∣∣∣
t=s+

= F
(
c(s), ċ(s)

)
.

Therefore,

%(p, q) =

∫ b

a

F
(
c(s), ċ(s)

)
ds ≥ %F (p, q).

This completes the proof. �

Now, we are going to find a special property of a distance function induced

by a Finsler metric.

Proposition 3.3. Let (M,F ) be an n-dimensional Finsler manifold. Sup-

pose that ε > 0, and the curve c : (a, b+ ε] −→M is a length minimizing geodesic

between c(t) and c(b + ε), for each t ∈ (a, b). Then, ċ(b) lies in the nullity of
∂2%(y, x)

∂yj∂xi

∣∣∣
x=c(b), y=c(t)

, where t ∈ (a, b). In other words, for every t ∈ (a, b), the

following holds:

n∑
i=1

dci(t)

dt

∣∣∣
t=b

∂2%(y, x)

∂yj∂xi

∣∣∣
x=c(b), y=c(t)

= 0, (1 ≤ j ≤ n). (13)

Proof. Let us consider arbitrary smooth curve γ : (e, d) −→ M with p =

γ(t0) (e < t0 < d). Let Vq := ċ(b). Clearly, by Proposition 3.1, the following map{
f : (e, d) −→ R

t 7−→ Vq.%
F
(
γ(t), x

)
reaches its maximum at t0, which implies that f ′(t0) = 0. Then, we have

f ′(t) =
d

dt

(
n∑
i=1

(Vq)
i × ∂%F

(
γ(t), x

)
∂xi

∣∣∣
x=q

)

=

 n∑
i,j=1

(Vq)
i × dγj(t)

dt
× ∂2%F

(
y, x
)

∂yj∂xi

∣∣∣
x=q,y=γ(t)

 .

Therefore, we get

0 =

n∑
j=1

[
dγj(t)

dt

∣∣∣
t=t0
×
(

n∑
i=1

(Vq)
i × ∂2%F

(
y, x
)

∂yj∂xi

∣∣∣
x=q,y=γ(t0)

)]
.

Since γ is an arbitrary smooth curve on M and (Vq)
i = dci(t)

dt |t=b, we get (13). �
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As an immediate and simple consequence of Proposition 3.3, one can obtain

the following.

Corollary 3.1. Let (M,F ) be an n-dimensional Finsler manifold, and c :

[a, b) −→ M be a length minimizing geodesic from p = c(a) to c(t), for each t ∈

(a, b). Then, d%
(
y, c(t)

)∣∣
y=p

is constant along c. More precisely,
∂%
(
y, c(t)

)
∂yi

∣∣∣
y=p

,

(1 ≤ i ≤ n) are constants along the geodesic c.

Proof. Let Vp ∈ TpM be an arbitrary tangent vector. Then, we have

d

dt

(
d%
(
y, c(t)

)∣∣
y=p

(
Vp

))
=
d

dt

(
n∑
i=1

(Vp)
i ∂%
(
y, c(t)

)
∂yi

∣∣∣
y=p

)

=
d

dt

 n∑
i=1

(Vp)
i

 n∑
j=1

∂2%(y, x)

∂yi∂xj

∣∣∣
y=p,x=c(t)

dcj(t)

dt

= 0.

Since Vp is an arbitrary tangent vector, it follows that d%
(
y, c(t)

)∣∣
y=p

is constant

along the geodesic c. �

3.1. Dual results. In the previous section, we find some relations between

length minimizing geodesics that passed from arbitrary point p in the manifold

to other point such as q, and consider the map p 7→ d%(p, x)|x=q. In this section,

we are going to consider the map q 7→ d%(y, q)|y=p on the same geodesic and get

some similar results. Indeed, this section is devoted to the dual version of the

results obtained in the previous section. These results will be applied in the next

section.

Definition 3.2. Let A ⊆ Rn be a nonempty set. Then, for an arbitrary

negative real number c, let us define

Km
c (A) :=

{
Λ ∈ (Rn)∗| inf

a∈A
Λ(a) ≥ c

}
, Imc (A) :=

{
Λ ∈ (Rn)∗| inf

a∈A
Λ(a) = c

}
.

By the same argument used in Lemma 3.1, and considering KM
−c(−A) =

Km
c (A), one can prove the following.

Lemma 3.3. Let f : Rn → R be a smooth map with ∇f 6= 0 on Rn0 , and

A = f−1(b) ⊆ Rn0 be a nonempty compact set. Suppose that co(A) is a strictly

convex set containing 0 and ∂
(
co(A)

)
= A. Then, for any c < 0, the following

hold:

(i) For any functional Λ ∈ (Rn)∗0, there is a unique x0 ∈ co(A) such that Λ(x0) =

infa∈co(A) Λ(a) < 0 and x0 ∈ A.
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(ii) For each y ∈ A, there is a unique supporting hyperplane of co(A) such as L,

which crosses y, and ∇f(y) is a normal vector of L.

(iii) If Λ1, Λ2 ∈ (Rn)∗0 are not collinear, then they take their minimums on co(A)

at different points.

(iv) Let Λ =
∑r
i=1 λiΛi be a convex combination of mutually different elements

of Imc
(
co(A)

)
such that {λi}1≤i≤r 6= {0, 1}. Then, the following holds:

inf
a∈co(A)

Λ(a) > c.

(v) Km
c

(
co(A)

)
is a nonempty compact strictly convex set, and the following

holds:

∂Km
c

(
co(A)

)
= Imc

(
co(A)

)
.

(vi) Let Λ ∈ (Rn)∗ be the unique linear functional that satisfies

ker(Λ) = ∇f(y)⊥, Λ(y) = c,

for a y ∈ A. Then the following holds:

inf
a∈co(A)

Λ(a) = c.

(vii) Let that a1, a2 ∈ Rn0 = (Rn)∗∗0 are not collinear. Then, they take their

minimum on Km
c

(
co(A)

)
at different points of Imc

(
co(A)

)
.

(viii) The following holds:

Km
c

(
co(A)

)
= Km

c

(
A
)
, Imc

(
co(A)

)
= Imc

(
A
)
,

and also the following map is a bijection from Imc
(
A
)

to A:{
min : Imc

(
A
)
−→, A

Λ 7−→ z,

where Λ takes its minimum over co(A) at z, i.e., Λ(z) = c.

By the same argument used in the proof of Proposition 3.1, we get the fol-

lowing.

Proposition 3.4. Let (M,F ) be a Finsler manifold and ε > 0, also let

c : [a − ε, b] −→ M be the length minimizing geodesic from c(a − ε) to q = c(b)

and p = c(a). Suppose that Vp ∈ TpM0 is tangent to c with same direction at p

(i.e., Vp = λċ, for an λ > 0). Then, the following holds

Vp.%
F (y, q) ≤ Vp.%F (y, q′), ∀ q′ ∈M,

where %F is distance function obtained from F .
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By the same method used in the proof of Proposition 3.2, one can obtain the

following.

Proposition 3.5. Let (M,F ) be a Finsler manifold. Suppose that (x, U) is

a chart of M containing p ∈ M , such that for each two distinct elements of U ,

there is a unique length minimizing geodesic connecting them. Let us put

←−
S r(p) :=

{
q ∈M

∣∣ %F (p, q) = r
}
⊆ U.

Then the following hold:

(i) Let Vp,Wp ∈ Indp(F ) and q ∈ ←−S r(p). Suppose that Vp is tangent to the

geodesic passed from p to q. Then,

Vp.%
F (y, q) ≤Wp.%

F (y, q).

(ii) The following holds:

Im−1
(

Indp(F )
)

=
{
d%F (y, q)

∣∣
y=p

∣∣∣q ∈ ←−S r(p)
}
.

(iii) Let q ∈ ←−S r(p) and q0 ∈ U such that the geodesic passed from p to q crosses q0.

Then,

d%F (y, q)
∣∣
y=p

= d%F (y, q0)
∣∣
y=q0

.

In particular, ∂%
F (y,q)
∂yi

∣∣
y=p

is constant along a geodesic sufficiently close to p.

Note that the definition of
−→
Dp,q and Theorem 3.2 have their respective du-

als, also. But we do not need those for our further studies. To prove the dual

of Theorem 3.2, one should rewrite the whole of [14] with “reverse parallelism

property”. Here, we ignore to prove it.

Proposition 3.3 has its dual as follows.

Proposition 3.6. Let (M,F ) be an n-dimensional Finsler manifold. Sup-

pose that ε > 0, and the curve c : [a − ε, b) −→ M is a length minimizing

geodesic between c(a) and c(t), for each t ∈ (a, b). Then ċ(a) lies in the nullity

of
∂2%F (y, x)

∂yj∂xi

∣∣∣
y=c(a), x=c(t)

, where t ∈ (a, b). In other words, for every t ∈ (a, b),

the following holds:

n∑
j=1

dcj(t)

dt

∣∣∣
t=a

∂2%F (y, x)

∂yj∂xi

∣∣∣
y=c(a),x=c(t)

= 0, (1 ≤ i ≤ n).
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By Proposition 3.6, one can conclude the following.

Corollary 3.2. Let (M,F ) be an n-dimensional Finsler manifold. Suppose

that c : (a, b] −→ M is a length minimizing geodesic between c(t) and q = c(b),

for each t ∈ (a, b). Then, d%F
(
c(t), x

)∣∣
x=q

is constant along c. In other words,

∂%F
(
c(t), x

)
∂xi

∣∣∣
x=q

, (1 ≤ i ≤ n), are constant along the geodesic c.

Proposition 3.7. Let A := f−1(b) ⊆ Rn0 be a nonempty compact set, where

f : Rn → R is a smooth map with ∇f 6= 0 on Rn0 . Suppose that co(A) is a strictly

convex set containing 0 and ∂
(
co(A)

)
= A. Then, for every c > 0, the following

hold:

(i) If y ∈ A, then max−1(y) = −min−1(y) holds, where max and min are as

defined in part (viii) of Lemmas 3.1 and 3.3, respectively.

(ii) IMc (A) = −Im−c(A) holds.

Proof. (i) Obviously, the functional defined in part (vi) of Lemma 3.1 is

equal to max−1(y). It is clear that the function defined in part (vi) of Proposi-

tion 3.3 is equal to −max−1(y) and also min−1(y).

(ii) It is a simple consequence of part (i). �

By Proposition 3.7, we conclude the following.

Corollary 3.3. Let (M,F ) be a Finsler manifold. Suppose that c : (a, b) −→
M is a length minimizing geodesic from c(t0) to c(t1), for each a < t0 < t1 < b.

Then, for each t ∈ (a, b), the following holds:

d%F
(
c(t0), x

)∣∣
x=c(t)

= −d%F
(
y, c(t1)

)∣∣
y=c(t)

, (a < t0 < t < t1 < b).

Proof. By Propositions 3.2 and 3.5, for a small enough r > 0, the following

hold:

IM1
(

Indc(t)(F )
)

=
{
d%F (p, x)

∣∣
x=q

∣∣∣p ∈ −→S r

(
c(t)
)}
,

Im−1
(

Indc(t)(F )
)

=
{
d%F (y, q)

∣∣
y=p

∣∣∣q ∈ ←−S r

(
c(t)
)}
.

Let p and q belong to the range of c such that %
(
p, c(t)

)
= %

(
c(t), q

)
. Then, by

Corollaries 3.1 and 3.2, it follows that

d%F
(
c(t0), x

)∣∣
x=c(t)

= d%F
(
p, x
)∣∣
x=c(t)

= max−1
(
ċ(t)
)

=−min−1
(
ċ(t)
)

=−d%F
(
y, q
)∣∣
y=c(t)

=−d%F
(
y, c(t1)

)∣∣
y=c(t)

.

Thus we get the proof. �
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4. Projectively flat Finsler metrics

Before mentioning our final result about the projectively flat Finsler metrics

(i.e., Theorem 4.2), we should explain that all results before Theorem 3.2 that

connect quasi-metrics and Finsler metrics involve the existence of special curves

between any two points of the manifold. In fact, these curves are nothing other

than geodesics. This situation has been changed in Theorem 3.2, from two as-

pects. First, Theorem 3.2 presents the geodesic. Second, it presents geodesics not

as the solutions of special differential equations but as preimage of some functions

which is fairly computable. For example, consider the Euclidean distance % on Rn.

Then, we have

%(y, x) =

(
n∑
i=1

(yi − xi)2
) 1

2

,
∂%(y, x)

∂xi
=
xi − yi
%(y, x)

.

Now, we are going to find the length minimizing geodesic γ from p ∈ Rn to

q ∈ Rn − {p}. By Theorem 3.2 and Corollary 3.1, if z be a point of γ, then the

following holds:

d%(z, x)|x=q = d%(p, x)|x=q.

Thus, we have

qi − zi
%(z, q)

=
∂%(z, x)

∂xi

∣∣∣
x=q

=
∂%(p, x)

∂xi

∣∣∣
x=q

=
qi − pi
%(p, q)

, (1 ≤ i ≤ n).

It follows that

zi = qi − %(z, q)

[
qi − pi
%(p, q)

]
, (1 ≤ i ≤ n),

which obviously means that z lies on the straight line passed both of p and q.

Here we find geodesics without solving any ODE.

Our result has some applications. For example, suppose that a distance

function is given and one needs to find the Finsler metric associated with it. One

can use the Busemann–Mayer relation

F
(
c(t0), ċ(t0)

)
= lim
t→t+0

d

dt
%
(
c(t0), c(t)

)
,

where c : (a, b) −→M is an arbitrary smooth curve. But in this case, there are no

choices other than to calculate a derivation and get a limit at an obstacle point

on a curve (i.e., % is not differentiable at points of diameter of M ×M unless it is



On distance functions induced by Finsler metrics 353

Riemannian). It deserves that one finds that curve by itself, also. Alternatively,

one can calculate IM1
(

Indp(F )
)

just by a derivation, and find Indp(F ) by the

same method used in the proof of part (vi) in Lemma 3.1.

We have studied IM1
(

Indp(F )
)

and its properties so far. Now, we are going

to consider IM1
(

Indp(F )
)

throughout the Finsler metric F . First, we prove the

following.

Proposition 4.1. Let (M,F ) be an n-dimensional Finsler manifold, and %F

its associated distance function. Suppose that q ∈M is in chart (x, U) and {dxi}
are duals of { ∂

∂xi }. Then, the following holds

IM1
(

Indq(F )
)

=
{
Fi(q, y)dxi

∣∣y ∈ TqM,F (q, y) = 1
}
. (14)

In particular, if for some ε > 0, c : [a, b+ ε]→M is a length minimizing geodesic

parameterized by arc length from p = c(a) to c(b+ ε), then the following holds:

Fi
(
q, ċ(b)

)
=
∂%F

(
p, x
)

∂xi

∣∣∣
x=q

, (15)

where q = c(b).

Proof. Since c is parameterized by arc length, we have ċ(b) ∈ Indq(F ). We

are going to show that Λ := Fi
(
q, ċ(b)

)
dxi is equal with max−1

(
ċ(b)

)
, where max

is the function defined in part (viii) of Lemma 3.1. Let w ∈ TqM0. Then, by

fundamental inequality (see [1, relation 1.2.3]), we have

Λ(w) = Λ

(
wi

∂

∂xi

)
= Fi

(
q, ċ(b)

)
wi ≤ F

(
q, w(b)

)
.

If we suppose that w ∈ Indq(F ), then

Λ(w) ≤ 1,

and Λ(w) = 1 if and only if w = ċ(b). This shows that Λ = max−1
(
ċ(b)

)
, in

particular, Λ ∈ IM1
(

Indq(F )
)
. Now, by the same method used in part (ii) of

Proposition 3.2, we get (14).

By (9) and Corollary 3.1, we get the following:

Fi
(
q, ċ(b)

)
dxi = Λ = max−1

(
ċ(b)

)
= d%(p, x)|x=q =

∂%F (p, x)

∂xi

∣∣∣
x=q

dxi,

which implies (15). �
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The problem of projectively flat Finsler metrics is quite old in geometry,

and its origin is formulated in Hilbert’s Fourth Problem: “determine the metrics

on an open subset in Rn, whose geodesics are straight lines” [6]. Projectively

flat Finsler metrics on a convex domain in Rn are regular solutions to Hilbert’s

Fourth Problem. Indeed, regular distance functions with straight geodesics are

projectively flat Finsler metrics. They are characterized by a system of ODE,

see [2], [8], [16].

In this section, we are going to state a result related to projectively flat

Finsler metrics. Let (M,F ) be an n-dimensional Finsler manifold, and %F the

distance arisen from F . In Proposition 3.3, it is shown that rank of ∂2%F (y,x)
∂yj∂xi is

at most n − 1. Before proving our last important result about the projectively

flat metrics (i.e., Theorem 4.2), we improve Proposition 3.3, and show that the

mentioned rank must be exactly n− 1.

Lemma 4.1. Let (M,F ) be an n-dimensional Finsler manifold, and %F the

distance arisen from F . Suppose that p, q ∈M such that q has a length minimizing

geodesic to every element inside a neighbourhood of p. Then the following holds:

rank

[
∂2%F (y, x)

∂yj∂xi

∣∣∣
y=p,x=q

]
= n− 1. (16)

Proof. Consider Fq : TqM −→ R. Since Fi(q, y)dyi 6= 0 holds for every

y 6= 0, by the preimage theorem [3, Theorem 5.5], it follows that Indq(F ) is a

regular submanifold of TqM .

Define {
ψ : TqM → T ∗qM,

y 7→ dF (q, y) = Fi(q, y)dxi.

Then, we have ψ|Indq(F ) = max−1, where max is the function defined in part (viii)

of Lemma 3.1. Let Dψ denote the differential map of ψ. Then, we get

Dψ

(
∂

∂yi

)
=
∂ψj

∂yi
∂

∂ỹj
=

n∑
j=1

Fij(q, y)
∂

∂ỹj
,

where { ∂
∂yi } and { ∂

∂ỹj } are basis for TqM at y and T ∗qM at ψ(y), respectively.

Since rank(Fij) = n − 1, it follows that ψ|Indq(F ) = max−1 is a diffeomorphism

from Indq(M) to IM1
(

Indq(M)
)
.

Now, let us consider the following map:f : M − {q} → T ∗qM,

p′ 7→ −d%F (x, p′)|x=q = − ∂%F (x,p′)
∂xi

∣∣∣
x=q

dxi.
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Existence of length minimizing geodesic from q to p means that for a yp ∈ TqM0,

exp(yp) := expyp(1) = p holds, where exp denotes the exponential map at q.

Then, by the inverse mapping theorem, exp is invertible on a neighbourhood

of yp. Therefore, on a neighbourhood of p, namely Up, we have f |Up = ψ ◦ exp−1.

Then, we get

Dpf = Dypψ ◦Dp exp−1 .

By the equation (5.3.6) in [1], we have rank(D exp) = n. This means that

rank
(
Dpf

)
= rank

(
Dp

(
ψ o exp−1

))
= n− 1.

Let (x, U1) and (z, U2) be two charts containing q and p, respectively. Then

the following holds:

Dpf

(
∂

∂zi

)
=
∂f j

∂zi
∂

∂ỹj
= −

n∑
j=1

∂2%F (x, z)

∂xj∂zi

∣∣∣
z=p,x=q

∂

∂ỹj
,

where { ∂
∂ỹj } is a basis for T ∗qM at f(p) = −d%F (x, p)|x=q. This implies (16). �

Now, we are ready to prove our final result on the projectively flat Finsler

metrics. More precisely, we show the following.

Theorem 4.2. Let F be a Finsler metric on a non-empty open convex

neighbourhood U ⊂ Rn. Then, the length minimizing geodesic between every

two distinct points p, q ∈ U is a straight line if and only if the following holds:

ker(Apq) = ker(Atpq),

where

Apq :=

[
∂2%F (y, x)

∂yj∂xi

∣∣∣∣∣
y=p, x=q

]
and At denotes the transpose of A.

Proof. Suppose that for every two distinct points in U the length mini-

mizing geodesic between them is a straight line. Suppose that c : (a, b) → U

is a length minimizing geodesic parameterized by arc length between two points

p = c(t0) and q = c(t1) (a < t0 < t1 < b). By Propositions 3.3 and 3.6, we have

ċ(t1) ∈ ker(Apq) and ċ(t0) ∈ ker(Atpq). Since c is a straight line, it follows that

ċ(t1)||ċ(t0). On the other hand, since c = c(s) is parameterized by arc length,

ċ(t1) 6= 0 and ċ(t0) 6= 0. Thus, by considering rank(Apq) = n− 1, we get

ker(Apq) = span
{
ċ(t1)

}
= span

{
ċ(t0)

}
= ker(Atpq).
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Conversely, suppose that for any two distinct points p, q ∈ U , ker(Apq) =

ker(Atpq) holds. Let c : (a, b) → U be a length minimizing geodesic between two

points p = c(t0) and q = c(t1) (a < t0 < t1 < b), and that c is parameterized by

arc length. By Propositions 3.3 and 3.6, we have

ċ(t1) ∈ ker(Apq) and ċ(t0) ∈ ker(Atpq),

and since rank(Apq) = n − 1, it follows that ċ(t1)||ċ(t0). This shows that c is a

curve between two points such that its velocity vector has a unique direction at

any point. Obviously, c is a straight line. This completes the proof. �
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