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Equidivisible pseudovarieties of semigroups

By JORGE ALMEIDA (Porto) and ALFREDO COSTA (Coimbra)

Abstract. We give a complete characterization of pseudovarieties of semigroups

whose finitely generated relatively free profinite semigroups are equidivisible. They, be-

sides the pseudovarieties of completely simple semigroups, are precisely the pseudovari-

eties that are closed under Mal’cev product on the left by the pseudovariety of locally

trivial semigroups. A further characterization, which turns out to be instrumental, states

that they are the non-completely simple pseudovarieties that are closed under two-sided

Karnofsky–Rhodes expansion.

1. Introduction

A pseudovariety of semigroups is a class of finite semigroups closed under tak-

ing subsemigroups, homomorphic images and finitary products. In the past few

decades, pseudovarieties provided the main framework for the research on finite

semigroups, motivated by Eilenberg’s correspondence theorem between pseudova-

rieties and varieties of languages. In this context, the finitely generated relatively

free profinite semigroups associated to each pseudovariety proved to be of funda-

mental importance. We assume the reader has some familiarity with this back-

ground. The books [19], [1] are indicated as supporting references. The lecture

notes [2] might also be useful for someone looking for a brief introduction.
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In this paper, we are concerned with equidivisible relatively free profinite

semigroups. A semigroup S is equidivisible if for every u, v, x, y ∈ S, the equality

uv = xy implies that u = x and v = y, or that there is t ∈ S such that ut = x and

v = ty, or such that xt = u and y = tv. Equidivisible semigroups were introduced

in [12] as a generalization of free semigroups. They were further investigated

in [13], where a characterization of the completely simple semigroups as a special

class of equidivisible semigroups was given (cf. Theorem 5.1).

A pseudovariety of semigroups V is said to be equidivisible if every finitely

generated free pro-V semigroup is equidivisible. The paper [4] includes results

about a special class of semigroup pseudovarieties, the WGGM pseudovarieties,

the ones whose corresponding relatively free profinite semigroups are “weakly gen-

eralized group mapping”. In the same paper, the WGGM condition is applied to

obtain sufficient conditions for a pseudovariety to be finitely join irreducible in the

lattice of ordered pseudovarieties. It is also shown in [4] that a sufficient condition

for a semigroup pseudovariety V to be WGGM is to be equidivisible and to contain

LSl (the pseudovariety of finite semigroups whose local monoids are semillatices).

This adds motivation to investigate the natural question: which pseudovarieties

are equidivisible, other than those of completely simple semigroups?

In this paper, we give a complete characterization of the equidivisible pseu-

dovarieties of semigroups (Section 8), showing that those which are not contained

in the pseudovariety of completely simple semigroups are precisely the ones of the

form V = LI ©m V, where LI denotes the pseudovariety of locally trivial semigroups,

and ©m denotes the Mal’cev product of pseudovarieties.

The semigroup pseudovarieties of the form V = A ©m V, where A denotes the

pseudovariety of aperiodic semigroups, are those whose corresponding variety of

languages is closed under language concatenation [23], [6]. In [3, Lemma 4.8] it is

shown that every such pseudovariety is equidivisible, with a proof that uses the

closure under concatenation. In contrast to the approach made in [3] for this class

of pseudovarieties, our proof of the equidivisibility of the pseudovarieties of the

form V = LI ©m V does not use a characterization in terms of the corresponding

varieties of languages, which are those that are closed under unambiguous product

of languages [14], [15]. For our complete characterization of the equidivisible

pseudovarieties, and in both directions of the proof, we had to use a distinct

approach, based on the two-sided Karnofsky–Rhodes expansion of semigroups.

This approach was inspired by the proof given in [18] that if a pseudovariety of

semigroups V is stable under (one-sided) right Karnofsky–Rhodes expansion, then

the finitely generated free pro-V semigroups have unambiguous ≤R-order. It turns

out that, by a deep result of Rhodes et al. [20], [21], the pseudovarieties of the
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form V = LI ©m V are precisely those that are stable under two-sided Karnofsky–

Rhodes expansion (Corollary 3.3).

Roughly speaking, the two-sided Karnofsky–Rhodes expansion keeps track

of the transition edges used to read a word in the two-sided Cayley graph of the

expanded semigroup. If we only keep track of the strongly connected components,

we obtain another expansion, which we call the two-sided connected expansion.

We deduce from our main result that a pseudovariety is closed under two-sided

Karnofsky–Rhodes expansion if and only if it is closed under two-sided connected

expansion (cf. Corollary 8.4).

Another by-product of our results concerns the pseudovariety LG of finite

semigroups whose local monoids are groups. After showing directly that the

equidivisible subpseudovarieties of LG are precisely those which contain only com-

pletely simple semigroups and those containing LI, we apply our main result to

deduce that whenever V is a subpseudovariety of LG, the join LI ∨ V is equal to

the Mal’cev product LI ©m V (Corollary 8.6).

2. Preliminaries

Recall that [19], [1], [2] are our supporting references. We use the standard

notation V∨W, V∗W, V∗∗W and V ©m W respectively for the join, the semidirect

product, the two-sided semidirect product, and the Mal’cev product of pseudova-

rieties of semigroups. Occasionally (only in the preparatory Section 3), we refer to

pseudovarieties of semigroupoids (namely, the pseudovariety `I of semigroupoids

that divide locally trivial categories) and to varietal operations concerning them.

We refer to [19], [2] for details.

The following pseudovarieties of semigroups appear in this paper:

• S: finite semigroups;

• A: finite aperiodic semigroups;

• G: finite groups;

• I: trivial semigroups;

• D: finite semigroups all of whose idempotents are right zeros;

• K: finite semigroups all of whose idempotents are left zeros;

• LI = K ∨ D: finite semigroups whose local monoids are trivial;

• LG: finite semigroups whose local monoids are groups;

• LSl: finite semigroups whose local monoids are semilattices;
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• CS: finite completely simple semigroups;

• CR: finite completely regular semigroups.

For a semigroup S, let SI be the monoid obtained from S by adding an extra

element I which is the identity of SI . This allows a convenient way of writing

the definition of equidivisibility: the semigroup S is equidivisible when, for every

u, v, x, y ∈ S, the equality uv = xy implies that there is t ∈ SI such that ut = x

and v = ty, or such that xt = u and y = tv.

If f : S → T is a semigroup homomorphism, then we extend f to a homo-

morphism from SI to T I , denoted by f as well, by letting f(I) = I. Note that for

every alphabet A, the monoid (A+)I can be identified with the free monoid A∗

in a natural manner. In particular, if ϕ is a homomorphism from A+ to a semi-

group S, then we have a unique extension of ϕ to a homomorphism from A∗ to SI ,

with ϕ(1) = I.

We were inspired by [18] in the use of semigroup expansions to obtain our

main result. With this reference in mind (see also [10]), we quickly recall that for

a fixed alphabet A, the category of A-generated semigroups is the category SA,

whose objects are the pairs of the form (S, ϕ) in which ϕ is an onto homomorphism

A+ → S, and where morphisms (S, ϕ)→ (T, ψ) are the homomorphisms θ : S →
T such that θ ◦ ϕ = ψ. An expansion cut to generators defined in SA is an

endofunctor F : SA → SA equipped with a natural transformation from F to the

identity functor of SA. A convenient way to refer to F is the notation (S, ϕ) 7→
(SF , ϕF ), where the pair (SF , ϕF ) is the object F (S, ϕ).

3. The two-sided Karnofsky–Rhodes expansion

Let ϕ be a homomorphism from A+ onto a semigroup S. The two-sided

Cayley graph defined by ϕ is the directed graph Γϕ whose set of vertices is SI ×
SI , and where an edge from (s1, t1) to (s2, t2) is a triple ((s1, t1), a, (s2, t2)),

with a ∈ A, such that s1ϕ(a) = s2 and t1 = ϕ(a)t2. Giving to each edge

((s1, t1), a, (s2, t2)) the label a, the graph Γϕ becomes a semi-automaton over the

alphabet A. A labeling of paths is inherited from the labeling of edges in an

obvious way. If u ∈ A+, then we denote by pϕ,u, or simply pu if ϕ is understood,

the unique path from (I, ϕ(u)) to (ϕ(u), I) labeled by u.

For an edge t in a directed graph H, we denote by α(t) its source and by ω(t)

its target. The edge t is a transition edge of H if α(t) and ω(t) are not in the

same strongly connected component of H. Returning our attention to the two-

sided Cayley graph Γϕ, for a path p in Γϕ, denote by T (p) the set of transition
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edges in p. Let ≡ϕ be the binary relation on A+ defined by u ≡ϕ v if and only

if ϕ(u) = ϕ(v) and T (pu) = T (pv). The relation u ≡ϕ v is a congruence, a well-

known fact, whose routine proof is similar to the explicit proof we give later of

an analogous result, Lemma 4.1. Denote by S
K(`I)
ϕ the quotient A+/≡ϕ, and by

ϕK(`I) the corresponding quotient homomorphism A+ → S
K(`I)
ϕ . For the sake

of simplicity, we will write SK(`I) instead of S
K(`I)
ϕ , if the dependency on ϕ is

implicitly understood.

It is well known that the correspondence (S, ϕ) 7→ (SK(`I), ϕK(`I)) is an expan-

sion cut to generators, which is called the two-sided Karnofsky–Rhodes expansion.

There is an alternative way of defining this expansion, which puts it as a special

case within a more general framework, and which we refer briefly, leaving the

details for the bibliographic references supporting our discussion. The two-sided

Karnofsky–Rhodes expansion is an example of a two-sided semidirect product

expansion defined by a variety of semigroups (in this case, the variety of trivial

semigroups), as introduced by Elston in [10]. In [18], a variation of this ap-

proach is followed, one where pseudovarieties of semigroupoids are used instead

of varieties of semigroups. The notation SK(`I) is consistent with the notation

used in [18] for the two-sided semidirect product expansion SK(V) of a profinite

semigroup S defined by a pseudovariety V of semigroupoids. As observed in [18,

Section 10], if V is a pseudovariety of semigroups, then SK(`V) is the corresponding

expansion SK(V) introduced by Elston.

Suppose that the alphabet A is finite. If S is finite, then SK(`I) is finite,

because a kernel class of ϕK(`I) is determined by a kernel class of ϕ together with

a set of transition edges of Γϕ, and there is only a finite number of such classes

and edges.

More generally, as explained in [18, Section 10], if S is finite and V is a

locally finite pseudovariety of semigroupoids (which is the case of `I), then SK(V)

is a finite semigroup which, in a natural way, is a two-sided semidirect product

(ΩΓϕV) ∗∗S, and so if S belongs to a pseudovariety W of semigroups, then SK(V)

belongs to V ∗∗W.

As remarked at the beginning of [18, Section 11], the isomorphism between

the quotient A+/≡ϕ and the two-sided semidirect product (ΩΓϕ`I)∗∗S is justified

by Tilson’s result asserting that two paths in a graph X coincide in the locally

trivial free category generated by X if and only if they have the same transition

edges.

The following result is a special case of [19, Theorem 3.6.4].

Proposition 3.1. Let W be a locally finite pseudovariety, and let A be a

finite alphabet. Then (ΩAW)K(`I) is isomorphic to ΩA(`I ∗∗W).
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It is an easy exercise to show, directly from the definition we gave of the

two-sided Karnofsky–Rhodes expansion, that if π is the canonical projection

SK(`I) → S, then the semigroup π−1(e) satisfies the identity xyz = xz, for every

idempotent e of S. Actually, as remarked in the proof of Lemma 3.4 in [16], we

have `I ∗∗V ⊆ [[xyz = xz]] ©m V, and so `I ∗∗V ⊆ LI ©m V. Denote by
⋃
n≥1 `I ∗∗n V

the sequence of semigroup pseudovarieties recursively defined by

`I ∗∗0 V = V, `I ∗∗n V = `I ∗∗ (`I ∗∗n−1 V), n ≥ 1.

The following theorem is a deep result of Rhodes et al. [20], [21], which the

reader can find in [19, Corollary 5.3.22].

Theorem 3.2. Let V be a pseudovariety of semigroups. Then we have

LI ©m V =
⋃
n≥0 `I ∗∗n V.

Say that a pseudovariety of semigroups V is closed under the two-sided

Karnofsky–Rhodes expansion if we have S
K(`I)
ϕ ∈ V whenever S ∈ V and ϕ is a

homomorphism from a finitely generated free semigroup onto S. For the reader’s

convenience, we give a proof of the following easy consequence of Theorem 3.2.

Corollary 3.3. A pseudovariety of semigroups V is closed under the two-

sided Karnofsky–Rhodes expansion if and only if V = LI ©m V.

Proof. Suppose that V = LI ©m V. Let S ∈ V, and consider a homomor-

phism ϕ : A+ → S. Using the aforementioned fact that S
K(`I)
ϕ ∈ [[xyz = xz]] ©m V,

we immediately get that S
K(`I)
ϕ ∈ V, because [[xyz = xz]] ⊆ LI. Alternatively, one

can apply (the easy part of) Theorem 3.2, since S
K(`I)
ϕ ∈ `I ∗∗ V.

Conversely, suppose that V is closed under the two-sided Karnofsky–Rhodes

expansion. Let W be a locally finite subpseudovariety of V. Then ΩAW belongs

to V. By hypothesis, (ΩAW)K(`I) also belongs to V. Applying Proposition 3.1, we

conclude that `I ∗∗W ⊆ V. As W can be any locally finite subpseudovariety of V,

we actually have `I ∗∗ V ⊆ V. We deduce from Theorem 3.2 that LI ©m V = V. �

4. The two-sided connected expansion

In this section, we show that the pseudovarieties closed under the two-sided

Karnofsky–Rhodes expansion are equidivisible. Actually, it is not necessary to

use the full force of the definition of the expansion. It suffices to use a weaker

expansion which we introduce in this section.
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Let ϕ be a homomorphism from A+ onto a semigroup S. Given a path p

in the two-sided Cayley graph Γϕ, denote by C(p) the set of strongly connected

components of Γϕ that contain some vertex in p. Let ≈ϕ be the binary relation

on A+ defined by u ≈ϕ v if and only if ϕ(u) = ϕ(v) and C(pu) = C(pv).

Lemma 4.1. The relation ≈ϕ is a congruence.

Proof. The relation ≈ϕ is clearly an equivalence. Taking into account the

symmetry of its definition, to prove that ≈ϕ is a congruence, it suffices to show

that C(puw) = C(pvw) whenever u, v, w ∈ A+ are such that u ≈ϕ v. Let x be

a vertex of puw that is not in pvw, where u ≈ϕ v. Then, as ϕ(u) = ϕ(v), we

necessarily have x = (ϕ(u1), ϕ(u2w)) for some u1, u2 ∈ A+ such that u = u1u2.

Since x′ = (ϕ(u1), ϕ(u2)) is a vertex of pu, there is some vertex x′′ in pv such

that x′ and x′′ are in the same strongly connected component. Let t be the label

of a path from x′ to x′′, and let z be the label of a path from x′′ to x′. We have

x′′ = (ϕ(v1), ϕ(v2)) for some v1, v2 ∈ A∗ such that v = v1v2. Note that

ϕ(u1t) = ϕ(v1), ϕ(u2) = ϕ(tv2), ϕ(v1z) = ϕ(u1), ϕ(v2) = ϕ(zu2). (4.1)

Consider the vertex x′′′ = (ϕ(v1), ϕ(v2w)). Looking at (4.1), we see that we also

have ϕ(u2w) = ϕ(tv2w) and ϕ(v2w) = ϕ(zu2w), whence there is a path from x

to x′′′ labeled t, and a path from x′′′ to x labeled z. This shows that x′′′ belongs to

the strongly connected component of x. Since x′′′ belongs to pvw, this establishes

the inclusion C(puw) ⊆ C(pvw). Dually, we have C(pvw) ⊆ C(puw). �

If S is finite, then ≈ϕ has finite index, because a ≈ϕ-class is defined by a

kernel class of ϕ together with a set of strongly connected components of Γϕ, and

there is only a finite number of such classes and components.

We denote by SC the quotient A+/≈ϕ, and by ϕC the canonical homomor-

phism A+ → SC . Clearly, if ϕK(`I)(u) = ϕK(`I)(v), then ϕC(u) = ϕC(v), and so

SC is a quotient of SK(`I). The semigroups SC and SK(`I) may not be isomorphic.

For example, consider the onto homomorphism ϕ from the free semigroup on the

two-letter alphabet A = {a, b} onto the trivial semigroup S. Then ϕC(a) = ϕC(b),

but ϕK(`I)(a) 6= ϕK(`I)(b).

Proposition 4.2. The correspondence (S, ϕ) 7→ (SC , ϕC) is an expansion

cut to generators.

Proof. Let ϕ : A+ → S and ψ : A+ → T be onto homomorphisms, and let

f : S → T be a homomorphism such that f ◦ ϕ = ψ. The mapping f induces



442 Jorge Almeida and Alfredo Costa

a homomorphism f̄ of semi-automata from Γϕ to Γψ, defined by the following

mappings from vertices and edges of Γϕ respectively to vertices and edges of Γψ:

(s, t) 7→ (f(s), f(t)), ((s, t), a, (s′, t′)) 7→ ((f(s), f(t)), a, (f(s′), f(t′))).

Let u, v ∈ A+ be such that u ≈ϕ v. Then we have ϕ(u) = ϕ(v) and ψ(u) = ψ(v).

Let y = (ψ(u1), ψ(u2)) be a vertex in pψu , where u = u1u2, with u1, u2 ∈ A∗. Then

y = f̄(x), where x = (ϕ(u1), ϕ(u2)) is a vertex in pϕu . Since u ≈ϕ v, there is a

vertex x′ in pϕv such that x and x′ are in the same strongly connected component

of Γϕ. Clearly, y = f̄(x) and y′ = f̄(x′) are in the same strongly connected

component of Γψ. As x′ is in pϕv , we have y′ in pψv , showing that C(pψu ) ⊆ C(pψv ).

By symmetry, we have C(pψu ) ⊇ C(pψv ). This establishes the equality u ≈ψ v, and

therefore we may consider the unique semigroup homomorphism fC : SC → TC

such that fC ◦ ϕC = ψC . �

Let us call the expansion (S, ϕ) 7→ (SC , ϕC) the two-sided connected expan-

sion.

A pseudovariety of semigroups V is closed under two-sided connected expan-

sion if we have SC whenever S ∈ V.

Proposition 4.3. If V is a pseudovariety of semigroups closed under two-

sided connected expansion, then V is equidivisible.

Proof. Let A be a finite alphabet. Suppose that u, v, x, y are elements of

ΩAV such that uv = xy. Let Φ be a continuous homomorphism onto a semi-

group S from V, and let ϕ be its restriction to A+. Denote by ΦC the unique

continuous homomorphism from ΩAV onto SC , whose restriction to A+ coin-

cides with ϕC . Consider elements u0, v0, x0, y0 of A+ such that ϕC(u0)=ΦC(u),

ϕC(v0)=ΦC(v), ϕC(x0)=ΦC(x), and ϕC(y0)=ΦC(y). The vertex (Φ(u),Φ(v))=

(ϕ(u0), ϕ(v0)) belongs to the path (I, ϕ(u0v0))
u0v0−−−→ (ϕ(u0v0), I) of the two-sided

Cayley graph Γϕ. Since uv = xy, we know that ΦC(uv) = ΦC(xy). Therefore,

there is a vertex (r, s) in the path (I, ϕ(u0v0))
x0y0−−−→ (ϕ(u0v0), I) of Γϕ, which

lies in the strongly connected component of (Φ(u),Φ(v)). Since (Φ(x),Φ(y)) is

clearly also in the path (I, ϕ(u0v0))
x0y0−−−→ (ϕ(u0v0), I), we conclude that in Γϕ

there is a (possibly empty) path from (Φ(u),Φ(v)) to (Φ(x),Φ(y)), or a path from

(Φ(x),Φ(y)) to (Φ(u),Φ(v)).

Therefore, there is a word tΦ ∈ A∗ such that{
Φ(utΦ) = Φ(x),

Φ(v) = Φ(tΦy),



Equidivisible pseudovarieties of semigroups 443

in which case we say that Φ is of the first type, or there is a word τΦ ∈ A∗ such

that {
Φ(xτΦ) = Φ(u),

Φ(y) = Φ(τΦv),

in which we say that Φ is of the second type. Note that Φ can be simultaneously

of the first type and of the second type. The result now follows from a standard

argument, which we write down for the reader’s convenience. We know that ΩAV is

the inverse limit of an inverse system of semigroups from V defined by a countable

set of connecting onto homomorphisms of the form πm,n : Sm → Sn, where m,n

are arbitrary positive integers with m ≥ n. For each n ≥ 1, let πn be the

projection ΩAV→ Sn associated to this inverse system. Note that for each n ≤ m,

the homomorphism πn is of the same type as πm. On the other hand, since there

are only two types, at least one of them occurs infinitely often. Combining these

two simple observations, we conclude that πn is of the first type for every n ≥ 1,

or of the second type for every n ≥ 1. Without loss of generality, we assume the

former case. Denote tπn by tn. We have

πn(utn) = πn(x) and πn(v) = πn(tny), (4.2)

for every n ≥ 1. Let t be an accumulation point in (ΩAV)I of the sequence (tn)n.

Fix k ≥ 1, and let n ≥ k. Applying πn,k to (4.2), we get

πk(utn) = πk(x) and πk(v) = πk(tny),

for every n ≥ k. By continuity of πk, we obtain

πk(ut) = πk(x) and πk(v) = πk(ty).

This implies ut = x and v = ty. The case where πn is of the second type for every

n ≥ 1 leads to the existence of τ in (ΩAV)I such that xτ = u and y = τv. �

Corollary 4.4. If V is a pseudovariety of semigroups closed under two-sided

Karnofsky–Rhodes expansion, then V is equidivisible.

Proof. It follows immediately from Proposition 4.3, and the fact that the

two-sided connected expansion of a semigroup S is a homomorphic image of the

two-sided Karnofsky–Rhodes expansion of S. �

Corollary 4.5. If V is a pseudovariety of semigroups such that V = LI ©m V,

then V is equidivisible.

Proof. Apply Corollary 4.4 and (the easy part of) Corollary 3.3. �
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5. Equidivisible subpseudovarieties of CR

It was proved in [13] that every completely simple semigroup is equidivisible.

In fact, the following stronger result was established.

Theorem 5.1. A semigroup S is completely simple if and only if for every

u, v, x, y ∈ S, the equality uv = xy implies the existence of t1, t2 ∈ SI such that

ut1 = x, t1y = v, u = xt2 and y = t2v.

On the other hand, we have the following simple fact.

Lemma 5.2. If V is a pseudovariety of completely regular semigroups con-

taining Sl, then V is not equidivisible.

Proof. Consider the alphabet A = {a, b}. We claim that ΩAV is not equidi-

visible. Indeed, we have ab · (ab)ω = a · b. On the other hand, since c(ab) * c(a),

there is no t ∈ (ΩAV)I such that ab · t = a. Similarly, there is no t ∈ (ΩAV)I such

that t · (ab)ω = b. This establishes the claim. �

Since a pseudovariety of completely regular semigroups not containing Sl is

contained in CS, combining Theorem 5.1 and Lemma 5.2, we deduce the following

result.

Corollary 5.3. A pseudovariety of completely regular semigroups is equidi-

visible if and only if it is contained in CS. �

6. Letter super-cancellability as a necessary condition

for equidivisibility

Let S be an A-generated compact semigroup. This implies S = SIA = ASI .

Say that S is right letter cancellative when, for every a ∈ A and u, v ∈ SI , the

equality ua = va implies u = v. Say, moreover, that S is right letter super-

cancellative when, for every a, b ∈ A and u, v ∈ SI , the equality ua = vb implies

a = b and u = v. We have the obvious dual notions of left letter cancellative and

left letter super-cancellative semigroup. If S is simultaneously right and left letter

(super-)cancellative, then we say S is letter (super-)cancellative.

Say that a pseudovariety of semigroups V is right letter (super-)cancellative if

ΩAV is right letter (super-)cancellative, for every finite alphabet A. One also has

the dual notions of left letter (super-)cancellative and letter (super-)cancellative

pseudovariety.
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Example 6.1. If V is a semigroup pseudovariety containing some nontrivial

monoid and such that V = V ∗ D, then V is letter super-cancellative (cf. [7,

Proposition 1.60] and [1, Exercise 10.2.10]).

In [4], one finds a characterization of the (right/left) super-cancellative pseu-

dovarieties as a routine exercise of application of basic results in the theory of

profinite semigroups. The following simple observation is included in that char-

acterization.

Lemma 6.2. A semigroup pseudovariety V is right letter super-cancellative

if and only if D ⊆ V and V is right letter cancellative. Dually, V is left letter

super-cancellative if and only if K ⊆ V and V is left letter cancellative. Therefore,

V is letter super-cancellative if and only if LI ⊆ V and V is letter cancellative.

Letter super-cancellability appears as a necessary condition for equidivisibil-

ity in the following way.

Proposition 6.3. If V is an equidivisible pseudovariety of semigroups not

contained in CS, then V is letter supper-cancellative.

Proof. Fix a finite alphabet A. Let u, v ∈ (ΩAS)I , and let a, b ∈ A be such

that V |= ua = vb. Since ΩAV is equidivisible, there is t ∈ (ΩAV)I such that

V |= ut = v and V |= a = tb, or such that V |= vt = u and V |= b = ta. Suppose

that t 6= I. Suppose also that V |= a = tb. Replacing by a every letter occurring

in tb, we get V |= a = aν for some profinite exponent ν > 1. This implies that

V ⊆ CR. Corollary 5.3 states that the equidivisible subpseudovarieties of CR are

precisely the subpseudovarieties of CS. Since V is not contained in CS, we reach

a contradiction. Similarly, V |= a = tb leads to a contradiction. To avoid the

contradiction, we must have t = I, whence a = b and V |= u = v. Symmetrically,

V |= au = bv implies a = b and V |= u = v. �

Combining Proposition 6.3 with Lemma 6.2, we get the following corollary.

Corollary 6.4. If V is an equidivisible pseudovariety not contained in CS,

then V contains LI. �

7. Equidivisible subpseudovarieties of LG

Recall that the class LG of all finite local groups is the largest pseudovariety

of semigroups whose semilattices are trivial. Local groups are thus generalizations

of completely simple semigroups that turn out to be sometimes much harder to

handle. For our purposes, the following technical result turns out to be essential.
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Lemma 7.1. If V is a subpseudovariety of LG containing D, then V is right

letter super-cancellative.

Proof. Let u and v be pseudowords, and a and b be letters such that the

pseudoidentity ua = vb holds in V. The pseudovariety D is right letter super-

cancellative, whence a = b and D satisfies u = v. In particular, u = v or both

u and v are infinite pseudowords. Suppose the latter case occurs. Let sn be

the suffix of u of length n, which is also the suffix of length n of v, that is,

there are factorizations u = unsn and v = vnsn. By compactness, there exists

a convergent subsequence of the sequence of triples (un, vn, sn), and, therefore,

there exist pseudowords u′, v′, w, where w is infinite, such that u = u′w and

v = v′w (in S). Since w is infinite, there is a factorization of the form w =

w1w
ω
2w3 [1, Corollary 5.6.2]. As V is contained in LG, it must satisfy the following

pseudoidentities:

w = w1w
ω
2w3 = w1(wω2w3aw

ω
2 )ωw3 = w1w

ω
2w3at = wa · t,

where t = (wω2w3aw
ω
2 )ω−1w3. Hence, since the pseudovariety V satisfies ua = va,

it also satisfies

u = u′w = u′wa · t = ua · t = va · t = v′wa · t = v′w = v. �

Theorem 7.2. A subpseudovariety of LG is equidivisible if and only if it is

contained in CS or it contains LI.

Proof. We already know that every subpseudovariety of CS is equidivisible

by Theorem 5.1. Thus, for the remainder of the proof, we assume that V is a

subpseudovariety of LG not contained in CS.

If V is equidivisible, then V contains LI by Corollary 6.4. For the converse,

suppose that V contains LI, and that V satisfies the pseudoidentity uv = xy.

By Lemma 7.1, V is right letter super-cancellative. By duality, V is also left

letter super-cancellative. Therefore, to prove that there is a (possibly empty)

pseudoword t such that in V we have ut = x and v = ty, or xt = u and y = tv, we

may assume that all the pseudowords u, v, x, y are infinite. Hence, uv = xy may

be viewed as an equality between products in the minimum ideal of a suitable

ΩAV, which is a completely simple semigroup. By Theorem 5.1, we may conclude

that V is equidivisible. �

8. Characterization of equidivisible pseudovarieties

Let ϕ be a homomorphism from A+ onto a semigroup S. Given u ∈ A+,

a transition edge for u in Γϕ is an element of T (pu). Note that T (pu) is always
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nonempty, since there is no path from (ϕ(u), I) to (I, ϕ(u)) in Γϕ. If A and S are

finite, then T (pu) is finite, and so, for some integer n, we can consider the sequence

(εi)i∈{1,...,n} of transition edges for u in Γϕ, where εi is the i-th transition edge

appearing in pu.

In this section, we shall work primarily with the expansion ϕK(`I), but at

some point it will be convenient to use another expansion which we next describe.

In a graph, the content of a path p is the set c(p) of edges in the path. Consider

the relation ≡ϕ,Sl on A+ defined by u ≡ϕ,Sl v if and only if c(pu) = c(qv). Note

that since pw starts at (I, ϕ(w)), if u ≡ϕ,Sl v, then ϕ(u) = ϕ(v) holds. The

relation ≡ϕ,Sl is a congruence and the quotient homomorphism A+ → A+/≡ϕ,Sl
is precisely the two-sided semidirect product expansion ϕK(`Sl) : A+ → SK(`Sl)

(cf. [10, Section 5.4]).1

Suppose, moreover, that A and S are finite. Then SK(`I) and SK(`Sl) are

both finite semigroups. Denote by Φ (respectively, ΦK(`I) and ΦK(`Sl)) the unique

continuous homomorphism from ΩAS onto S (respectively, SK(`I) and SK(`Sl))

whose restriction to A+ is ϕ (respectively, ϕK(`I) and ϕK(`Sl)). Let u ∈ ΩAS.

Consider an arbitrary sequence (un)n of elements of A+ converging to u. Then,

there is N such that ΦK(`I)(u) = ϕK(`I)(un) for every n ≥ N . Therefore, we

can define a transition edge for u in Γϕ as being an element of T (pun) for every

sufficiently large n, since this set depends only on ϕ and u. In a similar way, one

can define the sequence of transition edges for u in Γϕ as being the sequence of

transition edges for un in Γϕ for every sufficiently large n, and an edge for u in Γϕ
as being an element of c(pun

) for every sufficiently large n. Note that a transition

edge for u is indeed an edge for u.

If ψ is a continuous homomorphism from ΩAS onto a finite semigroup T ,

then we denote by Γψ the two-sided Cayley graph of the restriction of ψ to A+.

Since ψ is the unique continuous extension to ΩAS of its restriction to A+, the

homomorphisms ψK(`I) and ψK(`Sl) are defined in view of the previous paragraph.

Their images are also denoted S
K(`I)
ϕ and S

K(`Sl)
ψ , respectively.

Lemma 8.1. Let ϕ be a continuous homomorphism from ΩAS onto a finite

semigroup S, where A is a finite alphabet. Let u ∈ ΩAS. If ((s1, t1), a, (s2, t2)) is

1The reader is cautioned for some misprints in the discussion made in [10, Section 5.4]; for

instance, at some point a map ψ is defined that takes a word u to the set of edges in pu and

not to the set of transition edges, as written there by mistake. The characterization of ϕK(`Sl)

is an application of [10, Corollary 5.4] and of a result of I. Simon [22] (a proof of which may be

found in [9, Theorem VIII.7.1]) stating that two paths in a graph have the same content if and

only if they are equal in the free category relatively to `Sl.
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an edge for u in Γϕ, then there is a factorization u = u1au2 of u, with u1, u2 ∈
(ΩAS)I , such that ϕ(u1) = s1 and ϕ(u2) = t2.

Proof. We may consider a sequence (un)n of elements of A+ converging to u

and such that ϕK(`Sl)(un) = ϕK(`Sl)(u) for every n. In particular, for every n,

the edge ((s1, t1), a, (s2, t2)) is an edge of un in Γϕ, and so un factors as un =

un,1aun,2 for some un,1, un,2 ∈ A∗ such that ϕ(un,1) = s1 and ϕ(un,2) = t2.

By compactness, the sequence of pairs (un,1, un,2) has some accumulation point

(u1, u2) in (ΩAS)I × (ΩAS)I . By continuity of multiplication and of ϕ, we have

u = u1au2, ϕ(u1) = s1 and ϕ(u2) = t2. �

Lemma 8.2. Let θ : B+ → A+ be a homomorphism satisfying θ(B) = A,

for some alphabets A and B. Consider a homomorphism ϕ from A+ onto a semi-

group S. Let ψ be the homomorphism from B+ onto S such that ψ = ϕ◦θ. Then

we have

ψK(`I)(u) = ψK(`I)(v) =⇒ ϕK(`I)(θ(u)) = ϕK(`I)(θ(v)),

for every u, v ∈ B+. Consequently, S
K(`I)
ϕ is a homomorphic image of S

K(`I)
ψ .

Proof. The proof relies on the following fact: there is in Γψ a path from

(s1, t1) to (s2, t2) labeled by u ∈ B+ if and only if there is in Γϕ a path from (s1, t1)

to (s2, t2) labeled by θ(u) ∈ A+. In particular, ((s1, t1), b, (s2, t2)) is a transition

edge of Γψ if and only if ((s1, t1), θ(b), (s2, t2)) is a transition edge of Γϕ.

Let u, v ∈ B+ be such that ψK(`I)(u) = ψK(`I)(v). Then we immediately have

ϕ(θ(u)) = ϕ(θ(v)). Suppose that ((s1, t1), a, (s2, t2)) is a transition edge of Γϕ be-

longing to the path pθ(u). We have s1 = ϕ(w1) and t2 = ϕ(w2) for some w1, w2 ∈
A∗ such that θ(u) = w1aw2. There is a factorization u = u1bu2 with w1 = θ(u1),

w2 = θ(u2) and a = θ(b). It then follows that ((s1, t1), b, (s2, t2)) is a transition

edge of Γψ belonging to pu. It belongs also to pv, since ψK(`I)(u) = ψK(`I)(v).

Therefore, ((s1, t1), a, (s2, t2)) is a transition edge of Γϕ in pθ(v). Symmetrically,

every transition edge of Γϕ belonging to pθ(v) also belongs to pθ(u), establishing

that ϕK(`I)(θ(u)) = ϕK(`I)(θ(v)).

Therefore, we can consider the onto homomorphism ρ : S
K(`I)
ψ → S

K(`I)
ϕ de-

fined by ρ(ψK(`I)(u)) = ϕK(`I)(θ(u)). �

We are now ready to prove our main result.

Theorem 8.3. A pseudovariety of semigroups V is equidivisible if and only

if it is contained in CS, or it is closed under the two-sided Karnofsky–Rhodes

expansion.
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Proof. The “if” part follows from Corollaries 4.4 and 5.3.

Conversely, suppose that V is an equidivisible pseudovariety not contained

in CS. Let u, v be elements of ΩXS such that V |= u = v, where X is some finite

alphabet. For a finite alphabet A, let ϕ be a continuous homomorphism from

ΩAS onto a semigroup S from V. Consider the finite alphabet B = A∪X. There

is a continuous onto homomorphism θ : ΩBS → ΩAS such that θ(B) = A. Let

ψ be the unique continuous homomorphism from ΩBS onto S such that ψ = ϕ◦θ.
We will show that S

K(`I)
ψ |= u = v.

Viewing u, v as elements of ΩBS, and because V |= u = v, we have ψ(u) =

ψ(v). We claim that ψK(`I)(u) = ψK(`I)(v). Let (εi)i∈{1,...,n} and (δi)i∈{1,...,m}
be the sequences of transition edges in Γψ, respectively for u and for v. Without

loss of generality, we may assume that n ≤ m.

Suppose that the set

{i ∈ {1, . . . , n} | εi 6= δi} (8.1)

is nonempty, and let j be its minimum. By Lemma 8.1, there are factorizations

u = u1au2 of u and v = v1bv2 of v, with a, b ∈ B and u1, u2, v1, v2 ∈ (ΩBS)I , such

that

εj = ((ψ(u1), ψ(au2)), a, (ψ(u1a), ψ(u2))

and

δj = ((ψ(v1), ψ(bv2)), b, (ψ(v1b), ψ(v2)).

Note that α(εj) and α(δj) belong to the same strongly connected component

of Γψ, by the minimality of the index j.

Since V |= u1a · u2 = v1 · bv2 and V is equidivisible, there is t ∈ (ΩBS)I such

that

V |= u1at = v1 and V |= u2 = tbv2, (8.2)

or

V |= v1t = u1a and V |= bv2 = tu2. (8.3)

If Case (8.2) holds, then there is in Γψ a (possibly empty) path from ω(εj)

to α(δj), labeled by a word t0 ∈ B∗ such that ψ(t0) = ψ(t). Since α(δj) and

ω(δj) belong to the same strongly connected component, we conclude that there

is in Γψ a path from ω(εj) to α(εj), contradicting the fact that εj is a transition

edge.

Therefore, Case (8.3) holds with t 6= I. By Proposition 6.3, it follows

from (8.3) that there is t′ ∈ (ΩBS)I with t = t′a, and

V |= v1t
′ = u1 and V |= bv2 = t′au2. (8.4)
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Suppose that t′ 6= I. Again by Proposition 6.3, it follows from (8.4) that

there is t′′ ∈ (ΩBS)I with t′ = bt′′, and also

V |= v1b · t′′ = u1 and V |= v2 = t′′ · au2. (8.5)

This implies the existence of a path in Γψ from ω(δj) to α(εj), which once more

leads to a contradiction with the definition of a transition edge.

Therefore, we have t′ = I, and so, thanks to Proposition 6.3, from (8.4) we

get V |= v1 = u1, a = b and V |= v2 = u2. This yields εj = δj , which contradicts

the initial assumption. Therefore, the set (8.1) is empty. In particular, εn = δn
holds. Since εn is the last transition edge for u, we have ω(δn) = (ψ(u), I), which

means that δn is the last transition edge for v, whence m = n and εi = δi for

every i ∈ {1, . . . , n}. This concludes the proof that ψK(`I)(u) = ψK(`I)(v).

Now, let ζ be an arbitrary continuous homomorphism from ΩBS into S
K(`I)
ψ .

Because ψK(`I) is onto, there is a continuous endomorphism λ of ΩBS such that

ζ = ψK(`I) ◦ λ. Since we also have V |= λ(u) = λ(v), we deduce that ζ(u) = ζ(v).

This establishes our claim that S
K(`I)
ψ |= u = v.

Applying Lemma 8.2, we conclude that S
K(`I)
ϕ |= u = v. By Reiterman’s

Theorem [17], we deduce that S
K(`I)
ϕ ∈ V, thus proving that V is closed under the

two-sided Karnofsky–Rhodes expansion. �

Corollary 8.4. Let V be a pseudovariety of semigroups. The following

conditions are equivalent:

(1) V is equidivisible and it is not contained in CS;

(2) V = LI ©m V;

(3) V is closed under the two-sided Karnofsky–Rhodes expansion;

(4) V is closed under the two-sided connected expansion.

Proof. The equivalence (2)⇔(3) is Corollary 3.3. In particular, a pseu-

dovariety closed under the the two-sided Karnofsky–Rhodes expansion contains LI.

As LI is not contained in CS, the equivalences (1)⇔(2)⇔(3) then follow from The-

orem 8.3. Since the two-sided connected expansion is a quotient of the two-sided

Karnofsky–Rhodes expansion, we clearly have (3)⇒(4). Conversely, suppose that

V is closed under the two-sided connected expansion. By Proposition 4.3, V is

equidivisible. We claim that V is not contained in CS. Consider the mapping ϕ

from Ω{a}S onto the trivial semigroup S = {1}. The path in Γϕ from (I, 1) to

(1, I) labeled a intersects precisely two strongly connected components of Γϕ,

while, for every k ≥ 2, the path in Γϕ from (I, 1) to (1, I) labeled ak intersects

precisely three strongly connected components of Γϕ. Therefore, denoting by ϕC
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the canonical continuous homomorphism from Ω{a}S to SC , whose restriction to

{a}+ is the connected expansion of ϕ|{a}+ , we have ϕC(a) 6= ϕC(aω+1). This

shows that SC /∈ CR, establishing the claim, and concluding the proof that we

have (4)⇒(1). �

There is one important further connection of the conditions of Corollary 8.4

with varieties of languages. Indeed, as has been proved by Pin [14] (cf. [15,

Theorem 7.3]), the language counterpart of the operator V 7→ LI ©m V is the closure

under unambiguous product.

We conclude the paper with one further application of our results for pseu-

dovarieties of local groups. Combining Corollary 8.4 with Theorem 7.2, we obtain

the following.

Corollary 8.5. If V is a subpseudovariety of LG containing LI, then V =

LI ©m V. �

It is well known that LI ∨ H = LI ©m H for every pseudovariety H of groups

[11, Corollary 3.2]. The previous results provide an indirect proof of the following

extension of that fact, which appears to be new.

Corollary 8.6. If V is a subpseudovariety of LG, then LI ∨ V = LI ©m V.

Proof. Let V be a subpseudovariety of LG. Then the pseudovariety LI ∨ V

is equidivisible by Theorem 7.2. Therefore, applying Corollary 8.5, we obtain

LI ∨ V = LI ©m(LI ∨ V) ⊇ LI ©m V ⊇ LI ∨ V. �

Reading [8, Corollary 4.3], one finds the following basis for LI ∨ CS:

LI ∨ CS = [[zω(xy)ωxtω = zωxtω, xyωz = (xyωz)ω+1]].

As an example of the application of Corollary 8.6, we obtain a simplified basis for

LI ∨ CS, made of a pseudoidentity involving only three letters.

Proposition 8.7. The pseudovariety LI∨CS is defined by the pseudoidentity

(xy)ω(xz)ω(xy)ω = (xy)ω.

Proof. By [5, Theorem 6.1], taking Σ = {(zt)ωz = z}, H = I, W = {x1},
m = 0 and α1 = xω+1

1 , we obtain that the pseudovariety LI ©m CS is defined by

the following pseudoidentities:((
x(zt)ωzy

)ω
xzy

(
x(zt)ωzy

)ω)ω
=
(
x(zt)ωzy

)ω
, (8.6)

(xzy)ω−1
(
x(zt)ωzy

)ω+1
(xzy)ω = (xzy)ω. (8.7)
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Note that the first of these pseudoidentities is valid in LG, while the pseudovariety

defined by the second one is contained in LG. Hence, LI ©m CS is defined by

the pseudoidentity (8.7). Further simplifications of the pseudoidentity (8.7) may

be carried out as follows. First, since it defines a subpseudovariety of LG, the

(ω + 1)-power of the infinite element in the middle may be replaced by the base

of that power. Second, pre-multiplying both sides by zy, post-multiplying by

x(zyx)ω−1, and applying suitable conjugations to shift infinite powers, we obtain

the pseudoidentity (zyx)ω(zt)ω(zyx)ω = (zyx)ω. Substituting x by zy, we deduce

the equivalent pseudoidentity (zy)ω(zt)ω(zy)ω = (zy)ω, as the former can be

recovered by substituting in the latter y by yx. Renaming variables, this shows

that (xy)ω(xz)ω(xy)ω = (xy)ω is a simplified basis for LI ©m CS. Finally, we apply

Corollary 8.6. �
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