
Publ. Math. Debrecen

90/3-4 (2017), 373–386

DOI: 10.5486/PMD.2017.7566

A note on the weighted strong law of large numbers under
general conditions

By ISTVÁN FAZEKAS (Debrecen), PRZEMYS LAW MATU LA (Lublin)
and MACIEJ ZIEMBA (Lublin)

Abstract. In 2003, R. Jajte proved the almost sure convergence for a large class

of weighted sums of independent random variables. In this note we show that this re-

sult remains valid for dependent random variables satisfying certain general maximal

inequality.

1. Introduction

In 2003, Jajte [7] obtained a version of the strong law of large numbers

(SLLN) for a large class of means. His result generalized considerably two classical

theorems for sequences of independent and identically distributed (i.i.d.) random

variables (r.v.’s): the SLLN of Kolmogorov and that of Marcinkiewicz–Zygmund.

For completeness, let us recall this result.

Theorem 1 (Jajte, 2003). Let {Xk}k∈N be a sequence of i.i.d. r.v.’s. Let

also f be a positive increasing function and g a positive function, such that

ϕ(y) = f(y)g(y) satisfies the following conditions:

(i) for some d ≥ 0, ϕ is strictly increasing on [d,∞) with range [0,∞),

(ii) there exist C and a positive integer k0 such that ϕ(y + 1)/ϕ(y) ≤ C, for all

y ≥ k0,
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(iii) there exist constants a and b such that

ϕ2(s)

∫ ∞
s

1

ϕ2(x)
dx ≤ as+ b, for all s > d.

Then the following two conditions are equivalent:

(a) E
(
ϕ−1(|X1|)

)
<∞,

(b) 1
f(n)

∑n
i=1

Xi−mi

g(i) −→ 0, almost surely, as n→∞,
where ϕ−1 is the inverse function of ϕ and mi = E

(
XiI[|Xi|≤ϕ(i)]

)
.

Jajte points out that in the above class of sequence transformations, one can

find Cesaro means (g(y) = 1, f(y) = y), logarithmic means (g(y) = y, f(y) =

log y), and the means related to the Marcinkiewicz–Zygmund theorem (g(y) =

1, f(y) = y1/α, with α ∈ (0, 2)).

Many authors extended Jajte’s result to the cases of specific types of depen-

dence. Jing and Liang [8] considered negatively associated r.v.’s with the same

distribution. Meng and Lin [12] focused on ρ̃-mixing r.v.’s, whereas Wang [15]

studied the case of nonidentically distributed negatively associated r.v.’s. Re-

cently, Tang [14] presented Jajte’s type sufficient condition for the SLLN for the

family of asymptotically almost negatively associated (AANA) r.v.’s. Assumption

of equidistribution was also weakened and replaced by stochastic domination. The

result of Jajte was also generalized to the random field setting by  Lagodowski

and Matu la [11].

The aim of this paper is to generalize the result of Jajte to the case of

equidistributed (or stochastically dominated) r.v.’s regardless of any dependence

structure. The original necessary and sufficient condition for SLLN (see (a) in

Theorem 1) becomes, however, the sufficient one, in general. Only in a special case

of ρ−-mixing sequences, we manage to show that the equivalence of (a) and (b)

holds. The formulation of our result is motivated by the general approach to the

strong law of large numbers, developed by Fazekas and Klesov (see [4] and [5],

where further references are given).

Throughout the paper, we shall denote by N the set of positive integers.

2. Main result

The key result of the paper is the following Jajte’s type sufficient condition

for the SLLN. In the formulation, we adopt the assumptions on the weighting

functions introduced by Tang [14], which are slightly simpler than imposed in

Theorem 1.
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Theorem 2. Let {Xk}k∈N be a sequence of equidistributed r.v.’s. Let also

f : [0,∞) → R and g : [0,∞) → R be positive functions, such that ϕ(y) ≡
f(y)g(y) is a function satisfying the following conditions:

(A1) ϕ is strictly increasing and ϕ([0,∞)) = [0,+∞),

(A2) there exist a, b ∈ R, such that for any s > 0,

ϕ2(s)

∫ ∞
s

1

ϕ2(x)
dx ≤ as+ b.

Furthermore, we assume that for a sequence {Yk}k∈N of truncated r.v.’s defined

by

Yk := XkI[|Xk|≤ϕ(k)] + ϕ(k)I[Xk>ϕ(k)] − ϕ(k)I[Xk<−ϕ(k)], (1)

there exists an absolute constant C > 0, such that

E

(
max
m≤l≤n

∣∣∣∣∣
l∑

k=m

Yk − EYk
ϕ(k)

∣∣∣∣∣
)2

≤ C
n∑

k=m

Var(Yk)

ϕ2(k)
for all n,m ∈ N, m ≤ n. (2)

Then, the condition

Eϕ−1(|X1|) <∞ (3)

implies that the series

∞∑
k=1

Xk − EYk
ϕ(k)

is almost surely convergent. (4)

If, in addition, f is increasing and limy→∞ f(y) =∞, then the following weighted

SLLN holds:

1

f(n)

n∑
k=1

Xk − EYk
g(k)

−→ 0, almost surely, as n→∞. (5)

Remark 1. From the assumption (A1) it follows that ϕ is a continuous func-

tion with ϕ(0) = 0.

Remark 2. Inequality of the type (2), in [4], is called “the second Kolmogorov

type maximal inequality for moments” for the r.v.’s (Yk − EYk)/ϕ(k).

The key step in our proof is the following variant of the two series theorem.
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Lemma 1. Assume that an arbitrary sequence {Yk}k∈N and the function ϕ

defined in Theorem 2 satisfy (2), and

∞∑
k=1

Var(Yk)

ϕ2(k)
<∞. (6)

Then the series

∞∑
k=1

Yk − EYk
ϕ(k)

is almost surely convergent.

Proof. According to the standard procedure (see Lemma 6.9 in the book

of Petrov [13]), we check that Sk =
∑k
i=1

Yi−EYi

ϕ(i) is a Cauchy sequence with an

almost surely finite limit. Indeed, for fixed m ∈ N,

sup
k,l≥m

|Sk − Sl| = sup
k,l≥m

|Sk − Sm + Sm − Sl| ≤ 2 sup
k≥m
|Sk − Sm|,

thus, by (6) we have

P

(
sup
k,l≥m

|Sk − Sl| > ε

)
≤ P

(
sup
k≥m
|Sk − Sm| > ε/2

)
= lim
n→∞

P

(
max
m≤k≤n

|Sk − Sm| > ε/2

)
≤ 4C

ε2

∞∑
k=m

Var(Yk)

ϕ2(k)
→ 0, as m→∞.

Therefore, the series
∑∞
k=1

Yk−EYk

ϕ(k) is almost surely convergent. �

Proof of Theorem 2. We proceed along the lines of the original paper of

Jajte [7] and the proof of Tang [14]; therefore, we only briefly present the main

steps. In the first step, we observe that the sequences {Xk}k∈N and {Yk}k∈N are

equivalent in the sense that P (Xk 6= Yk i.o.) = 0. It is easy to see that, by the

assumption (3),

∞∑
k=1

P (Xk 6= Yk) =

∞∑
k=1

P
(
ϕ−1(|X1|) > k

)
<∞,

and it suffices to use the first Borel–Cantelli lemma.
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In the second step, we prove that the series
∑∞
k=1 Var

(
Yk

ϕ(k)

)
is convergent

and apply our Lemma 1. In what follows, b·c will denote the integer part of a

number (floor function). By the definition of Yk’s, we can write

∞∑
k=1

EY 2
k

ϕ2(k)
=

∞∑
k=1

E
(
X2

1 I[|X1|≤ϕ(k)]
)

ϕ2(k)
+

∞∑
k=1

P (|X1| > ϕ(k)) =: S1 + S2. (7)

Evoking (3), we easily get S2 =
∑∞
k=1 P

(
ϕ−1(|X1|) > k

)
< ∞. With a view to

estimating S1, let us split the sum in the following way:

S1 = E

bϕ−1(|X1|)c+1∑
k=1

X2
1 I[|X1|≤ϕ(k)]

ϕ2(k)
+

∞∑
k=bϕ−1(|X1|)c+2

X2
1 I[|X1|≤ϕ(k)]

ϕ2(k)


≤ E

(
bϕ−1(|X1|)c+ 1

)
+ E

 ∞∑
k=bϕ−1(|X1|)c+2

X2
1

ϕ2(k)


since 1/ϕ2(x) is decreasing, we can approximate sums by integrals

≤ E
(
ϕ−1(|X1|) + 1

)
+ E

(
X2

1

∫ ∞
ϕ−1(|X1|)

1

ϕ2(x)
dx

)
,

which, in the light of the assumptions (3) and (A2),

≤ Eϕ−1(|X1|) + 1 + E
(
aϕ−1(|X1|) + b

)
<∞.

Thus
∑∞
k=1

EY 2
k

ϕ2(k) < ∞, and by Lemma 1, the conclusion follows, i.e. the se-

ries
∑∞
k=1

Xk−EYk

ϕ(k) converges almost surely. In order to arrive at the weighted

SLLN (5), it suffices to use Kronecker’s lemma. �

In order to relax the assumption that the r.v.’s have the same distributions,

let us recall the following definition.

Definition 1. We say that the sequence {Xk}k∈N of r.v.’s is stochastically

dominated by a random variable X if

P (|Xn| > x) ≤ CP (|X| > x) ,

for all x ≥ 0 and n ∈ N, where C is a fixed constant.



378 István Fazekas, Przemys law Matu la and Maciej Ziemba

Remark 3. Using standard methods, one can prove Theorem 2 for stochasti-

cally dominated random variables. More precisely, Theorem 2 remains true if the

assumption “let {Xk}k∈N be a sequence of equidistributed r.v.’s” is replaced by

the assumption “let {Xk}k∈N be a sequence of random variables being stochas-

tically dominated by some random variable X”. Then, moreover, instead of the

condition (3), we suppose that Eϕ−1 (|X|) <∞.

Now, we turn to the problem of eliminating EYk from the expressions (4)

and (5). Applying the same calculations as in the proof of Theorem 3.2 in

Tang [14], we can prove the following theorem.

Theorem 3. Assume that the conditions of Theorem 2 are valid. Moreover:

(a) in the case
∫∞
1

1
ϕ(x)dx <∞, we assume additionally that there exists C1 > 0,

such that
∫∞
r

1
ϕ(x)dx ≤

C1r
ϕ(r) , for every r ≥ 1;

(b) in the case
∫∞
1

1
ϕ(x)dx =∞, we assume additionally that x

ϕ(x) is nondecreas-

ing and there exists C2 > 0, such that
∫ t
1

1
ϕ(x)dx ≤

C2t
ϕ(t) , for every t ≥ 1, and

furthermore, EXk = 0, for every k ∈ N.

If (a) or (b) is satisfied, then the series

∞∑
k=1

Xk

ϕ(k)

is almost surely convergent. If, in addition, f is increasing and limy→∞ f(y) =∞,
then

1

f(n)

n∑
k=1

Xk

g(k)
→ 0,

almost surely, as n→∞.

Remark 4. Theorem 3 is also true for stochastically dominated r.v.’s.

3. Examples

In this section, we present how Theorem 2 works for some sequences of de-

pendent r.v.’s.

3.1. AANA sequences. Let us begin with the definition of asymptotically al-

most negatively associated (AANA) random variables, introduced by Chandra

and Ghosal in [1].
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Definition 2. A sequence {Xk}k∈N of r.v.’s is called asymptotically almost

negatively associated (AANA), if there exists a sequence {q(m)}m∈N of nonneg-

ative numbers, converging to zero, such that

Cov (f(Xm), g(Xm+1, . . . , Xm+k))

≤ q(m) (Var(f(Xm)) Var(g(Xm+1, . . . , Xm+k)))
1/2

, (8)

for all m, k ≥ 1 and for all coordinatewise increasing continuous functions f and g

whenever the right side of (8) is finite.

AANA sequences contain negatively associated (NA) sequences (see [1]

and [9]) and hence, in particular, independent sequences.

In the proof of the Marcinkiewicz–Zygmund SLLN for AANA sequence of

nonidentically distributed r.v.’s, Chandra and Ghosal [1] used a maximal in-

equality at a crucial step. Precisely, they proved that if A :=
∑∞
k=1 q

2(k) < ∞
and EXk = 0, k = 1, 2, . . . , then

E

(
max
1≤l≤n

l∑
k=1

Xk

)2

≤ C
n∑
k=1

EX2
k , where C =

(
A+ (1 +A2)1/2

)2
. (9)

Yuan and An in [17] showed that if {Xk}k∈N is a sequence of AANA r.v.’s with

mixing coefficients {q(k)}k∈N, and f1, f2, . . . are all nondecreasing (nonincreasing)

continuous functions, then {fk(Xk)}k∈N is also AANA with the same mixing

coefficients. Furthermore, under the same assumptions as in (9), they obtained a

more general maximal inequality for AANA r.v.’s:

E

(
max
1≤l≤n

∣∣∣∣∣
l∑

k=1

Xk

∣∣∣∣∣
)p
≤ Cp,A

n∑
k=1

E|Xk|p, (10)

where Cp,A is a constant dependent on p ∈ (1, 2], and A =
∑∞
k=1 q

2(k) <∞.

Hence, for fixed m,n ∈ N, m < n, considering r.v.’s Yk ≡ 0 for 1 ≤ k ≤ m−1

and Yk defined according to formula (1), for m ≤ k ≤ n, we can write for p = 2

E

(
max
m≤l≤n

∣∣∣∣∣
l∑

k=m

Yk − EYk
ϕ(k)

∣∣∣∣∣
)2

= E

(
max
1≤l≤n

∣∣∣∣∣
l∑

k=1

Yk − EYk
ϕ(k)

∣∣∣∣∣
)2

≤ Cp,A
n∑
k=1

E
(
Yk − EYk
ϕ(k)

)2

= Cp,A

n∑
k=m

E
(
Yk − EYk
ϕ(k)

)2

.

As a result, the second Kolmogorov type maximal inequality (2), for moments of

r.v.’s Yk−EYk

ϕ(k) , is satisfied. Therefore, the result of Tang (see [14, Theorem 3.1])

follows as the corollary.
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Corollary 1. Let {Xk}k∈N be a sequence of equidistributed AANA r.v.’s

satisfying the summability condition
∑∞
k=1 q

2(k) <∞. Let the functions f, g and

r.v.’s Yk be defined as in Theorem 2, f be increasing, and limy→∞ f(y) = ∞. If

conditions (A1), (A2) and (3) of Theorem 2 hold, then

1

f(n)

n∑
k=1

Xk − EYk
g(k)

−→ 0, almost surely, as n→∞. (11)

Remark 5. The above Corollary 1 remains true in the stochastically domi-

nated case.

3.2. ρ−-mixing sequences. In this subsection, we consider ρ−-mixing sequences

of random variables and prove that for such sequences (3) is not only a sufficient

but also a necessary condition for the weighted strong law of large numbers in

the Jajte’s form.

Let us begin with the definition which is due to Zhang and Wang (see [18]).

Definition 3. A sequence {Xk}k∈N is called ρ−-mixing, if

ρ−(s) = sup
{
ρ−(S, T ) : S, T ⊂ N,dist(S, T ) ≥ s

}
−→ 0, s→∞,

where dist(S, T ) = min {|m− n| : m ∈ S, n ∈ T}, and

ρ−(S, T ) := max

(
0; sup

{
Cov(f(Xi, i ∈ S), g(Xj , j ∈ T ))√

Var(f(Xi, i ∈ S)) Var(g(Xj , j ∈ T ))

})
,

with the supremum (in the definition of the mixing coefficient ρ−(·, ·)) running

over all coordinatewise nondecreasing functions f and g.

Remark 6. Zhang and Wang (see [18]) noted that ρ−-mixing r.v.’s in-

clude negatively associated sequences and ρ∗-mixing r.v.’s (ρ−(s) ≤ ρ∗(s)). Fur-

thermore, increasing functions defined on disjoint subsets of ρ−-mixing sequence

{Xk}k∈N with mixing coefficients ρ−(s) are also ρ−-mixing with coefficients not

greater than ρ−(s). Let us also note that ρ∗-mixing r.v.’s (also called ρ-mixing

r.v.’s), introduced by Kolmogorov and Rozanov in 1960 (see [6] for the references),

have been studied extensively and have found a lot of applications.

In [16], Wang and Lu studied the properties of ρ−-mixing r.v.’s satisfying

the following condition:

lim
n→∞

ρ−(n) ≤ r, 0 ≤ r <
(

1

6p

)p/2
, for some p ≥ 2. (12)

They obtained the Rosenthal-type maximal inequality as follows.
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Lemma 2. For a positive integer N ≥ 1, positive real numbers p ≥ 2 and

0 ≤ r <
(

1
6p

)p/2
, if {Xk}k∈N is a sequence of r.v.’s with ρ−(N) ≤ r, EXk = 0

and E|Xk|p < ∞ for every k ≥ 1, then there exists a positive constant Dp,N,r =

D(p,N, r) such that, for all n ≥ 1,

E

 max
1≤k≤n

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p

≤ Dp,N,r

 n∑
k=1

E|Xk|p +

(
n∑
k=1

EX2
k

)p/2 . (13)

It is easy to see that for p = 2 (and thus 0 ≤ r < 1/12) we have an inequality

of the form (10). Proceeding exactly as in the case of AANA r.v.’s, we show that

the second Kolmogorov type maximal inequality (2) for moments of r.v.’s Yk−EYk

ϕ(k)

is, again, satisfied.

Now, we are in a position to prove that the sufficient condition (3) for the

weighted SLLN in Theorem 2 is indeed the necessary one, as well. In other words,

we can finally prove the following result.

Theorem 4. Let {Xk}k∈N be a sequence of ρ−-mixing equidistributed r.v.’s

with mixing coefficients satisfying condition
∑∞
n=1 ρ

−(n) <∞. Let also the func-

tions f, g and r.v.’s Yk be defined as in Theorem 2; furthermore, f is increasing,

and limy→∞ f(y) =∞. Under assumptions (A1) and (A2) of Theorem 2, condi-

tion (3), i.e. Eϕ−1(|X1|) <∞, is equivalent to

1

f(n)

n∑
k=1

Xk − EYk
g(k)

−→ 0, almost surely, as n→∞. (14)

We shall need the following version of the second Borel–Cantelli lemma.

Lemma 3. Let {An}n∈N be a sequence of events such that
∑∞
n=1 P (An) =

∞, and for all n, k ∈ N,

P (Ak ∩An+k) ≤ P (Ak)P (An+k) + ρ−(k)
P (An) + P (An+k)

2
, (15)

where {ρ−(k)}k∈N is a sequence of nonnegative numbers such that
∑∞
j=1 ρ

−(j) <

∞. Then P (lim supAn) = 1.

Proof. Without loss of generality, we may and do assume that P (A1) > 0,

then s :=
∑n
i=1 P (Ai) > 0, and moreover,

P (∪ni=1Ai) > 0, for each n ∈ N. (16)
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In 1952, Chung and Erdős (see e.g. [2]) showed that for a sequence {An}n∈N
of events satisfying condition (16),

P (∪ni=1Ai) ≥
(
∑n
i=1 P (Ai))

2∑n
i=1

∑n
j=1 P (Ai ∩Aj)

=
s2

s+ 2
∑

1≤i<j≤n P (Ai ∩Aj)
. (17)

In order to proceed further, we need to derive the following estimation.

∑
1≤i<j≤n

P (Ai ∩Aj) =

n−1∑
i=1

n∑
j=i+1

P (Ai ∩Aj) =

n−1∑
i=1

n−i∑
j=1

P (Ai ∩Aj+i),

which, by (15),

≤
n−1∑
i=1

n−i∑
j=1

P (Ai)P (Aj+i) +

n−1∑
i=1

n−i∑
j=1

ρ−(j)

2
(P (Ai) + P (Ai+j))

=
s2 −

∑n
i=1 P

2(Ai)

2
+

n−1∑
i=1

P (Ai)

2

n−i∑
j=1

ρ−(j) +

n−1∑
i=1

n−i∑
j=1

ρ−(j)

2
P (Ai+j)

≤
s2 −

∑n
i=1 P

2(Ai)

2
+
s

2

∞∑
j=1

ρ−(j) +
∑

1≤i<j≤n

ρ−(i)

2
P (Aj),

and denoting c :=
∑∞
j=1 ρ

−(j) <∞,

≤
s2 −

∑n
i=1 P

2(Ai)

2
+
s

2

∞∑
j=1

ρ−(j) +
s

2

∞∑
j=1

ρ−(j) ≤ s2

2
+ sc.

Returning to inequality (17), we get P (∪ni=1Ai) ≥ s
1+s+2c .

Approaching the generalized second Borel–Cantelli lemma, let us now assume

that
∑∞
n=1 P (An) =∞. Then, for m ∈ N,

P (∪∞i=mAi) ≥ P
(
∪m+n
i=m Ai

)
≥ sn

1 + sn + 2c
,

where sn :=
∑m+n
i=m P (Ai)→∞, n→∞. Hence we have P (∪∞i=mAi) ≥ 1. Thus,

P (lim supAi) = P (∩∞m=1 ∪∞i=m Ai) = lim
m→∞

P (∪∞i=mAi) = 1. �
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Proof of Theorem 4. Sufficiency follows from Theorem 2. To prove ne-

cessity, let us observe that as in [7], from (14) it follows that Xn/ϕ(n) → 0,

almost surely. Define the events An = {Xn/ϕ(n) ≥ 1}, then IAn = I〈ϕ(n),∞)
(Xn)

is a nondecreasing function of Xn, and by the ρ−-mixing property, we have

Cov(IAn , IAn+k
) = P (An ∩An+k)− P (Ak)P (An+k)

≤ ρ−(k)
√
P (An)(1− P (An))

√
P (An+k)(1− P (An+k))

≤ ρ−(k)
√
P (An)

√
P (An+k) ≤ ρ−(k)

P (An) + P (An+k)

2
.

Similarly, for Bn = {−Xn/ϕ(n) ≥ 1}, we see that −IBn
= −I

(−∞,−ϕ(n)〉 (Xn) is a

nondecreasing function of Xn, thus

P (Bn ∩Bn+k)− P (Bk)P (Bn+k) ≤ ρ−(k)
P (Bn) + P (Bn+k)

2
.

Consequently, by the standard technique, we can apply Lemma 3. If it were∑∞
n=1 P (An) =∞, then P (An, i.o.) = 1, which contradicts Xn/ϕ(n)→ 0, almost

surely. Thus,
∑∞
n=1 P (An) <∞, and similarly,

∑∞
n=1 P (Bn) <∞. We therefore

conclude that
∑∞
n=1 P (|Xn/ϕ(n)| ≥ 1) =

∑∞
n=1 P (|X1| ≥ ϕ(n)) < ∞, implying

Eϕ−1 (|X1|) <∞. �

The Marcinkiewicz–Zygmund strong law of large numbers for negatively as-

sociated or AANA sequences has been proved only in its direct part (see [14], for

the classical i.i.d. case we refer the reader to [3]). In the next theorem, we prove

also the converse part in the case of ρ−-mixing sequences. We derive this result

directly from Theorem 2 and Lemma 3.

Theorem 5. Let {Xk}k∈N be a sequence of ρ−-mixing, equidistributed r.v.’s

with mixing coefficients satisfying the condition
∑∞
n=1 ρ

−(n) <∞. Then, for any

0 < p < 2,

1

n1/p

n∑
k=1

(Xk − c)→ 0, almost surely, as n→∞ (18)

if and only if

E |X1|p <∞. (19)

If (19) is satisfied, then c = EX1 in the case 1 ≤ p < 2; while c is arbitrary (and

may be taken as equal to 0) in the case 0 < p < 1.

Proof. Similarly, like in [3], from (18) it follows that Xn/n
1/p → 0, almost

surely, as n→∞. Proceeding as in the proof of Theorem 4, by Lemma 3 we get∑∞
n=1 P

(
|X1| ≥ n1/p

)
<∞, thus (19) holds.
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From (19) and Theorem 4 it follows that

1

n1/p

n∑
k=1

(Xk − EYk) −→ 0, almost surely, as n→∞, (20)

with EYk = −k1/pP
(
Xk < −k1/p

)
+ EXkI

[
|Xk| ≤ k1/p

]
+ k1/pP

(
Xk > k1/p

)
.

We start with the case 0 < p < 1. Let us define the following functions:

fk(x) = k1/pI(−∞,−k1/p〉∪〈k1/p,+∞)(x) + |x|I(−k1/p,k1/p)(x).

The sequence {fk}k∈N is nondecreasing, and therefore

0 ≤ fk(x) ≤ fn(x), for 1 ≤ k ≤ n and every x ∈ R,

furthermore,
fn(x)

n1/p−1
≤ |x|p.

Thus∣∣∣∣∣ 1

n1/p

n∑
k=1

EYk

∣∣∣∣∣ ≤ 1

n1/p

n∑
k=1

E|Yk| =
1

n1/p

n∑
k=1

Efk(Xk) =
1

n1/p

n∑
k=1

Efk(X1)

≤ Efn(X1)

n1/p−1
, (21)

on account that fn(X1)
n1/p−1 → 0, almost surely, fn(X1)

n1/p−1 ≤ |X1|p and E|X1|p < ∞,
from (21) and Lebesgue’s dominated convergence theorem, we get

∣∣ 1
n1/p

∑n
k=1EYk

∣∣
→ 0, as n→∞. Thus 1

n1/p

∑n
k=1 (Xk − c)→ 0, almost surely, as n→∞, for any

constant c.

In the remaining case 1 ≤ p < 2, we have to prove that

1

n1/p

n∑
k=1

(EYk − EX1) −→ 0.

Let us observe that∣∣∣∣∣ 1

n1/p

n∑
k=1

(EYk−EX1)

∣∣∣∣∣ ≤ 1

n1/p

n∑
k=1

(
k1/pP

(
|X1| > k1/p

)
+E|X1|I

[
|X1| > k1/p

])
≤ 2

n1/p

n∑
k=1

k1/p−1E|X1|pI [|X1|p > k]→ 0, as n→∞,
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by the Toeplitz theorem on regular transformation of sequences into sequences

(see [10]), which may be applied since 1
n1/p

∑n
k=1 k

1/p−1 → p, as n → ∞ and

E|X1|pI [|X1|p > k]→ 0, as k →∞. �

We complete this section with constructing an example of a sequence of

negatively associated r.v.’s with the same distribution, for which the results of

this section may be applied.

Example 1. Let us consider a gaussian sequence {ξk}k∈N such that ξ′ks

have the standard normal distribution, and Cov (ξi, ξj) = −ai+j , i 6= j with

0 < a ≤ 1
2 . These r.v.’s are negatively correlated gaussian, and according to [9],

are negatively associated. To show that such a sequence exists, it suffices to prove

that the matrix An = [aij ] where aij = −ai+j , for i 6= j and aii = 1 is positive-

definite, and it is indeed the covariance matrix of the vector [ξ1, ξ2, . . . , ξn] . Let

us write An = I−B + D, where I is a unit matrix, D is a diagonal matrix with

entries dii = a2i, and B = [bij ] with bij = ai+j .

Let us focus on the matrix B. We put x = [x1, . . . , xn], by the Cauchy–

Schwarz inequality we have

xBxT =

(
n∑
i=1

aixi

)2

≤
n∑
i=1

a2i
n∑
i=1

x2i ≤
a2

1− a2
‖x‖2 ≤ ‖x‖2 .

Thus

xAnx
T = ‖x‖2 − xBxT + xDxT > 0,

provided x 6= 0.

Now, let us denote by Φ the standard normal distribution, and let F be any

continuous distribution with the quasi-inverse F−1. Define Xk = F−1 (Φ (ξk)) ,

then {Xk}k∈N is a sequence of negatively associated r.v.’s with the same distribu-

tion F. Therefore, for such a sequence {Xk}k∈N, (18) holds iff
∫
|x|pdF (x) <∞.
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