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Zeros and irreducibility of Stern polynomials

By KARL DILCHER (Halifax), MOHAMMAD KIDWAI (Halifax)
and HAYLEY TOMKINS (Halifax)

Abstract. The classical Stern sequence was extended by Klavžar, Milutinović and

Petr to the Stern polynomials Bn(z) defined by B0(z) = 0, B1(z) = 1, B2n(z) = zBn(z),

and B2n+1(z) = Bn(z) +Bn+1(z). Ulas conjectured that Bp(z) is irreducible whenever

p is a prime, and verified this for the first 106 primes, while Schinzel proved the conjecture

for a certain class of primes. In this paper, we show that the conjecture is true for various

further classes of primes, which is achieved by the use of different new results on the

distribution of the zeros of certain classes of Bn(z), also proved in this paper. Some of

these results can be seen as variants of the classical theorem of Kakeya and Eneström.

1. Introduction

The Stern sequence {a(n)}n≥0 is defined by a(0) = 0, a(1) = 1, and for n ≥ 1

by

a(2n) = a(n), a(2n+ 1) = a(n) + a(n+ 1). (1.1)

The sequence starts as 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, . . .;

see [4] for some historical remarks and for some properties of this sequence. Per-

haps the most remarkable property is the fact that the terms a(n), a(n + 1) are

always relatively prime, and that each positive reduced rational number occurs

once and only once in the sequence {a(n)/a(n+ 1)}n≥1.

In recent years, the Stern sequence was extended to two different sequences

of polynomials, independently by the first author and K. B. Stolarsky [4], and
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by Klavžar, Milutinović and Petr [6]. The polynomial sequence of Klavžar

et al. is defined by B0(z) = 0, B1(z) = 1, and for n ≥ 1,

B2n(z) = zBn(z), (1.2)

B2n+1(z) = Bn(z) +Bn+1(z); (1.3)

see Table 1 for the first 32 Stern polynomials. By comparison with (1.1), we see

immediately that

Bn(1) = a(n) (n ≥ 0), (1.4)

and an easy induction shows that

Bn(2) = n (n ≥ 0). (1.5)

Numerous interesting properties of these polynomials were derived in [6], including

connections with “hyperbinary representations” and the “standard Gray code”.

Also, identities and a recurrence relation for the degrees of the Bn(z) are derived

in that paper.

n Bn(z) n Bn(z)

1 1 17 z3 + z2 + 2z + 1

2 z 18 z3 + 2z2 + z

3 z + 1 19 3z2 + 3z + 1

4 z2 20 2z3 + z2

5 2z + 1 21 3z2 + 4z + 1

6 z2 + z 22 z3 + 3z2 + z

7 z2 + z + 1 23 z3 + 2z2 + 3z + 1

8 z3 24 z4 + z3

9 z2 + 2z + 1 25 z3 + 3z2 + 2z + 1

10 2z2 + z 26 2z3 + 2z2 + z

11 z2 + 3z + 1 27 z3 + 3z2 + 3z + 1

12 z3 + z2 28 z4 + z3 + z2

13 2z2 + 2z + 1 29 2z3 + 2z2 + 2z + 1

14 z3 + z2 + z 30 z4 + z3 + z2 + z

15 z3 + z2 + z + 1 31 z4 + z3 + z2 + z + 1

16 z4 32 z5

Table 1. Bn(z), 1 ≤ n ≤ 32.
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Further properties of the Stern polynomials were obtained in the more recent

papers by M. Ulas [14], [15]; they end with a number of conjectures, including

the following one [14, Conjecture 6.4], which was verified by calculation for the

first million primes.

Conjecture 1.1 (Ulas). For any prime p the Stern polynomial Bp(z) is

irreducible over the rationals.

Subsequently, A. Schinzel [13] obtained various results on the factors of

Stern polynomials, and he proved Conjecture 1.1 for the following special case.

Theorem 1.2 (Schinzel). For all integers n ≥ 3, B2n−3(z) is irreducible over

the rationals.

Furthermore, Schinzel proved, without computations, that Bp(z) is irre-

ducible for all primes p < 2017.

It is one of the purposes of this paper to obtain further results on the irre-

ducibility of Stern polynomials. While Schinzel’s Theorem 1.2 was proved by way

of Eisenstein’s irreducibility criterion, we will apply a different criterion, namely

that of A. Cohn, which we state here as quoted in [2].

Theorem 1.3 (Cohn). Let f(z) = a0 + a1z + · · · + anz
n ∈ Z[z] have the

zeros α1, . . . , αn, and suppose that there is an integer b for which f(b) is a prime.

If f(b− 1) 6= 0, and

b > Re(αj) +
1

2
for 1 ≤ j ≤ n, (1.6)

then f(z) is irreducible over the rationals.

If we take b = 2 and f(z) = Bp(z), where p is a prime, then, by (1.5), one

of the conditions in Theorem 1.3 is already satisfied. Furthermore, we clearly

have f(b − 1) = Bp(1) > 0 since the Stern polynomials have only nonnegative

coefficients. We, therefore, have the following consequence of Theorem 1.3.

Corollary 1.4. If p is a prime and the zeros of Bp(z) all lie in the half-plane

{z ∈ C | Re(z) < 3
2}, then Bp(z) is irreducible over the rationals.

This means that we need to study the zero distribution of Stern polynomials,

which will be the main part of this paper. We begin with some further properties

of Stern polynomials, given in Section 2. The main purpose of Section 3 is then

to derive a number of general results extending the classical theorem of Eneström

and Kakeya, and apply it to classes of Stern polynomials. In Section 4, we obtain
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results on the zeros of different but related classes of Stern polynomials. While

Sections 3 and 4 are mainly concerned with zeros in a half-plane, in Section 5 we

prove results on zeros in an open disk, and then return to irreducibility questions.

We conclude this paper with a few further remarks in Section 6.

2. Some properties of Stern polynomials

In this brief section we quote, or derive, some properties of the Stern poly-

nomials that will be used in later sections. We begin with a pair of identities, the

first of which is due to Schinzel [13, Lemma 1].

Lemma 2.1. For all nonnegative integers a, m, and r with 0 ≤ r ≤ 2a, we

have

Bm2a+r(z) = B2a−r(z)Bm(z) +Br(z)Bm+1(z), (2.1)

and for odd m ≥ 1,

Bm2a+r(z) = B2a+r(z)Bm(z)−Br(z)Bm−1(z). (2.2)

Proof. It remains to prove (2.2). If we multiply both sides of (1.3) by z

and use (1.2), then with m = 2n+ 1 we get

zBm(z) = Bm+1(z) +Bm−1(z). (2.3)

We then multiply both sides of this by Br(z) and note that (2.1) with m = 1

gives

B2a+r(z)−B2a−r(z) = zBr(z). (2.4)

Hence we get, with (2.3),

Bm(z) (B2a+r(z)−B2a−r(z)) = Br(z) (Bm+1(z) +Bm−1(z)) ,

or

B2a−r(z)Bm(z) +Br(z)Bm+1(z) = B2a+r(z)Bm(z)−Br(z)Bm−1(z).

This, together with (2.1), immediately gives (2.2). �
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Next, we consider two subsequences of the Stern polynomials that are related

to the following interesting property of the Stern sequence (1.1). In each interval

2n−2 ≤ m ≤ 2n−1 the maximum value of a(m) is the Fibonacci number Fn. It

was apparently first shown by Lehmer [7] that this maximum occurs at

αn :=
1

3
(2n − (−1)n) and βn :=

1

3

(
5 · 2n−2 + (−1)n

)
(n ≥ 2), (2.5)

where αn is also defined for n = 0, 1; see Table 2 for the first few values of both

sequences.

n 0 1 2 3 4 5 6 7 8 9 10

αn 0 1 1 3 5 11 21 43 85 171 341

βn 2 3 7 13 27 53 107 213 427

Table 2. αn, βn, 1 ≤ n ≤ 10.

Numerous properties of these sequences can be found in [9] under A001045

and A048573, respectively. Here we mention only the recurrence relations

αn+1 = 2αn + (−1)n, βn+1 = 2βn − (−1)n, (2.6)

which immediately follow from (2.5). Also, by (1.4) and the remark preced-

ing (2.5), we have

Bαn(1) = Bβn(1) = Fn (n ≥ 2). (2.7)

We now state and prove two recurrence relations.

Lemma 2.2. The following identities hold:

Bαn+1
(z) = Bαn(z) + zBαn−1

(z) (n ≥ 1), (2.8)

Bβn+1
(z) = Bβn(z) + zBβn−1

(z) (n ≥ 3), (2.9)

with the initial conditions Bα0
(z) = 0, Bα1

(z) = 1, Bβ2
(z) = z, and Bβ3

(z) =

z + 1.

Proof. Using the recurrence relations (1.3) and (2.6), we get

Bαn+1
(z) = B2αn+(−1)n(z) = Bαn(z) +Bαn+(−1)n(z). (2.10)

Using (2.6) again, we see that with (1.2) we have

Bαn+(−1)n(z) = B2αn−1
(z) = zBαn−1

(z).

This, combined with (2.10), gives (2.8). The proof of (2.9) is almost identical,

and the initial conditions are easily obtained from Tables 1 and 2. �
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Lemma 2.2 can now be used to derive explicit expansions for the two se-

quences Bαn(z), Bβn(z). The recurrence relation (2.8), along with its initial

conditions, is a special case of the well-known sequence of the bivariate Fi-

bonacci polynomials (also known as Lucas sequences) defined by F0(x, y) = 0,

F1(x, y) = 1, and

Fk(x, y) = xFk−1(x, y) + yFk−2(x, y) (k ≥ 1). (2.11)

These polynomials go back to at least Lucas [8], and they are known to have the

explicit expansion

Fn+1(x, y) =

bn/2c∑
j=0

(
n− j
j

)
xn−2jyj . (2.12)

Comparing (2.11) with (2.8), we see that Bαn(z) = Fn(1, z), and therefore (2.12)

immediately gives the first of the following two identities.

Lemma 2.3. For all n ≥ 2, we have

Bαn(z) =

bn−1
2 c∑
j=0

(
n− 1− j

j

)
zj , (2.13)

Bβn(z) = 1 +

bn2 c∑
j=1

((
n− 1− j
j − 1

)
+

(
n− 3− j

j

))
zj , (2.14)

where (2.13) also holds for n = 0, 1.

Proof. Only (2.14) remains to be proven. To do so, we note that

Bβn(z) = zBαn−1
(z) +Bαn−2

(z) (n ≥ 2). (2.15)

This comes from the fact that both sides of (2.15) satisfy the same recurrence

relation, and we have the initial conditions Bβ2(z) = z ·1+0 and Bβ3(z) = z ·1+1,

as required. Finally, we obtain (2.14) from (2.15) and (2.13) after some easy

manipulations. �

3. Zeros of Stern polynomials, I.

The following notation will be used for a half-plane that occurs repeatedly

throughout the remainder of this paper:

D := {z ∈ C | Re(z) < 1}.

We begin this section with an observation which we formulate as a conjecture.
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Conjecture 3.1. The zeros of all Stern polynomials Bm(z), m ≥ 2, lie in D.

By the identity (1.2), we only need to consider odd indices m. We verified this

conjecture numerically for all m ≤ 107. See also Figure 1, which shows most, but

not all, of the zeros for m ≤ 216 (see Proposition 3.3 in this connection). A proof of

Conjecture 3.1 would immediately imply Conjecture 1.1, by Corollary 1.4. In this

section and the next, we will prove a variety of partial results.

Figure 1. Zeros of Bm(z), m ≤ 216, with unit circle.

3.1. Polynomials with explicit zeros. We begin with an easy result which

also shows that Conjecture 3.1 is best possible.

Proposition 3.2. For every ν ≥ 2, all zeros of B2ν−1(z) lie in D. Further-

more, the supremum of the set of real parts of the zeros of B2ν−1(z), for all ν ≥ 2,

is 1.

Proof. We can say more about the zeros of B2ν−1(z). It is easy to see by

induction, using the recurrences (1.2) and (1.3), that

B2ν−1(z) = zν−1 + zν−2 + · · ·+ z + 1 =
zν − 1

z − 1
. (3.1)
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This shows that the zeros are all the ν-th roots of unity, except z = 1. Both parts

of the proposition follow immediately. �

We now consider a second class of Stern polynomials with an explicit ex-

pansion, for which we can determine the zeros explicitly. The Fibonacci poly-

nomials defined by (2.11) are closely related to the Chebyshev polynomials of

the second kind defined by the recurrence relation U0(x) = 1, U1(x) = 2x, and

Un+1(x) = 2xUn(x)−Un−1(x). Among numerous properties (see, e.g., [10, Chap-

ter 18]) is the explicit expansion

Un(x) =

bn2 c∑
j=0

(−1)j
(
n− j
j

)
(2x)n−2j .

Comparing this with (2.13), we see that

Bαn+1( −14x2 ) =
1

(2x)n
Un(x). (3.2)

Another well-known property of the polynomials Un(x) is the fact that all their

zeros are real and lie in the interval (−1, 1); moreover, they are explicitly given by

xj := cos(kπ/(n + 1)), j = 1, . . . , n. This fact, with (3.2), leads to the following

result.

Proposition 3.3. For αn = (2n − (−1)n)/3, the zeros of Bαn(z) are real

and negative, and are given by

zj := −1

4
sec2

(
πj

n

)
, j = 1, 2, . . . , bn−12 c.

In particular, this shows that zeros of Stern polynomials can be negative

numbers with arbitrarily large absolute values. One can also observe that among

the zeros zj above there are the rational values − 1
3 , − 1

2 , and −1. Interestingly,

it was recently proved by Gawron [5] that these three numbers, along with 0,

are the only possible rational zeros of Stern polynomials, and that each of them

is a zero of infinitely many Stern polynomials. This was earlier conjectured by

Ulas [14].

While the polynomials Bβn(z) also have an explicit expansion, their zeros

cannot be given explicitly, and it appears that the polynomials in this class all

have a pair of nonreal zeros, in addition to negative real zeros. We did not pursue

this further.
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3.2. The Eneström–Kakeya theorem and variants. A different approach

involves the relative sizes of the coefficients of Bm(z); the key is the following

remarkable theorem of Eneström and Kakeya; see, e.g., [12, III.22].

Theorem 3.4 (Eneström, Kakeya). If f(z) = a0 + a1z+ · · ·+ anz
n satisfies

0 < a0 ≤ a1 ≤ · · · ≤ an, (3.3)

then all the zeros of f(z) lie on the unit disk |z| ≤ 1.

To apply this theorem, we note that for ν ≥ 3 we have

B2ν−3(z) = 1 + 2z + 2z2 + · · ·+ 2zν−2. (3.4)

To see this, we write 2ν − 3 = (2ν−1− 2) + (2ν−1− 1) = 2(2ν−2− 1) + (2ν−1− 1),

so that with (1.3) and (1.2) we get

B2ν−3(z) = zB2ν−2−1(z) +B2ν−1−1(z).

The identity (3.4) then follows from (3.1). Theorem 3.4 now gives the following

result, if we note that z = 1 can never be a zero.

Proposition 3.5. For any ν ≥ 3, all the zeros of B2ν−3(z) lie inside or on

the unit circle, and in particular in D.

Theorem 3.4 also applies to B2ν−1(z) and its reciprocal, not giving us any-

thing new. While it appears that these two classes are the only ones to which

this theorem directly applies, the idea behind the usual proof of Theorem 3.4 can

be adapted to make it more applicable to our situation. Our first result in this

direction is as follows.

Theorem 3.6. Let n ≥ 1. If f(z) = a0 + a1z + · · ·+ anz
n satisfies

0 < a0 ≤ a1 ≤ · · · ≤ an−1 > an > 0, (3.5)

then all the zeros of f(z) lie in D.

Proof. We multiply f(z) by z − 1, obtaining

(z − 1)f(z) = anz
n+1 + (an−1 − an)zn

−
[
(an−1 − an−2)zn−1 + · · ·+ (a1 − a0) + a0

]
. (3.6)
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Let N(z) be the expression in square brackets on the right-hand side of (3.6).

Then, for |z| ≥ 1 we have, keeping (3.5) in mind,

|N(z)| ≤ |an−1 − an−2| · |z|n−1 + · · ·+ |a1 − a0| · |z|+ a0

≤ ((an−1 − an−2) + · · ·+ (a1 − a0) + a0) |z|n−1 = an−1|z|n−1. (3.7)

On the other hand, if we assume that Re(z) ≥ 1, then∣∣anzn+1 + (an−1 − an)zn
∣∣ = |anz + (an−1 − an)| · |z|n

≥ |an + (an−1 − an)| · |z|n = an−1|z|n. (3.8)

Now, (3.6) together with (3.7) and (3.8) shows that

|(z − 1)f(z)| ≥ an−1(|z| − 1)|z|n−1 > 0, (3.9)

whenever |z| > 1 and Re(z) ≥ 1. These conditions are satisfied for all z 6∈ D, with

the exception of z = 1. But certainly f(1) > 0 by (3.5), and so by (3.9) we have

f(z) 6= 0, whenever z 6∈ D. This completes the proof. �

This result can be applied to a few classes of Stern polynomials. Indeed, we

can show the following.

Lemma 3.7. For all ν as indicated, we have

B2ν−5(z) = 1 + 3z + · · ·+ 3zν−3 + zν−2 (ν ≥ 4), (3.10)

B2ν−7(z) = 1 + 2z + 3z2 + · · ·+ 3zν−3 + zν−2 (ν ≥ 5), (3.11)

B2ν−11(z) = 1 + 4z + 5z2 + · · ·+ 5zν−4 + 3zν−3 (ν ≥ 6), (3.12)

B2ν−13(z) = 1 + 3z + 5z2 + · · ·+ 5zν−4 + 3zν−3 (ν ≥ 6), (3.13)

where the dots indicate constant coefficients.

Proof. We use the same argument as that following (3.4), and write

2ν − 5 = 2(2ν−2 − 1) + (2ν−1 − 3), 2ν − 11 = 2(2ν−2 − 3) + (2ν−1 − 5),

2ν − 7 = 4(2ν−3 − 1) + (2ν−1 − 3), 2ν − 13 = 2(2ν−2 − 3) + (2ν−1 − 7).

Then we use the identities (1.3) and (1.2), together with (3.1) and (3.4), to obtain

(3.10) and (3.11). Finally, we use these last two identities, along with (3.4) again,

to get (3.12) and (3.13). �
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Theorem 3.6, applied to (3.10)–(3.13), immediately leads to the following

consequences.

Corollary 3.8. If m = 2ν−k for k ∈ {5, 7, 11, 13} and ν is such that 2ν > k,

then all the zeros of Bm(z) lie in D.

This is clear for all ν satisfying the bounds given in Lemma 3.7, while for

small values of ν the statement of Corollary 3.8 is easy to verify by computation.

We now prove a variant of Theorem 3.6.

Theorem 3.9. Let n ≥ 2. If f(z) = a0 + a1z + · · ·+ anz
n satisfies

0 < a0 ≤ a1 ≤ · · · ≤ an−2 > an−1 ≥ an > 0, and (3.14)

(an + an−1)
2 ≥ 2anan−2, (3.15)

then all the zeros of f(z) lie in D.

Proof. We proceed as in the proof of Theorem 3.6, and consider

(z − 1)f(z) = anz
n+1 + (an−1 − an)zn + (an−2 − an−1)zn−1

−
[
(an−2 − an−3)zn−2 + · · ·+ (a1 − a0)z + a0

]
. (3.16)

We denote the expression in square brackets again by N(z), and with the same

analysis as in (3.7) we get

|N(z)| ≤ an−2|z|n−2, whenever |z| ≥ 1. (3.17)

To consider the first three terms on the right of (3.16), we set g(z) := az2+bz+c,

with

a := an, b := an−1 − an, c := an−2 − an−1. (3.18)

Now, with z = x+ iy, where x, y ∈ R, a straightforward calculation gives

|g(z)|2 =
(
ax2 − ay2 + bx+ c

)2
+ (2axy + by)

2

=
(
a2x4 + 2abx3 + (2ac+ b2)x2 + 2bcx+ c2

)
+ y2

(
a2y2 + b2 − 2ac+ 2a2x2 + 2abx

)
≥
(
a2 + 2ab+ 2ac+ b2 + 2bc+ c2

)
+ y2

(
b2 − 2ac+ 2a2 + 2ab

)
for x ≥ 1. So, if

2a2 + 2ab+ b2 ≥ 2ac, (3.19)
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then

|g(z)|2 ≥ (a+ b+ c)2, or |g(z)| ≥ a+ b+ c = an−2, (3.20)

where we have used (3.18) for the last identity. Now, combining (3.16), (3.17) and

(3.20), the conclusion of the proof is exactly as in the proof of Theorem 3.6, with

n−1 replaced by n−2 in (3.9). Finally, we note that by (3.18) the condition (3.19)

is equivalent to (3.15). �

Theorem 3.9 can be applied to more classes of Stern polynomials.

Lemma 3.10. Ifm = 2ν−k for k ∈ {9, 15, 19, 21, 23, 25, 27, 29, 43, 45, 51, 53},
then Bm(z) satisfies (3.14) for ν ≥ νk, where νk and the coefficients are as listed

in Table 3.

k deg νk coefficients a0, a1, . . .

9 n− 2 6 1, 3, 4, . . ., 4, 2, 1

15 n− 2 7 1, 2, 3, 4, . . ., 4, 2, 1

19 n− 3 7 1, 4, 7, . . ., 7, 5, 2

21 n− 3 7 1, 5, 8, . . ., 8, 6, 1

23 n− 3 8 1, 4, 6, 7, . . ., 7, 5, 2

25 n− 3 8 1, 3, 6, 7, . . ., 7, 5, 2

27 n− 3 8 1, 4, 7, 8, . . ., 8, 6, 1

29 n− 3 8 1, 3, 5, 7, . . ., 7, 5, 2

43 n− 4 9 1, 6, 12, 13, . . ., 13, 11, 4

45 n− 4 9 1, 5, 10, 12, . . ., 12, 10, 5

51 n− 4 9 1, 4, 9, 12, . . ., 12, 10, 5

53 n− 4 9 1, 5, 10, 13, . . ., 13, 11, 4

Table 3. B2ν−k(z), ν ≥ νk.

The entries in Table 3, and thus Lemma 3.10, can be obtained in the same

way as the identities in Lemma 3.7. It is now easy to check that the last three

coefficients in each of the entries in Table 3 satisfy the condition (3.15). Therefore,

Theorem 3.9 leads to the following extension of Corollary 3.8.

Corollary 3.11. Ifm=2ν−k for k∈{9, 15, 19, 21, 23, 25, 27, 29, 43, 45, 51, 53}
and ν is such that 2ν > k, then all the zeros of Bm(z) lie in D.

For each k as in this corollary, if ν < νk, then the conclusion is easy to check

numerically. Alternatively, one can check whether Theorems 3.4, 3.6 or 3.9 apply.

We can go one step further and prove another variant of Theorems 3.6

and 3.9.
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Theorem 3.12. Let n ≥ 3. If f(z) = a0 + a1z + · · ·+ anz
n satisfies

0 < a0 ≤ a1 ≤ · · · ≤ an−3 > an−2 ≥ an−1 ≥ an > 0, and (3.21)

(an−1 − an) (2an − an−1 + an−2) ≥ 7

4
(an−3 − an−2)

2
, (3.22)

then all the zeros of f(z) lie in D.

Proof. Once again we proceed as before. We consider

(z − 1)f(z) = g(z)zn−2 −N(z), (3.23)

where

g(z) := anz
3 + (an−1 − an)z2 + (an−2 − an−1)z + (an−3 − an−2), (3.24)

N(z) := (an−3 − an−4)zn−3 + · · ·+ (a1 − a0)z + a0, (3.25)

and we set

a := an, b := an−1 − an, c := an−2 − an−1, d := an−3 − an−2. (3.26)

In analogy to the proof of Theorem 3.9, we have

|g(z)|2 =
(
ax3 − 3axy2 + bx2 − by2 + cx+ d

)2
+
(
3ax2y − ay3 + 2bxy + cy

)2
= A(x) + y2B(x, y), (3.27)

where

A(x) = a2x6 + 2abx5 + (2ac+ b2)x4 + (2ad+ 2bc)x3 + (2bd+ c2)x2 + 2cdx+ d2

≥ a2+b2+c2+d2+2(ab+ ac+ ad+ bc+ bd+ cd) = (a+b+c+d)2, (3.28)

provided that x ≥ 1, and where

B(x, y) : = a2y4 +
(
3a2x2 + 2abx+ b2 − 2ac

)
y2

+ 3a2x4 + 4abx3 + 2b2x2 + (2bc− 6ad)x+ c2 − 2bd

=
(
a2y4 − 2acy2 + c2

)
+
(
b2 + 3a2x2 + 2abx

)
y2 + C(x)

=
(
ay2 − c

)2
+
(
b2 + 3a2x2 + 2abx

)
y2 + C(x).

Here, we have set

C(x) := 3a2x4 + 4abx3 + 2b2x2 + (2bc− 6ad)x− 2bd.
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For x ≥ 1, we use the obvious facts that x4 ≥ x2 and x2 ≥ 1, and completing the

square in two instances, we get

C(x) ≥
(
3a2x2 − 6adx+ 3d2

)
− 3d2 +

(
2b2 − 2bd+ 1

2d
2
)
− 1

2d
2 + 4ab+ 2bc

= 3(ax− d)2 + 2(b− 1
2d)2 + 4ab+ 2bc− 7

2d
2 ≥ 2b(2a+ c)− 7

2d
2.

Therefore, if

4b(2a+ c) ≥ 7d2, (3.29)

then C(x) ≥ 0, and, consequently, B(x, y) ≥ 0 for all y ∈ R and x ≥ 1. Hence,

by (3.27) and (3.28) we have

|g(z)| ≥ a+ b+ c+ d = an−3,

where we have also used (3.26). Finally, the conclusion follows from (3.23) and

(3.25) as in the previous proofs; it only remains to note that (3.22) is equivalent

to (3.29), via (3.26). �

In analogy to Theorem 3.9, we now apply Theorem 3.12 to the following

classes of Stern polynomials.

Lemma 3.13. If m = 2ν−k, with k as listed in Table 4, then Bm(z) satisfies

(3.21) for ν ≥ νk, where νk and the highest coefficients an−3, an−2, an−1 and an
are shown in Table 4.

k νk an−3, . . . , an k νk an−3, . . . , an k νk an−3, . . . , an
17 8 5, 3, 2, 1 75 10 18, 16, 9, 3 107 11 21, 19, 10, 1

31 9 5, 3, 2, 1 77 10 17, 15, 10, 3 109 11 19, 17, 10, 2

35 9 9, 7, 4, 2 83 10 19, 17, 10, 2 115 11 17, 15, 10, 3

37 9 11, 9, 4, 1 85 10 21, 19, 10, 1 117 11 18, 16, 9, 3

39 9 10, 8, 5, 1 87 11 18, 16, 9, 3 171 12 34, 32, 21, 5

41 9 11, 9, 4, 1 89 11 17, 15, 10, 3 173 12 31, 29, 20, 7

47 10 9, 7, 4, 2 91 11 19, 17, 10, 2 179 12 29, 27, 20, 8

49 10 9, 7, 4, 2 93 11 16, 14, 9, 4 181 12 31, 29, 20, 7

55 10 11, 9, 4, 1 99 11 16, 14, 9, 4 203 12 31, 29, 20, 7

57 10 10, 8, 5, 1 101 11 19, 17, 10, 2 205 12 29, 27, 20, 8

59 10 11, 9, 4, 1 103 11 17, 15, 10, 3 211 12 31, 29, 20, 7

61 10 9, 7, 4, 2 105 11 18, 16, 9, 3 213 12 34, 32, 21, 5

Table 4. B2ν−k(z), ν ≥ νk.



Zeros and irreducibility of Stern polynomials 421

Although we listed the first few coefficients in each of the entries of Table 3,

they are not needed, and for the sake of compactness, we do not include them in

Table 4. The respective degrees of the entries in Table 4 are n = ν − 2 for k = 17

and 31, n = ν − 3 for 35 ≤ k ≤ 61, n = ν − 4 for 75 ≤ k ≤ 117, and n = ν − 5 for

k ≥ 171. As a specific example, written out in full, we mention

B2ν−17(z) = 1 + 3z + 4z2 + 5z3 + · · ·+ 5zν−5 + 3zν−4 + 2zν−3 + zν−2,

valid for ν ≥ ν17 = 8. The entries in Table 4 can again be obtained as in the

proof of Lemma 3.7. We can now state an extension of Corollaries 3.8 and 3.11.

Corollary 3.14. If m = 2ν − k with k as in Table 4, except for k = 17 and

k = 31, and if ν is such that 2ν > k, then all the zeros of Bm(z) lie in D.

This result is obtained by checking that the coefficients an−3, . . . , an in Ta-

ble 4 satisfy the condition (3.22) in Theorem 3.12. In practice it is easier to con-

sider the polynomials (z − 1)Bm(z) for checking the condition (3.21) along with

the condition (3.29). With the exception of k = 17 and k = 31, all other values

of k in Table 4 satisfy these two conditions. While Theorem 3.12 does not apply

to these two cases, computations indicate that they still satisfy Conjecture 3.1.

We conclude this section with a few remarks. First, we note that all Stern

polynomials we considered here are unimodal. In fact, we believe that this is

always true:

Conjecture 3.15. The coefficients of any Stern polynomial Bm(z) form a

unimodal sequence of nonnegative integers.

We verified this conjecture numerically with PARI [11] for all m ≤ 1011.

In the next section, we will encounter further infinite classes of Stern polynomials

which are seen to be unimodal.

We also saw in this section that Stern polynomials of the form B2ν−k(z),

for fixed small integers k, are such that the decrease in the coefficient sequence

occurs only near the end, i.e., near the leading coefficient. Let n′ be the largest

coefficient for which an′−1 ≤ an′ and n = degB2ν−k(z). Then we saw in (3.1)

and (3.4) that n′ = n occurs when k = 1 and 3, while by Lemma 3.7 we have

n′ = n − 1 when k ∈ {5, 7, 11, 13}. Furthermore, Lemmas 3.10 and 3.13 show

that n′ = n − 2 for 12 odd values of k, and n′ = n − 3 for 36 odd values of k.

Our computations seem to indicate that there are no further odd values of k in

each of these categories.

We now summarize the results concerning Stern polynomials obtained in this

section:
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Corollary 3.16. Let k be odd and k ∈ {1 ≤ k ≤ 61 | k 6= 17, 31, 33}, or

k = 75, 77, 83, . . . , 93, 99, . . . , 109, 115, 117, 171, 173, 179, 181, 203, 205, 211, or 213.

Then, for all ν such that 2ν > k, the zeros of B2ν−k(z) all lie in D.

Finally, with regards to the “gap” k = 33, we note that with the usual

methods one can obtain

B2ν−33(z) = 1+3z+4z2 +5z3 +6z4 + · · ·+6zν−6 +4zν−5 +3zν−4 +2zν−3 +zν−2,

valid for ν ≥ 10. Dealing with this class, and with numerous others, would

require a further extension of the general theorems of Section 3, with increasingly

complicated conditions. However, in Section 5 we will obtain some weaker results

for this case, and for some other gaps in Corollary 3.16.

4. Zeros of Stern polynomials, II.

The main purpose of this section is to show that all the zeros of B2ν+k(z),

for all k as treated in the previous section, and for all ν ≥ 1, also lie in D. In this

case, the proofs are specific to Stern polynomials, and therefore we do not have

analogues of the general Theorems 3.6, 3.9, and 3.12.

The main connection between the “+k” and the “−k” case is the identity

B2ν+k(z) = B2ν−k(z) + zBk(z) (k ≥ 0, 2ν ≥ k), (4.1)

which follows from (2.1) by setting m = 1. As a first application, we take k = 1;

then (4.1) together with (3.1) gives

B2ν+1(z) = zν−1 + · · ·+ z2 + 2z + 1 (ν ≥ 3), (4.2)

where the dots once again indicate constant coefficients. Similarly, (4.1) with

k = 3, combined with (3.4) and the fact that B3(z) = z + 1, gives

B2ν+3(z) = 2zν−2 + · · ·+ 2z3 + 3z2 + 3z + 1 (ν ≥ 5). (4.3)

Multiplying both sides of the identities (4.2) and (4.3) by z − 1, we get

(z − 1)B2ν+1(z) = zν + z2 − z − 1 (ν ≥ 3), (4.4)

(z − 1)B2ν+3(z) = 2zν−1 + z3 − 2z − 1

= 2zν−1 + (z2 − z − 1)(z + 1) (ν ≥ 5). (4.5)

These identities show that the quadratic polynomial z2 − z − 1 plays a special

role, which, as we shall see, extends to other classes of Stern polynomials. The

following two inequalities are important tools for this and for the following section,

respectively.
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Lemma 4.1. With z = x+ iy, where x, y ∈ R, we have

|z2 − z − 1| ≤ |z|3 when x ≥ 1, (4.6)

|z2 − z − 1| ≤ 19
9 |z|

2 when |z| ≥ 3
2 . (4.7)

Proof. Let h(z) := z2 − z − 1. Easy calculations show that

|h(z)|2 = x4 − 2x3 − x2 + 2x+ 1 + y2
(
y2 + 2x2 − 2x+ 3

)
,

|z|6 = x6 + 3x4y2 + 3x2y4 + y6,

so that

|h(z)|2 − |z|6 = (x4 − x6) + 2(x− x3) + (1− x2)

+ y2
(
−3x4 + 2x2 − 2x+ 3 + y2(−y2 − 3x2 + 1)

)
. (4.8)

Now, we note that

−3x4 + 2x2 − 2x+ 3 = (1− x)(3x3 + 3x2 + x+ 3) ≤ 0 for x ≥ 1,

and that clearly −y2 − 3x2 + 1 < 0 for x ≥ 1. Hence, all terms on the right

of (4.8) are nonpositive when x ≥ 1, which immediately gives (4.6).

Finally, we note that for |z| ≥ 3
2 we have

|z2 − z − 1|
|z|2

≤ |z|
2 + |z|+ 1

|z|2
= 1 +

1

|z|
+

1

|z|2
≤ 1 +

2

3
+

4

9
=

19

9
,

which proves (4.7). �

We are now ready to deal with the first two classes of Stern polynomials in

this section.

Proposition 4.2. For integers ν ≥ 1, all zeros of B2ν+1(z) and B2ν+3(z) lie

in D.

Proof. By (4.4) and (4.6) we have, for ν ≥ 3,

|(z − 1)B2ν+1(z)| ≥ |z|ν − |z2 − z − 1| ≥ |z|ν − |z|3 (x ≥ 1).

Hence, for ν ≥ 4, the right-hand side is positive, with the exception of z = 1.

However, we know that Bn(1) > 0 for any n. This proves the first statement for

ν ≥ 4.
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Next, by (4.5) and (4.6) we have, for ν ≥ 5,

|(z − 1)B2ν+3(z)| ≥ 2|z|ν−1 − |z|3|z + 1| (x ≥ 1). (4.9)

Now, |z + 1| ≤ 2|z| when |z| ≥ 1. Hence, the right-hand side of (4.9) is positive

when x ≥ 1, with the exception of z = 1, a case that is resolved as before. This

proves the second statement for ν ≥ 5. The remaining cases in both statements

for small ν ≥ 1 are easy to verify by computation. �

To motivate our next results, we begin by extending the identities (4.4)

and (4.5).

Lemma 4.3. For all ν as indicated, we have

(z − 1)B2ν+5(z) = (z + 2)zν−2 + (2z3 − z2 − 3z − 1) (ν ≥ 6), (4.10)

(z − 1)B2ν+7(z) = (z + 2)zν−2 + (z4 − z2 − 2z − 1) (ν ≥ 7), (4.11)

(z − 1)B2ν+11(z) = (3z + 2)zν−3 + (z4 + 2z3 − 3z2 − 4z − 1) (ν ≥ 8), (4.12)

(z − 1)B2ν+13(z) = (3z + 2)zν−3 + (2z4 − 3z2 − 3z − 1) (ν ≥ 8). (4.13)

Proof. From (3.10), with (4.1) and the corresponding entry in Table 1, we

get

B2ν+5(z) = zν−2 + 3zν−3 + · · ·+ 3z3 + 5z2 + 4z + 1 (ν ≥ 6),

with similar expressions for B2ν+k(z) with k = 7, 11 and 13, which follow from

(3.11)–(3.13), respectively. Upon multiplying each of these by z − 1, we get the

desired identities (4.10)–(4.13). �

Upon factoring the low-degree polynomials on the right-hand sides of (4.10)–

(4.13), we can see that they are equal to (z2−z−1)Bk(z), with k = 5, 7, 11 and 13,

respectively. The polynomials in (4.4) and (4.5) follow the same pattern. These

are special cases of the following result, which we state and prove together with

an analogue relevant to the previous section.

Proposition 4.4. Let µ ≥ 0 and 0 ≤ ` ≤ 2µ − 1 be integers such that

k := 2µ + ` is odd. Then, for ν ≥ µ,

(z − 1)B2ν+k(z) =
(
Bk(z)− (z − 1)B`(z)

)
zν−µ + (z2 − z − 1)Bk(z), (4.14)

(z − 1)B2ν−k(z) =
(
Bk(z)− (z − 1)B`(z)

)
zν−µ −Bk(z). (4.15)
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Proof. We use (2.2) with m = 2ν−µ + 1, a = µ, and r = `; then we get

B(2ν−µ+1)2µ+`(z) = B2ν−µ+1(z)B2µ+`(z)−B`(z)B2ν−µ(z).

Now, we note that by (1.2) and (4.2), respectively, we have

B2ν−µ(z) = zν−µ, B2ν−µ+1(z) =
zν−µ − 1

z − 1
+ z,

both of which hold for all ν ≥ µ. Then, with k = 2µ + `, we have

B2ν+k(z) =

(
zν−µ − 1

z − 1
+ z

)
Bk(z)−B`(z)zν−µ.

Multiplying both sides by z − 1, we immediately get (4.14).

Finally, we obtain (4.15) by multiplying both sides of (4.1) by z − 1, and

equating the left-hand side with that of (4.14). �

Before continuing, we note that the polynomials Bk(z)− (z− 1)B`(z), which

occur in (4.14) and (4.15), have nonnegative coefficients. Indeed, by (4.1) we have

B2µ+`(z)− (z − 1)B`(z) = (B2µ−`(z) + zB`(z))− (z − 1)B`(z)

= B2µ−`(z) +B`(z). (4.16)

Since both polynomials on the right have nonnegative coefficients, this proves the

claim. If µ ≥ 1 and ` is odd, then Conjecture 3.15 implies that the polynomial in

question actually has positive coefficients.

We now use Proposition 4.4 to show that Corollaries 3.8, 3.11 and 3.14 also

hold in the cases m = 2ν + k. In fact, we have the following analogue to Corol-

lary 3.16.

Corollary 4.5. The zeros of B2ν+k(z) all lie in D for all ν ≥ 1 and all odd k ∈
{1 ≤ k ≤ 61 | k 6= 17, 31, 33}, and for k = 75, 77, 83, . . . , 93, 99, . . . , 109, 115, 117,

171, 173, 179, 181, 203, 205, 211, and 213.

Proof. For k = 1 and 3 this is just Proposition 4.2. The proof of all other

cases follow the same general outline as that of Proposition 4.2. In particular,

by (4.14) we have

|(z − 1)B2ν+k(z)| ≥ |Bk(z)− (z − 1)B`(z)| · |z|ν−µ−|z2− z−1| · |Bk(z)| . (4.17)

Now, for those k listed in the statement of the corollary we have, by (4.15),

exactly one of the situations of the proofs of Theorem 3.6, 3.9, or 3.12. The only

difference is the additional term |z2 − z − 1|. However, by Lemma 4.1 we have

|z2−z−1| ≤ |z|3 when Re(z) ≥ 1. Therefore, everything carries through as before,

with the restrictions ν ≥ νk + 3, where νk is given in Lemma 3.7 and in Tables 3

and 4. Finally, the small cases 1 ≤ ν ≤ νk + 2 can be verified numerically. �
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5. Irreducibility

While Sections 3 and 4 are devoted to those polynomials whose zeros lie in the

half-plane D, Corollary 1.4 indicates that for the purpose of proving irreducibility,

some weaker results on the zero distribution will suffice. Before we state and prove

two such results, we require the following inequalities.

Lemma 5.1. For |z| ≥ 3
2 we have

|B2µ+1(z)| ≤ 157
27 |z|

µ−1 (µ ≥ 4), (5.1)

|B2µ−1(z)| ≤ 97
27 |z|

µ−1 (µ ≥ 4), (5.2)

|B2µ+3(z)| ≤ 722
81 |z|

µ−2 (µ ≥ 6), (5.3)

|B2µ−3(z)| ≤ 566
81 |z|

µ−2 (µ ≥ 6). (5.4)

Proof. With (4.2), (3.1), (4.3) and (3.4), we have, respectively,

B2µ+1(z) =
zµ − 1

z − 1
+ z =

zµ + z2 − z − 1

z − 1
,

B2µ−1(z) =
zµ − 1

z − 1
,

B2µ+3(z) = 2
zµ−1 − 1

z − 1
+ z2 + z − 1 =

2zµ−1 + z3 − 2z − 1

z − 1
,

B2µ−3(z) = 2
zµ−1 − 1

z − 1
− 1 =

2zµ−1 − z − 1

z − 1
;

they actually hold for all µ ≥ 2. The first of these identities, together with the

triangle inequality, now leads to

1

|z|µ−1
|B2µ+1(z)| ≤ |z|

µ + |z|2 + |z|+ 1

|z|µ−1(|z| − 1)
=

1 + 1
|z|µ−2 + 1

|z|µ−1 + 1
|z|µ

1− 1
|z|

.

Using the fact that the right-hand term is a decreasing function both in |z| and

in µ, we get for |z| ≥ 3
2 and µ ≥ 4,

1

|z|µ−1
|B2µ+1(z)| ≤

1 + ( 2
3 )2 + ( 2

3 )3 + ( 2
3 )4

1− 2
3

=
157

27
,

which is equivalent to (5.1). Analogously, the other three identities give

1

|z|µ−1
|B2µ−1(z)| ≤ |z|µ + 1

|z|µ−1(|z| − 1)
≤ 97

27
(µ ≥ 4),
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1

|z|µ−2
|B2µ+3(z)| ≤ 2|z|µ−1 + |z|3 + 2|z|+ 1

|z|µ−2(|z| − 1)
≤ 722

81
(µ ≥ 6),

1

|z|µ−2
|B2µ−3(z)| ≤ 2|z|µ−1 + |z|+ 1

|z|µ−2(|z| − 1)
≤ 566

81
(µ ≥ 6),

and these are equivalent to (5.2)–(5.4). �

We are now ready to prove two results on the zero distribution of certain

classes of Stern polynomials.

Proposition 5.2. Let k ∈ {17, 31, 33, 63, 65, 67, 125, 127, 129, 131, 253, 255}.
Then the zeros of B2ν±k(z), for all ν ≥ 1 for which 2ν ± k is positive, all lie in

the open disk |z| < 3
2 .

Proof. We use the identities (4.14) and (4.15), with k = 2µ + ` and ` =

1, 2, 2µ − 1, and 2µ − 3, for appropriate exponents µ.

(1) First, with the right-hand side of (4.14) in mind, we note that by (4.2)

we have

B2µ+1(z)− (z − 1)B1(z) = zµ−1 + · · ·+ z2 + z + 2 =
zµ + z − 2

z − 1
,

and thus, for |z| ≥ 3
2 and µ ≥ 4,

1

|z|µ−1
|B2µ+1(z)− (z − 1)B1(z)| ≥ |z|

µ − |z| − 2

|z|µ−1(|z|+ 1)
≥ 5

27
, (5.5)

where the number on the right is obtained by substituting µ = 4 and |z| = 3
2

in the middle term. Now (4.14), together with (5.5), (4.7) and (5.1) gives, with

k = 2µ + 1,

|(z−1)B2ν+k(z)| ≥ 5

27
|z|µ−1|z|ν−µ− 19

9
|z|2 157

27
|z|µ−1 =

5

27
|z|µ+1

(
|z|ν−µ−2− 2983

45

)
.

This is strictly positive for all z with |z| ≥ 3
2 , whenever | 32 |

ν−µ−2 > 2983/45, or,

solving for ν,

ν ≥ ν1 :=

⌈
log(2983/45)

log(3/2)
+ µ+ 2

⌉
= µ+ 13 (µ ≥ 4), (5.6)

where dxe is the ceiling of x ∈ R, i.e., the smallest integer ≥ x.

To obtain the analogue for B2ν−k(z), we only need to note that (4.15) differs

from (4.14) only in the absence of the term z2 − z − 1, so that the corresponding

modulus is also positive when (5.6) holds.
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(2) We now consider k = 2µ+1 − 1. Since 2µ+1 − 1 = 2µ + (2µ − 1), we see

by (4.16) with ` = 2µ − 1 that

B2µ+1−1(z)− (z − 1)B2µ−1(z) = B2µ+1(z)− (z − 1)B1(z). (5.7)

Using this, we see that (4.14), again with (5.5) and (4.7), and this time with (5.2)

gives, for k = 2µ+1 − 1,

|(z−1)B2ν+k(z)| ≥ 5

27
|z|µ−1|z|ν−µ− 19

9
|z|2 97

27
|z|µ =

5

27
|z|µ+2

(
|z|ν−µ−3− 1843

45

)
,

and just as before, we see that this is strictly positive for |z| ≥ 3
2 , whenever

ν ≥ ν2 :=

⌈
log(1843/45)

log(3/2)
+ µ+ 3

⌉
= µ+ 13 (µ ≥ 4). (5.8)

Furthermore, the analogue for B2ν−k(z) also holds when (5.8) is satisfied, by the

same argument as before.

(3) Next, we note that by (4.3) we have

B2µ+3(z)− (z − 1)B3(z) = 2zµ−2 + · · ·+ 2z2 + 3z + 2 = 2
zµ−1 − 1

z − 1
+ z

=
2zµ−1 + z2 − z − 2

z − 1
,

and thus, for |z| ≥ 3
2 and µ ≥ 6,

1

|z|µ−2
|B2µ+3(z)− (z − 1)B3(z)| ≥ 2|z|µ−1 − |z|2 − |z| − 2

|z|µ−2(|z|+ 1)
≥ 302

405
, (5.9)

where the number on the right is obtained by substituting µ = 6 and |z| = 3
2

in the middle term. Now (4.14), together with (5.9), (4.7) and (5.3) gives, with

k = 2µ + 3,

|(z − 1)B2ν+k(z)| ≥ 302

405
|z|µ−2|z|ν−µ − 19

9
|z|2 722

81
|z|µ−2

=
302

405
|z|µ

(
|z|ν−µ−2 − 34295

1359

)
.

This is strictly positive for all z with |z| ≥ 3
2 , whenever

ν ≥ ν3 :=

⌈
log(34295/1359)

log(3/2)
+ µ+ 2

⌉
= µ+ 10 (µ ≥ 6). (5.10)

The analogue for B2ν−k(z) also holds, as before.
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(4) Finally, with k = 2µ+1−3, everything carries through as in part 2 above,

with an analogue of (5.7) and using (5.4) with µ+ 1 in place of µ. Then we have

|(z − 1)B2ν+k(z)| ≥ 302

405
|z|µ−2|z|ν−µ − 19

9
|z|2 566

81
|z|µ−1

=
302

405
|z|µ+1

(
|z|ν−µ−3 − 26885

1359

)
,

and once again we see that for |z| ≥ 3
2 this is positive, whenever

ν ≥ ν4 :=

⌈
log(26885/1359)

log(3/2)
+ µ+ 3

⌉
= µ+ 11 (µ ≥ 6), (5.11)

with the same bound again for B2ν−k(z).

(5) We summarize the relevant k and the bounds ν1, . . . , ν4 in Table 5:

µ 2µ + 1 ν1 2µ+1 − 1 ν2 2µ + 3 ν3 2µ+1 − 3 ν4
4 17 17 31 17

5 33 18 63 18

6 65 19 127 19 67 16 125 17

7 129 20 255 20 131 17 253 18

Table 5. The bounds νj in (5.6), (5.8), (5.10) and (5.11).

The result is now proved for all ν at least equal to the corresponding bounds

in Table 5. All smaller cases are easy to verify by computation using Maple. �

We can now combine Corollary 3.16, Corollary 4.5 and Proposition 5.2 with

Corollary 1.4 to obtain the following irreducibility result.

Theorem 5.3. Suppose that the prime p is of the form p = 2ν ± k, ν ≥ 1,

where k is odd and 1≤ k ≤67, or k is one of 75, 77, 83, . . . , 93, 99, . . . , 109, 115, 117,

125, 127, 129, 131, 171, 173, 179, 181, 203, 205, 211, 213, 253, 255. Then Bp(z)

is irreducible over Q.

It is clear from the proof that Proposition 5.2 can be extended as follows.

Proposition 5.4. Let µ ≥ 1 and ν ≥ µ+ 9 be integers. Then all the zeros

of B2ν±2µ±1(z) and B2ν±2µ±3(z) lie in the open disk |z| < 3
2 , where the two

instances of “±” are independent in both cases.
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Proof. The idea of the proof is essentially the same as that of Proposi-

tion 5.2; we only need to improve some of the estimates in order to get the

improved condition ν ≥ µ+ 9. We may now assume that µ ≥ 8 since the smaller

cases were dealt with in Proposition 5.2. First, in analogy to (5.1) and its proof,

we have, for |z| ≥ 3
2 ,

1

|z|µ−1
|B2µ+1(z)| ≤

( 3
2 )8 + ( 3

2 )2 + 3
2 + 1

( 3
2 )7( 1

2 )
=

7777

2187
(µ ≥ 8).

Similarly, in analogy to (5.5), we have, again for |z| ≥ 3
2 ,

1

|z|µ−1
|B2µ+1(z)− (z − 1)B1(z)| ≥

( 3
2 )8 − 3

2 − 2

( 3
2 )7( 3

2 + 1)
=

1133

2187
(µ ≥ 8).

This leads to the estimate

|(z − 1)B2ν+2µ+1(z)| ≥ 1133

2187
|z|µ−1|z|ν−µ − 19

9
· 7777

2187
|z|2|z|µ−1

=
1133

2187
|z|µ+1

(
|z|ν−µ−2 − 13433

927

)
,

which is positive, whenever

ν ≥
⌈

log(13433/927)

log(3/2)
+ µ+ 2

⌉
= µ+ 9 (µ ≥ 8).

This proves the result for subscripts 2ν + 2µ+ 1 and µ ≥ 8, while µ ≤ 7 is covered

by Proposition 5.2.

All the other cases are obtained by analogous modifications of the proof of

Proposition 5.2; we leave the details to the reader. �

As an immediate consequence of Proposition 5.4, we now get our last irre-

ducibility result, once again by Corollary 1.4.

Theorem 5.5. Suppose that the prime p is of the form p = 2ν ± 2µ ± 1 or

p = 2ν ± 2µ ± 3, where µ ≥ 1 and ν ≥ µ + 9 are integers, and the instances of

“±” are independent. Then Bp(z) is irreducible over Q.

6. Further remarks

(1) The proofs in Section 5 indicate that various improvements and modifica-

tions of the results are possible. First, the radius 3
2 of the disk in Propositions 5.2
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and 5.4 was mainly chosen for simplicity, and with the aim of applying Corol-

lary 1.4 in mind. The way we derived the estimates (5.1)–(5.4), as well as (5.5)

and (5.9), indicates that the proof of Proposition 5.2 can be adapted to prove

the following: For any ε > 0, the zeros of B2ν±2µ±1(z) and B2ν±2µ±3(z) have

modulus less than 1 + ε, for ν sufficiently large depending on ε.

Second, much of the proof of Proposition 5.2 is based on the particularly sim-

ple structure of the four classes of polynomialsB2µ±1(z) andB2µ±3(z). Lemma 3.7

and Table 3 indicate that estimates similar to those in (5.1)–(5.4) and (5.5), (5.9)

could also be obtained for other classes of polynomials.

(2) It is easy to verify that the fractional linear transformation z 7→ 2z/(z+1)

maps the unit circle to the vertical line {z ∈ C | Re(z) = 1}. Therefore, if we

define the transformed polynomials

bn(z) := (1 + z)dnBn( 2z
z+1 ),

where dn := degBn(z), then Conjecture 3.1 is equivalent to the conjecture that

all zeros of bn(z) lie inside the unit circle. This is illustrated by Figure 2.

Figure 2. Zeros of Bn( 2z
z+1

), n ≤ 216, inscribed in the unit circle.

For n ≤ 36, the polynomials bn(z) satisfy the Eneström–Kakeya condi-

tion (3.3) of Theorem 3.4, but we have
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b37(z) = 1 + 11z + 39z2 + 37z3,

with increasing numbers of the polynomials bn(z) violating the condition (3.3).

However, based on computations using PARI [11] up to n = 1011, we propose:

Conjecture 6.1. The coefficients of any transformed Stern polynomial bn(z)

form a unimodal sequence of nonnegative integers.

Eneström–Kakeya type criteria for unimodal polynomials [3] apply to some

of the polynomials bn(z), but fail in general.

(3) The zero distribution of the Stern polynomials, as illustrated in Figure 1,

has some features in common with the zero distribution of Littlewood polyno-

mials, i.e., polynomials with coefficients −1 or 1. For instance, Figure 11 in [1,

p. 908], though more symmetric than our Figure 1, also has a large interior zero-

free region with an apparent fractal boundary, as well as “holes” of different sizes

along the unit circle.

(4) Of the classes of polynomials considered in Section 3, we see that only

B2k−1(z) and B2k−5(z) are self-reciprocal (or “palindromic”). In this connection

it is interesting to note that Gawron [5] recently proved the following: For two

recurrence-generated integer sequences un and vn, with u0 = 1 and v0 = 5,

the polynomials B2k−un(z) and B2k−vn(z), for sufficiently large k, are all self-

reciprocal.
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