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Trispectrum and higher order spectra for non-Gaussian
homogeneous and isotropic random field on the 2D-plane

By GYÖRGY TERDIK (Debrecen)

Abstract. In this paper, we study the non-Gaussian homogeneous and isotropic

random field on the plane in frequency domain. The trispectrum and higher order spectra

of such a random field are described in terms of Bessel functions. Some particular

integrals of Bessel functions are considered as well.

1. Introduction

In several random fields of sciences like geophysics, astrophysics, climatology

etc. we come across observations which are non-Gaussian. A Gaussian process is

characterized by its first two moments, namely, mean, variance and autocorrela-

tions (or equivalently, second-order spectrum). There are several clearly different

processes having identical second-order properties, but their distributions are not

Gaussian and they are clearly different [SR97], [IT97], [Dig13], therefore it is

necessary to study higher order structures. Although second-order properties of

Gaussian random fields are well established, see [Yag87], [Yad83], [AT09], [Bri01],

[Ros00], [Ros85], [Pri88], [Leo89], [BH86], [LS12], [Mok07], there are only a few re-

sults concerning non-Gaussian random fields. Characterizations of non-Gaussian

random fields which require study of higher order moments (or equivalently, higher

order spectra) are not well known. The isotropy of stochastic phenomenons in two
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dimensions has been established in several applications [NY97], [OT96]. Only re-

cently has been made quite a number of steps toward the statistical investigation

of non-Gaussian isotropic random fields, mainly for understanding the Cosmic

Microwave Background (CMB) anisotropies [OH02], [AH12], [AAAC+14], in par-

ticular flat sky approximation, i.e. projecting an observed fraction of the sky onto

a plane rather than a sphere [Pla14].

In this paper, our object is to continue the frequency domain investigations

published in our paper [Ter14], where, additional to the covariance and the spec-

trum, the connection between the bicovariance and the bispectrum has been stud-

ied in details. Here the trispectrum and all higher order spectra of such random

fields are described in terms of Bessel functions. The connection between the tri-

covariance and the trispectrum is similar to the one between the bicovariance

and the bispectrum. It was necessary to prove some particular integrals of Bessel

functions, given in terms of sides and angles of a multilateral.

We now summarize the contents of the paper. Some basic results of ho-

mogeneous and isotropic random field as properties of spectrum and bispectrum

are included in Introduction. In Section 2, we show a connection between the

trispectrum and tricovariance in terms of a kernel function. The generalization

of these results for higher order spectra and covariances are given in Section 3.

Some technical Lemmas concerning integrals of Bessel functions, Dirac-function

in polar coordinates and higher order cumulants of spectral measures are set in

Appendix.

1.1. Isotropy. A homogeneous measurable real valued stochastic field X (x),

x ∈ R2, which is continuous (in mean square sense), has the spectral representa-

tion

X (x) =

∫
R2

eix·ωZ (dω) , ω, x ∈ R2,

with EX (x) = 0, and the orthogonal complex random spectral measure Z (dω)

has E |Z (dω)|2 = F0 (dω). Homogeneity is defined in strict sense, i.e. all the

finite dimensional distributions of X (x) are translation invariant, see [Yag87] for

details. We can rewrite X (x) in terms of polar coordinates:

X (r, ϕ) =

∫ ∞
0

∫ 2π

0

eiρr cos(ϕ−η)Z (ρdρdη) ,

where x = (r, ϕ), ω = (ρ, η) are polar coordinates, r = |x| =
√
x2

1 + x2
2, ρ = |ω|,

x · ω = rρ cos (ϕ− η). This representation provides an isotropic random field if

F0 (dω) is isotropic, i.e. F0 (dω) = E |Z (dω)|2 = E |Z (ρdρdη)|2 = F (ρdρ) dη.
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The isotropy is usually defined through the invariance of the covariance structure

under rotations. A rotation g ∈ SO (2) is characterized by an angle γ. We con-

sider rotations g about the origin of the coordinate system. If x ∈ R2 is given in

polar coordinates x = (r, ϕ), then gx = (r, ϕ− γ), and as usual, the operator Λ (g)

acts on functions f (r, ϕ), such that Λ (g) f (r, ϕ) = f
(
g−1 (r, ϕ)

)
= f (r, ϕ+ γ).

The invariance of the covariance function is satisfactory for Gaussian cases,

but for non-Gaussian random fields we need invariance of higher order cumulants

as well.

Definition 1. A homogeneous stochastic field X (x) is strictly isotropic if all

finite dimensional distributions of X (x) are invariant under all rotations g ∈
SO (2), i.e. all finite dimensional distributions of X (x) and Λ (g)X (x) are the

same.

As far as the homogeneous random field X (x) is Gaussian, the isotropy of the

spectral measure F0 (dω), i.e. in polar coordinates F0 (dω) = F (ρdρ) dη, implies

Cov (Λ (g)X (x1) ,Λ (g)X (x2)) = Cov (X (x1) , X (x2)) ,

for each x1, x2 and for every g ∈ SO (2). It will be convenient for us later if

we assume the existence of all moments of the random field X (x), in this way

from the isotropy follows that all higher order moments and cumulants are also

invariant under rotations.

Example 1. Consider a Gaussian homogeneous and isotropic random field

X (x), then X (x) +X2 (x) is clearly a homogeneous and isotropic non-Gaussian

random field.

Let us consider a homogeneous and isotropic stochastic fieldX (x) = X (r, ϕ),

(r > 0, ϕ ∈ [0, 2π)) on the plane, and put it into spectral representation, see

[Ter14],

X (r, ϕ) =

∞∑
`=−∞

ei`ϕ
∫ ∞

0

J` (ρr)Z` (ρdρ) , (1.1)

where J` denotes the Bessel function of the first kind, and

Z` (ρdρ) =

∫ 2π

0

i`e−i`ηZ (ρdρdη) . (1.2)

Z` are complex-valued random measures, orthogonal to each other:

Cov (Z`1 (ρ1dρ1) , Z`2 (ρ2dρ2)) = δ`1−`2F (ρdρ) ,
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where δ` denotes the Kronecker-δ. Note that the spectral measure F (ρdρ) of

the stochastic spectral measure Z` (ρdρ) does not depend on `. In representa-

tion (1.1) ei`ϕ plays a role of spherical harmonics of degree ` with complex values

on the plane. It follows that an isotropic random field X (x) can be decomposed

into a countable number of mutually uncorrelated spectral measures with a one-

dimensional parameter.

The isotropy of X (r, ϕ) implies that the distribution of X (r, ϕ) does not

change under rotations g ∈ SO (2)

Λ (g)X (r, ϕ)=

∞∑
`=−∞

ei`ϕ
∫ ∞

0

J` (ρr) ei`γZ` (ρdρ)=

∞∑
`=−∞

ei`ϕ
∫ ∞

0

J` (ρr)Z` (ρdρ) ,

hence the distribution of Z` (ρdρ) and ei`γZ` (ρdρ) should be the same. Therefore,

under isotropy assumption we have

Cum (Z`1 (ρ1dρ1) , Z`2 (ρ2dρ2)) = ei(`1+`2)γ Cum (Z`1 (ρ1dρ1) , Z`2 (ρ2dρ2)) ,

for each γ, hence either `1 + `2 = 0 or Cum (Z`1 (ρ1dρ1) , Z`2 (ρ2dρ2)) = 0. In

general, under isotropy assumption we have

Cum
(
Z`1 (ρ1dρ1) , . . . , Z`p (ρpdρp)

)
= ei(`1+`2···+`p)γ Cum

(
Z`1 (ρ1dρ1) , . . . , Z`p (ρpdρp)

)
,

that is either `1+`2 · · ·+`p = 0, or Cum
(
Z`1 (ρ1dρ1), Z`2 (ρ2dρ2), . . . , Z`p (ρpdρp)

)
= 0, should be fulfilled. In turn, if this assumption fulfils for each p, then all

cumulants Cum
(
Z`1 (ρ1dρ1) , . . . , Z`p (ρpdρp)

)
are invariant under rotations, and

if in addition the distributions of X (r, ϕ) are determined by the moments, then

the random field is isotropic.

1.2. Spectrum and bispectrum. It is well known from the theory of Gaussian

random fields that

Cov
(
X (x) , X

(
y
))

=

∫ ∞
0

J0 (ρr)F (ρdρ) ,

where r =
∣∣x− y∣∣, see [Yad83], [Yag87], [Bri74]. The covariances and the spectral

measure uniquely define each other since the Hankel transform gives the inverse.

For absolutely continuous spectral measure we have F (ρdρ) = σ2 |A (ρ)|2 ρdρ,

and therefore

C2 (r) =

∫ ∞
0

J0 (ρr)σ2 |A (ρ)|2 ρdρ,

σ2 |A (ρ)|2 =
1

2π

∫ ∞
0

J0 (ρr) C2 (r) rdr,

where C2 (r) = Cov
(
X (x) , X

(
y
))

, r =
∣∣x− y∣∣.
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The third-order structure of a homogeneous and isotropic stochastic field

X (x) is described by either the third-order cumulants (bicovariances) in spatial

domain or the bispectrum in frequency domain, see [Ter14] for details. The

bicovariance of X (x) is

Cum (X (x1) , X (x2) , X (x3))

= Cum (X (0) , X (g (x2 − x1)) , X (|x3 − x1|n)) , (1.3)

where g denotes the rotation carrying x3 − x1 into n = (0, 1). The third-order

cumulant of the stochastic spectral measure Z (dω) of the homogeneous random

field X (x) is given by

Cum (Z (dω1) , Z (dω2) , Z (dω3)) = δ
(
Σ3

1ωk
)
S3 (ω1, ω2, ω3) dω1dω2dω3

= δ
(
Σ3

1ρkω̂k
)
S3 (ρ1, ρ2, α3)

3∏
k=1

Ω (dω̂k) ρkdρk,

where ω̂k = ωk/ |ωk|. Now S3 (α, ρ2, ρ3) depends on 0 < α < π, in other words,

depends on (ρ1, ρ2, ρ3), such that these positive numbers form a triangle, see

Figure 2.

The bicovariance Cum (X (0) , X (x2) , X (r3n)) depends on the lengths r2,

r3 = |x3|, and the angle ϕ between them, this way a triangle is defined with length

of the third side r1, such that r2
1 = r2

2 +r2
3−2r2r3 cos (ϕ). According to this defini-

tion of r1, we introduce C3 (r1, r2, r3) = Cum (X (0) , X (x2) , X (r3n)). Similarly,

the bispectrum S3 (possible with complex values in general) of the homogeneous

and isotropic stochastic field X (x) depends on wave numbers (ρ1, ρ2, ρ3) such

that ρ1, ρ2, ρ3 should form a triangle. It has been shown, see [Ter14], that

C3 (ϕ, r2, r3) = 2

∞∫∫
0

∫ π

0

T3 (α, ρ2, ρ3|ϕ, r2, r3)S3 (α, ρ2, ρ3) dα
3∏
k=2

ρkdρk,

where the function

T3 (α, ρ2, ρ3|ϕ, r2, r3) =

∞∑
`=−∞

cos (`ϕ) J` (ρ2r2) J` (ρ3r3) cos (`α) (1.4)

gives the transformation of the bispectrum S3 (ρ1, ρ2, α) into the bicovariance

C3 (ϕ, r2, r3). Notice that both angles ϕ and α are related to the third sides ρ1

and r1 of the triangles, defined by the wave numbers (ρ1, ρ2, ρ3) and distances

(r1, r2, r3). Distances (r1, r2, r3) are not the norm of (x1, x2, x3) in (1.3) but
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defined by |x2 − x1|, |x3 − x1|, and the angle ϕ is the one between the differences.

By inversion of the bicovariance function, we obtain the bispectrum

S3 (ρ1, ρ2, ρ3)=
1

2π

∞∫∫
0

∫ π

0

T3 (α, ρ2, ρ3|ϕ, r2, r3) C3 (r1, r2, r3) dϕ
3∏
k=2

rkdrk. (1.5)

Note here that the bispectrum of a homogeneous and isotropic stochastic field is

real valued.

2. Trispectrum and tricovariance

The spectrum and bispectrum of a homogeneous and isotropic stochastic field

have particular form, and as it will be seen, considering trispectrum, they do not

show the general pattern for higher order spectra.

From now on, we introduce a short notation for vectors using sets for indices,

for instance, ω1:4, where 1 : 4 = (1, 2, 3, 4), denotes (ω1, ω2, ω3, ω4), and so on.

Consider the spectral representation of the fourth-order cumulant of a ho-

mogeneous random field

Cum (X (x1) , X (x2) , X (x3) , X (x4))

=

∫
R2

· · ·
∫
R2︸ ︷︷ ︸

4

ei(Σ4
1xk·ωk)S4 (ω1:4) δ

(
Σ4

1ωk
) 4∏
k=1

dωk,

and under isotropy assumption for each g ∈ SO (2) we have in addition

Cum (X (gx1) , X (gx2) , X (gx3) , X (gx4))

=

∫
R2

· · ·
∫
R2︸ ︷︷ ︸

4

ei(Σ4
1xk·ωk)S4 (gω1:4) δ

(
Σ4

1ωk
) 4∏
k=1

dωk

= Cum (X (x1) , X (x2) , X (x3) , X (x4)) ,

hence S4 (ω1:4) = S4

(
ω1:3,−Σ3

1ωk
)
, and at the same time S4 (gω1:4) = S4 (ω1:4).

Now ω1:4 is defined by eight coordinates, and if Σ4
1ωk = 0, then these vectors

form a quadrilateral, in general. This quadrilateral has invariants under rotations.

In this way, S4 (ω1:4) = S4 (α1, ρ2, ρ3, ρ4, β2), see Figure 3.

Now, let us shift the vectors (x1, x2, x3, x4) by the vector −x1, and rotate

this new set of vectors (x2 − x1, x3 − x1, x4 − x1) =
(
y

2
, y

3
, y

4

)
such that y

4
=
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4

∣∣∣n, where n = (1, 0), the locations
(

0, y
2
, y

3
, y

4

)
will be given by r2 =

∣∣∣y
2

∣∣∣,
r3 =

∣∣∣y
3

∣∣∣, r4 =
∣∣∣y

4

∣∣∣, together with angles (r2, ϕ2), (r3, ϕ3). From now on, we shall

consider the cumulants at locations defined by their invariants ((r, ϕ)2:3 , r4) =

((r2, ϕ2) , (r3, ϕ3) , r4).

We use the invariance of the cumulants under the shift and rotation to obtain

Cum (X (x1) , X (x2) , X (x3) , X (x4))

= Cum (X (0) , X (x2 − x1) , X (x3 − x1) , X (x4 − x1))

= Cum (X (0) , X (g (x2 − x1)) , X (g (x3 − x1)) , X (g (x4 − x1))) ,

where g denotes the rotation carrying the x4 − x1 into the x-axis. The general

form of cumulants is Cum (X (0) , X (x2) , X (x3) , X (r4n)), where x2 and x3 are

arbitrary locations, and n = (1, 0). The fourth-order cumulants of a homogeneous

and isotropic stochastic field X (x) are determined by the quantities r4, x2 and x3,

in other words, by ((r, ϕ)2:3 , r4), see Figure 1. Let

C4 ((r2, ϕ2) , (r3, ϕ3) , r4) = Cum (X (x1) , X (x2) , X (r3n) , X (0)) ,

and the trispectrum S4 (α1, ρ2:4, β2) be given on the domain of variables (α1, ρ2, ρ3,

ρ4, β2), where α1, β2 ∈ (0, π), and 0 < ρ2, ρ3, ρ4.

Now let

T4 (α1, ρ2:4, β2| (r, ϕ)2:3 , r4)

=

∞∑
`2,`3=−∞

ei(`2ϕ2+`3ϕ3)J`2(ρ2r2)J`3(ρ3r3)J`2+`3(ρ4r4) cos (`2α1) cos (`2α3−`3β2),

where the angle α3 is determined by ρ2, ρ3, ρ4, i.e.
(
ρ2

2 + ρ2
4 − ρ2

3

)
/ (2ρ2ρ4) =

cosα3, see Figure 3.

Theorem 1. Let X (x) be a homogeneous and isotropic stochastic field on

the plane, then the trispectrum S4 of X (x) is real valued, and the tricovariance

function C4 and the trispectrum S4 are connected by the kernel function T4,

namely,

C4 ((r, ϕ)2:3 , r4) = 4

∞∫∫∫
0

∫∫ π

0

T4 (α1, ρ2:4, β2| (r, ϕ)2:3 , r4)

× S4 (α1, ρ2:4, β2)
4∏
k=2

ρkdρkdα1dβ2,
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conversely,

S4 (α1, ρ2:4, β2) =
1

(2π)
4

∞∫∫∫
0

∫∫ 2π

0

T4 (α1, ρ2:4, β2| (r, ϕ)2:3 , r4)

× C4 ((r, ϕ)2:3 , r4)
4∏
k=2

rkdrkdϕ2dϕ3, (2.1)

provided these integrals exist.

Proof. We apply the series representation (1.1) of X (x), and rewrite it for

particular cases n = (1, 0):

X (rn) =

∞∑
`=−∞

∫ ∞
0

J` (ρr)Z` (ρdρ) , (2.2)

X (0) =

∫
R2

Z (dω) =

∫ ∞
0

Z0 (ρdρ) . (2.3)

We obtain

Cum (X (0) , X (x2) , X (x3) , X (r4n))

=

∞∑
`2,`3,`4=−∞

ei(`2ϕ2+`3ϕ3)

∞∫∫∫∫
0

J`2 (ρ2r2) J`3 (ρ3r3) J`4 (ρ4r4)

× Cum (Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z`4 (ρ4dρ4))

=

∞∑
`2,`3=−∞

ei(`2ϕ2+`3ϕ3)

∞∫∫∫∫
0

J`2 (ρ2r2) J`3 (ρ3r3) J−(`2+`3) (ρ4r4)

× Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z−(`2+`3) (ρ4dρ4)

)
=

∞∑
`2,`3=−∞

ei(`2ϕ2+`3ϕ3)

∞∫∫∫∫
0

J`2 (ρ2r2) J`3 (ρ3r3) J`2+`3 (ρ4r4) (−1)
`2+`3

× Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z−(`2+`3) (ρ4dρ4)

)
,

in polar coordinates. The fourth-order cumulant of the stochastic spectral mea-

sure Z (dω) according to a homogeneous random field X (x) fulfils the following

equation:

Cum (Z (dω1) , Z (dω2) , Z (dω3) , Z (dω4)) = δ
(
Σ4

1ωk
)
S4 (ω1:4)

4∏
k=1

dωk;
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and the stochastic spectral measures Z` (ρdρ) are connected to Z (dω) by (1.2) in

frequency domain, hence

Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z−(`2+`3) (ρ4dρ4)

)
= 4 (−1)

`2+`3

∫ π

0

δ (4|ρ1, ρ2, κ)

ρ1κ sinα2
cos (`2α1)

× cos (`2α3 + `3β2)S4 (α1, ρ2:4, β2) dβ2

4∏
k=1

ρkdρk, (2.4)

where ω̂k = ωk/ |ωk| = (cos ηk, sin ηk) defines the angle ηk, and δ (4|ρ1, ρ2, κ) is

zero if (ρ1, ρ2, κ) does not form a triangle, otherwise it is 1. Notice that the cumu-

lants Cum (X (0) , X (x2) , X (x3) , X (r4n)) are given in terms of three distances

and two angles ((r, ϕ)2:3 , r4), see Figure 1.
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Figure 1. Locations on the plane.

The function C4 (((r, ϕ)2:3 , r4)) is expressed as

Cum (X (0) , X (x2) , X (x3) , X (r4n))

= 4

∞∑
`2,`3=−∞

ei(`2ϕ2+`3ϕ3)

∞∫∫∫∫
0

J`2 (ρ2r2) J`3 (ρ3r3) J`2+`3 (ρ4r4)

× δ (4|ρ1, ρ2, κ)

ρ2κ sinα1
e−i`2(α1−α3)−i`3β2S4 (α1, ρ2:4, β2) dβ2

4∏
k=1

ρkdρk =
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= 4

∞∑
`2,`3=−∞

ei(`2ϕ2+`3ϕ3)

∞∫∫∫
0

J`2 (ρ2r2) J`3 (ρ3r3) J`2+`3 (ρ4r4)

×
π∫∫
0

cos (`2α1) cos (`2α3 + `3β2)S4 (α1, ρ2:4, β2) dα1dβ2

4∏
k=2

ρkdρk,

ρ1dρ1 = κρ2 sin (α1) dα1, where κ =
√
ρ2

3 + ρ2
4 − 2ρ3ρ4 cosβ2, and α2 = arccos[(

ρ2
3 − ρ2

4 − κ2
)
/2κρ4

]
, hence α3 is determined by ρ3, ρ4 and β2. The result of

the above summation is real, therefore the imaginary part is zero.

Now, for proving (2.1), consider the integral

2π∫∫
0

∞∫∫∫
0

T4 (α1, ρ2:4, β2| (r, ϕ)2:3 , r4) C4 ((r, ϕ)2:3 , r4) dϕ2dϕ3

4∏
k=2

rkdrk

= 4

2π∫∫
0

∞∫∫∫
0

T4 (α1, ρ2:4, β2| (r, ϕ)2:3 , r4)

2π∫∫
0

∞∫∫∫
0

T4 (α′1, ρ
′
2:4, β

′
2| (r, ϕ)2:3 , r4)

× S4 (α′1, ρ
′
2:4, β

′
2) dα′1dβ

′
2

4∏
k=2

ρ′kdρ
′
kdϕ2dϕ3

4∏
k=2

rkdrk

= 4 (2π)
2

∞∑
`2,`3=−∞

∞∫∫∫
0

∞∫∫∫
0

J`2 (ρ′2r2) J`3 (ρ′3r3) J`2+`3 (ρ′4r4) J`2 (ρ2r2)

× J`3 (ρ3r3) J`2+`3 (ρ4r4)
4∏
k=2

rkdrk

π∫∫
0

cos (`2α
′
1) cos (`2α

′
3 + `3β

′
2)

× cos (`2α1) cos (`2α3 + `3β2)S4 (α′1, ρ
′
2:4, β

′
2) dα′1dβ

′
2

4∏
k=2

ρ′kdρ
′
k

= 4 (2π)
2

π∫∫
0

∞∑
`2,`3=−∞

cos (`2α
′
1) cos (`2α

′
3 + `3β

′
2) cos (`2α1) cos (`2α3 + `3β2)

× S4 (α′1, ρ2:4, β
′
2) dα′1dβ

′
2 = (2π)

4
S4 (α1, ρ2:4, β2) .

To show the last equality, one can turn cosine to exponential and get the

result, since both β2 and β′2 are positive, similarly α3 and α′3. If β2 = β′2, then

α3 = α′3 follows, and finally, α1 = α′1. �
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3. Expression for higher order spectra

Theorem 1 can be generalized for higher order spectra. Put ρ2:p=(ρ2, . . . , ρp),

β1:p−3,2 = (β1,2, . . . , βp−3,2), (r, ϕ)2:p−1 ,= ((r2, ϕ2) , . . . , (rp−1, ϕp−1)), and define

the transformation

Tp
(
α1, ρ2:p, β1:p−3,2| (r, ϕ)2:p−1 , rp

)
=

∞∑
`2,...,`p−1=−∞

JΣp−1
1 `k

(ρprp)

p−1∏
k=2

ei`kϕkJ`k (ρkrk) cos
(
αk−1

∑k−1
j=2 `j − `kβk+1

)
,

where α1

∑1
j=2`j = 0.

Theorem 2. Let X (x) be a homogeneous and isotropic stochastic field on

the plane, then the p−spectrum Sp of X (x) is real valued and the p−covariance

function Cp and the p−spectrum Sp are connected by the kernel function Tp,
namely,

Cp
(

(r, ϕ)2:p−1 , rp

)
= 2p−2

∫ ∞
0

· · ·
∫ ∞

0

∫ π

0

· · ·
∫ π

0

Tp
(
α1, ρ2:p, β1:p−3,2| (r, ϕ)2:p−1 , rp

)
× Sp (α1, ρ2:p, β1:p−3,2)

p∏
k=2

ρkdρkdα1

p−3∏
k=1

dβk,2.

Conversely,

Sp (α1, ρ2:p, β1:p−3,2)

=
1

(2π)
p−2

∫ ∞
0

· · ·
∫ ∞

0

∫ π

0

· · ·
∫ π

0

Tp
(
α1, ρ2:p, β1:p−3,2| (r, ϕ)2:p−1 , rp

)
× Cp

(
(r, ϕ)2:p−1 , rp

)
rpdrp

p−1∏
k=2

rkdrkdϕk,

provided these integrals exist.

Proof. The argument of obtaining higher order spectra is similar to the

evaluation of the trispectrum, the only difference is that instead of using Lemma 2

one has to use Theorem 3. �
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Appendix A. Some integrals of Bessel functions

One of the key formula necessary for deriving an expression for the bispec-

trum (see [Ter14]), is the integral∫ ∞
0

J0 (ρ1λ) J` (ρ2λ) J` (ρ3λ)λdλ =
cos (` arccos (R))

πρ2ρ3

√
1−R2

=
cos (`α1)

πρ2ρ3 sinα1
,

where ρ2
1 = ρ2

2 + ρ2
3 − 2ρ2ρ3 cosα1 and R =

(
ρ2

2 + ρ2
3 − ρ2

1

)
/ (2ρ2ρ3) = cosα1 (see

[PBM86, 2.12.41.16]). This expression is a special case of the following result.

Lemma 1. Let ρk > 0, |ρ2 − ρ3| ≤ ρ1 ≤ ρ2 + ρ3, and ρ2
1 = ρ2

2 + ρ2
3 −

2ρ2ρ3 cosα1, then∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`1+`2 (ρ3λ)λdλ =
cos (`1α2 − `2α1)

πρ2ρ3 sinα1
,

otherwise, if ρ1, ρ2 and ρ3 do not form a triangle, then the integral is zero.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4

 

 

α3

ω3,  ρ3

− η1 = α2

ω2,  ρ2 ω1,  ρ1

α1

Figure 2. Triangle

Proof. Formulae for integrals of Bessel functions require care and attention,

see, for instance, [Vil68, p. 224], and the Addition Theorem [Kor02, p. 27]. The

assumptions imply that a triangle according to (ρ1, ρ2, ρ3) can be formed, see

Figure 2. Formally, the following relations are valid; ρ2
1 = ρ2

2 + ρ2
3 − 2ρ2ρ3 cosα1,
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ρ2 − ρ3 cosα1 = ρ1 cosα3, ρ3 sinα1 = ρ1 sinα3, [EMOT81, p. 54], equivalently,√
4ρ2

2ρ
2
3 − (ρ2 − ρ2

2 − ρ2
3)

2
= 2ρ2ρ3 sinα1, α1 ∈ (0, π). Let us start with the Graf’s

Addition Theorem:

ei`1α2J`1 (ρ1) =

∞∑
m=−∞

Jm (ρ2) Jm+`1 (ρ3) eimα1 .

The system eimα is orthogonal on the [0, 2π], but the angle α1 is changing on

interval [0, π], in this case, we have the integral

∫ π

0

ei(m−`2)αdα =

{
π if m = `2,

i
m−`2

(
1− (−1)

m−`2
)

if m 6= `2,

hence∫ π

0

ei`1α2J`1 (ρ1) e−i`2α1dα1 =

∫ π

0

∞∑
m=−∞

Jm (ρ2) Jm+`1 (ρ3) ei(m−`2)α1dα1

= πJ`2 (ρ2) J`1+`2 (ρ3) + 2i

∞∑
k=−∞

1

2k + 1
J2k+1+`2 (ρ2) J2k+1+`1+`2 (ρ3) .

The real part of the above equality provides∫ π

0

cos (`1α2 − `2α1) J`1 (λρ1) dα1 = πJ`2 (λρ2) J`1+`2 (λρ3) . (A.1)

Now integrate over λdλ, and applying the formula (B.1) we get∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`1+`2 (ρ3λ)λdλ

=

∫ ∞
0

J`1 (ρ1λ)
1

π

∫ π

0

cos (`1α2 − `2γ) J`1 (ρλ) dγλdλ

=
1

π

∫ ρ2+ρ3

|ρ2−ρ3|

∫ ∞
0

J`1 (ρ1λ) J`1 (ρλ)λdλ
cos (`1α2 − `2γ) ρdρ

ρ2ρ3 sin γ

=
1

π

∫ ρ2+ρ3

|ρ2−ρ3|

cos (`1α2 − `2γ)

ρ2ρ3 sin γ

δ (ρ1 − ρ)

ρ1
ρdρ =

cos (`1α2 − `2α1)

πρ2ρ3 sinα1
.

The integral is zero if the inequality |ρ2 − ρ3| ≤ ρ1 ≤ ρ2 + ρ3 is not satisfied

[Vil68, p. 224]. �
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We consider a quadrilateral according to the wave numbers (α1, ρ2, ρ3, ρ4)

defined by two triangles (ρ1, ρ2, κ) and (κ, ρ3, ρ4), where κ = |κ| is the diagonal

and ρj =
∣∣ωj∣∣, see Figure 3. In other words, (ω1, ω2, κ) and (ω3, ω4,−κ) are

triangulars, and their sides (ρ1, ρ2, κ) and (κ, ρ3, ρ4) fulfil the triangle relation,

i.e. the assumption

max (|ρ2 − ρ1| , |ρ4 − ρ3|) < κ < min (ρ1 + ρ2, ρ3 + ρ4) ,

fulfils, see Figure 3.

−1.0 −0.5 0.0 0.5

−
0
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0

.0
0

.5
1

.0
1

.5
2

.0
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.5
3

.0

 

 

α4

ω4,  ρ4

α3

ω3,  ρ3

α2

ω2,  ρ2α1

ω1,  ρ1

β2 = − η3

β1

κ

Figure 3. Quadrilateral

Lemma 2. Assume κ2 = ρ2
3 + ρ2

4 − 2ρ3ρ4 cosβ2, β2 ∈ (0, π) and (ρ1, ρ2, κ)

defines a triangle, see Figure 3, then∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ) J`1+`2+`3 (ρ4λ)λdλ

=
1

π2

∫ π

0

cos ((`1 + `2)α3 − `3β2)
cos (`1α2 − `2α1)

ρ2κ sinα1
δ (4|ρ1, ρ2, κ) dβ2,

where the notations correspond to Figure 3, and δ (4|ρ1, ρ2, κ) is zero if (ρ1, ρ2, κ)

does not form a triangle, otherwise it is 1.

Proof. The equation (A.1) and Lemma 1 give

J`3 (ρ3λ) J`1+`2+`3 (ρ4λ) =
1

π

∫ ρ3+ρ4

|ρ4−ρ3|
J`1+`2 (κλ)

cos ((`1 + `2)α3 − `3β2)κdκ

ρ3ρ4 sinβ2
,
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0

J`1 (ρ1λ) J`2 (ρ2λ) J`1+`2 (κλ)λdλ =
cos (`1α2 − `2α1)

πρ1κ sinα2
δ (4|ρ1, ρ2, κ) ,

hence∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ) J`1+`2+`3 (ρ4λ)λdλ

=
1

π

∫ ρ4+ρ3

|ρ4−ρ3|

cos ((`1 + `2)α3 − `3β2)

ρ3ρ4 sinβ2

∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`1+`2 (κλ)λdλκdκ

=
1

π2

∫ ρ4+ρ3

|ρ4−ρ3|

cos ((`1 + `2)α3 − `3β2)

ρ3ρ4 sinβ2

cos (`1α2 − `2α1)

ρ1κ sinα2
δ (4|ρ1, ρ2, κ)κdκ

=
1

π2

∫ π

0

cos ((`1 + `2)α3 − `3β2)
cos (`1α2 − `2α1)

ρ2κ sinα1
δ (4|ρ1, ρ2, κ) dβ2,

where

√
(2ρ3ρ4)

2 − (κ2−ρ2
3−ρ2

4)
2

= 2ρ3ρ4 sinβ2, κdκ=ρ3ρ4 sin (β2) dβ2, ρ1 sinβ1

= κ sinα1, see Figure 3. Note that if we are given wave numbers (ρ1, ρ2, ρ3, ρ4)

and if κ changes, then not only β2 will change, but all the angles as well. �

For further generalization of Lemma 1, we consider multilaterals on the plane.

A multilateral of order 5, say, has 5 vertices and 2 diagonals, see Figure 4. Under

the motion of a rigid body, the angles, the lengths of the sides, and the diagonals

are invariant. The multilateral will be well defined if the length of the sides and

diagonals are given, one may replace the diagonals by the angle opposite them.

For instance, the κ2 = |κ2| and angle β2,2 are equivalent in determining the

triangle together with sides ρ4 = |ω4| and ρ5 = |ω5|.

Theorem 3. Let p ≥ 4 and consider a multilateral of order p, then

∫ ∞
0

JΣp−1
1 `k

(ρpλ)

p−1∏
k=1

J`k (ρkλ)λdλ

=
1

πp−2

∫ π

0

· · ·
∫ π

0

cos (`1α2 − `2α1)

ρ2κ1 sin (α1)

×
p−2∏
k=2

cos
(
αk+1

∑k
j=1`j − `k+1βk−1,2

)
δ (4|ρk+2, κk, κk+1) dβk−1,2,

where each angle αk is opposite to ρk, and angles βk,1, βk,2 are opposite to

diagonal κk on the right and on the left, respectively, see Figure 4 for notations.
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Figure 4. Multilateral

Proof. A multilateral can be split up into p− 2 triangles, see Figure 4. We

show that from p = 4 follows p = 5, such that the pattern of general induction

shows up. By the Addition Theorem, we have

J`4 (ρ4λ) J`1+`2+`3+`4 (ρ5λ)

=
1

π

∫ π

0

J`1+`2+`3 (κ2λ) cos ((`1 + `2 + `3)α4 − `4β2,2) dβ2,2,

and the result of Lemma 2 leads us to the formula∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ) J`1+`2+`3 (κ2λ)λdλ

=
1

π2

∫ π

0

cos ((`1 + `2)α3 − `3β1,2) cos (`1α2 − `2α1)
dβ1,2

ρ2κ1 sinα1
,

hence we obtain∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ) J`4 (ρ4λ) J`1+`2+`3+`4 (ρ5λ)λdλ

=
1

π3

∫ ∞
0

J`1 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ)

∫ π

0

J`1+`2+`3 (κ2λ)

× cos ((`1 + `2 + `3)α4 − `4β2,2) dβ2,2λdλ

=
1

π3

∫ π

0

∫ π

0

cos (`1α2 − `2α1) cos ((`1 + `2)α3 − `3β1,2)

× cos ((`1 + `2 + `3)α4 − `4β2,2) dβ2,2dβ1,2

ρ2κ1 sinα1
. �
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Appendix B. Dirac-function in polar coordinates

The covariance function of a homogeneous random field has a symmetric

spectral representation where the Dirac ‘function’ is involved. Let δ (·) denote

the Dirac ‘function’, more precisely, δ (·) is a distribution putting all the mass at

zero, for instance, the integral of Bessel functions provides Dirac function

∞∫
0

J` (ρr) J` (κr) rdr =
δ (ρ− κ)

ρ
, (B.1)

see [AW01, Section 11, p. 691]. We shall apply the Jacobi–Anger expansion on

the plane

eiρr cos(ϕ−η) =

∞∑
`=−∞

i`J` (ρr) ei`(ϕ−η). (B.2)

In order to understand the influence of the Dirac ‘function’ in polar coordi-

nates, we express it by the integral through the Jacobi–Anger expansion (B.2),

and obtain

δ (Σp1ρkω̂k) =
1

(2π)
2

∫
R2

ei(λ·Σ
p
1ωk)dλ, (B.3)

where the sum of vectors is invariant under permutation:

δ (Σp1ρkω̂k)

=
1

(2π)2

∫ ∞
0

∫ 2π

0

p∏
k=1

∞∑
mk=−∞

imkJmk (ρkλ) eimk(ηk−ξ)λdλdξ

=
1

(2π)2

∫ ∞
0

∫ 2π

0

∞∑
m1:p=−∞

iΣ
p
1mkeiΣ

p
1mk(ηk−ξ)

p∏
k=1

Jmk (ρkλ)λdλdξ

=
δΣp

1mk

2π

∫ ∞
0

∞∑
m1:p−1=−∞

eiΣ
p−1
1 mk(ηk−np)J−Σ

p−1
1 mk

(ρpλ)

p−1∏
k=1

Jmk (ρkλ)λdλ

=
δΣp

1mk

2π

∫ ∞
0

∞∑
m1:p−1=−∞

(−1)Σ
p−1
1 mk eiΣ

p−1
1 mk(ηk−np)J

Σ
p−1
1 mk

(ρpλ)

p−1∏
k=1

Jmk (ρkλ)λdλ

=
δΣp

1mk

2π

∫ ∞
0

∞∑
m1:p−1=−∞

eiΣ
p−1
1 mk(ηk−np−π)J

Σ
p−1
1 mk

(ρpλ)

p−1∏
k=1

Jmk (ρkλ)λdλ

since Σp1mk = 0, mp = −Σp−1
1 mk. We can apply here Theorem 3 for a clear

expression. Some particular cases are as follows.
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(1) If p = 2,

δ
(
Σ2

1ρkω̂k
)

=
1

2π

∫ ∞
0

∞∑
m=−∞

(−1)
m
eim(η1−η2)Jm (ρ1λ) Jm (ρ2λ)λdλ

=
1

2π

δ (ρ1 − ρ2)

ρ1

∞∑
m=−∞

eim(η1−η2−π) =
δ (ρ1 − ρ2)

ρ2
δ (η1 − η2 − π) ,

hence the integral is taken according to the subspace ρ1 = ρ2 and η1 = η2 + π, it

corresponds to ω1 = −ω2, this subspace is the one what is expected.

(2) For p = 3, we apply Lemma 1,

δ
(
Σ3

1ρkω̂k
)

=
1

2π

∫ ∞
0

∞∑
m1:2=−∞

eiΣ
2
1mk(ηk−η3−π)Jm1+m2

(ρ3λ)

2∏
k=1

Jmk
(ρkλ)λdλ

=
δ (4|ρ1, ρ2, ρ3)

2π2ρ2ρ3 sinα1

∞∑
m1:2=−∞

eiΣ
2
1mk(ηk−η3−π) cos (m2α1 −m1α2)

=
δ (4|ρ1, ρ2, ρ3)

(2π)
2
ρ2ρ3 sinα1

( ∞∑
m1=−∞

eim1(η1−η3−π−α2)
∞∑

m2=−∞
eim2(η2−η3−π+α1)

+

∞∑
m1=−∞

eim1(η1−η3−π+α2)
∞∑

m2=−∞
eim2(η2−η3−π−α1)

)

=
δ (4|ρ1, ρ2, ρ3)

ρ2ρ3 sinα1
(δ (η1 − η3 − π − α2) δ (η2 − η3 − π + α1)

+δ (η1 − η3 − π + α2) δ (η2 − η3 − π − α1)) , (B.4)

where the notations of Figure 2 are used. Here the Dirac ‘function’ is concentrated

on the subspace when (ρ1, ρ2, ρ3) forms a triangle, this triangle defines angles α1,

α2, α3, see Figure 2. Once α1, α2, α3 are given, there are two possible choices

for angles η1 − η3, η2 − η3, such that η3 varies from 0 to 2π. Actually, we plotted

the case when η3 = 0, see Figure 2. One can also check that the set Σ3
1ρkω̂k = 0

will not change if we put m2 = −m1 −m3 in (B.4) instead of m3 = −m1 −m2,

although it may be counted when the principal domain of the bispectrum is of

interest.
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(3) Similarly, for p = 4, we have

δ
(
Σ4

1ρkω̂k
)

=
1

2π

∫ ∞
0

∞∑
m1:3=−∞

eiΣ
3
1mk(ηk−η4−π)Jm1+m2+m3

(ρ4λ)

3∏
k=1

Jmk
(ρkλ)λdλ

=
1

2π3

∞∑
m1:3=−∞

eiΣ
3
1mk(ηk−η4−π)

∫ π

0

cos (m1α2 −m2α1)

× cos ((m1 +m2)α3 −m3β2)
δ (4|ρ1, ρ2, κ)

ρ2κ sinα1
dβ2, (B.5)

see Lemma 2 and Figure 3 for this case. Since ρkω̂k are given, one can expect

some more precise expression. Indeed,

1

2π3

∞∑
m1:3=−∞

eiΣ
3
1mk(ηk−η4−π) cos (m1α2−m2α1) cos ((m1+m2)α3−m3β2)

= δ (η1−η4−π+α2+α3) δ (η2−η4−π−α1+α3) δ (η3−η4−π−β2)

+ δ (η1 − η4 − π + α2 − α3) δ (η2 − η4 − π − α1 − α3) δ (η3 − η4 − π + β2)

+ δ (η1−η4−π−α2+α3) δ (η2−η4−π+α1+α3) δ (η3−η4−π−β2)

+ δ (η1−η4−π−α2−α3) δ (η2−η4−π+α1−α3) δ (η3−η4−π+β2) . (B.6)

Now, for a given α1, ρ2, ρ3, ρ4, the diagonal κ and β2 are equivalent, κ (β2) =√
ρ2

3 + ρ2
4 − 2ρ3ρ4 cosβ2, say, and let β2 be the subject of changes. Hence α3 is

determined, together with α1 and α2, see Figure 3. It follows that η3−η4 = π±β2,

then with each choice of η3− η4 we have two possibilities for η1− η4 and η2− η4.

These later angles η1 − η4 and η2 − η4 are determined by α1, α2 and α3.

Appendix C. Cumulants of spectral measures Z` (ρdρ)

We generalize the joint cumulant stochastic spectral measures

Cum (Z0 (ρ1dρ1) , Z` (ρ2dρ2) , Z−` (ρ3dρ3))

= 2 (−1)
`
δ (4|ρ1, ρ2, ρ3)

cos (` arccos (R))

ρ2ρ3

√
1−R2

S3 (ρ1, ρ2, ρ3)
3∏
k=1

ρkdρk,

where R =
(
ρ2

2 + ρ2
3 − ρ2

1

)
/ (2ρ2ρ3) = cosα1 and δ (4|ρ1, ρ2, ρ3) = 1, if ρ1, ρ2, ρ3

constitute a triangle, and 0 otherwise, see [Ter14] in order to get the formula
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for trispectrum and higher order spectra. δ (4|ρ1, ρ2, ρ3) implies that the wave

numbers ρ1, ρ2, and ρ3 should satisfy the triangle relation.

Consider the fourth-order cumulant

Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z−(`2+`3) (ρ4dρ4)

)
=

2π∫∫∫∫
0

e−i`2(η2−η4)−i`3(η3−η4)δ
(
Σ4

1ρkω̂k
)
S4 (α1, ρ2:4, β2)

4∏
k=1

dηk
4∏
k=1

ρkdρk,

replace the Dirac-function by (B.3), (B.5), and use the orthogonality of the ‘spher-

ical harmonics’,

2π∫∫∫∫
0

e−i`2(η2−η4)−i`3(η3−η4)eiΣ
3
1mk(ηk−η4)

4∏
k=1

dηk = δm1
δm2−`2δm3−`3 (2π)

4
,

and a particular case of Lemma 2∫ ∞
0

J0 (ρ1λ) J`2 (ρ2λ) J`3 (ρ3λ) J`2+`3 (ρ4λ)λdλ

=
1

π2

∫ π

0

cos ((`1 + `2)α3 − `3β2)
cos (`1α2 − `2α1)

πρ2κ sinα1
δ (4|ρ1, ρ2, κ) dβ2,

see Figure 3 for notations. The result is

Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , Z−(`2+`3) (ρ4dρ4)

)
= 4 (−1)

`2+`3

∫ π

0

δ (4|ρ1, ρ2, κ)

ρ1κ sinα2
cos (`2α1) cos (`2α3 − `3β2)

× S4 (α1, ρ2:4, β2) dβ2

4∏
k=1

ρkdρk.

We obtain the cumulant similarly for general p, it follows from a particular

case of Theorem 3, when `1 = 0, see Figure 4.

Lemma 3.

Cum
(
Z0 (ρ1dρ1) , Z`2 (ρ2dρ2) , Z`3 (ρ3dρ3) , . . . , Z−(`2+`3···+`p−1) (ρpdρp)

)
= (−1)

`2+`3···+`p−1 2p−2

∫ π

0

· · ·
∫ π

0

Sp (α1, ρ2:p, β1:p−3,2)

× L (`2:p−1, α1, β1:p−3,1)
p−2∏
k=2

dβk−1,2

p∏
m=1

ρmdρm,
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where

L (`2:p−1, α1:p−1, β1:p−1,2)

=
cos (`2α1)

ρ2κ1 sin (α1)

p−2∏
k=2

cos
(
αk+1

∑k
j=2`j − `k+1βk−1,2

)
δ (4|ρk+2, κk, κk+1) .

Acknowledgements. The author would like to thank the reviewers for

their helpful comments, suggestions which improved the paper.

References

[AAAC+14] P. A. R Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown,

F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Bar-
reiro et al., Planck 2013 results. XXIV. Constraints on primordial non-Gaussian-

ity, Astronomy & Astrophysics 571 (2014), 58 pp.

[AH12] P. Adshead and W. Hu, Fast computation of first-order feature-bispectrum cor-

rections, Phys. Rev. D, (submitted).

[AT09] R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Science

& Business Media, New York, 2009.

[AW01] G. Arfken and H. J. Weber, Mathematical Methods for Physicists, Academic
Press, HAP, New York – San Diego – London, 2001.

[BH86] P. Baxendale and T. E. Harris, Isotropic stochastic flows, Ann. Probab. 14
(1986), 1155–1179.

[Bri74] D. R. Brillinger, Fourier analysis of stationary processes, Proc. IEEE 62 (1974),

1628–1643.

[Bri01] D. R. Brillinger, Time Series. Data Analysis and Theory, Reprint of the 1981

edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

2001.

[Dig13] P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns,
CRC Press, Boca Raton, FL, 2013.
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