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Trispectrum and higher order spectra for non-Gaussian
homogeneous and isotropic random field on the 2D-plane

By GYORGY TERDIK (Debrecen)

Abstract. In this paper, we study the non-Gaussian homogeneous and isotropic
random field on the plane in frequency domain. The trispectrum and higher order spectra
of such a random field are described in terms of Bessel functions. Some particular
integrals of Bessel functions are considered as well.

1. Introduction

In several random fields of sciences like geophysics, astrophysics, climatology
etc. we come across observations which are non-Gaussian. A Gaussian process is
characterized by its first two moments, namely, mean, variance and autocorrela-
tions (or equivalently, second-order spectrum). There are several clearly different
processes having identical second-order properties, but their distributions are not
Gaussian and they are clearly different [SR97|, [IT97], [Digl3], therefore it is
necessary to study higher order structures. Although second-order properties of
Gaussian random fields are well established, see [Yag87], [Yad83], [AT09], [Bri01],
[Ros00], [Ros85], [Pri88], [Leo89], [BHS6], [LS12], [Mok07], there are only a few re-
sults concerning non-Gaussian random fields. Characterizations of non-Gaussian
random fields which require study of higher order moments (or equivalently, higher
order spectra) are not well known. The isotropy of stochastic phenomenons in two
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dimensions has been established in several applications [NY97], [OT96]. Only re-
cently has been made quite a number of steps toward the statistical investigation
of non-Gaussian isotropic random fields, mainly for understanding the Cosmic
Microwave Background (CMB) anisotropies [OH02], [AH12], [AAACT14], in par-
ticular flat sky approximation, i.e. projecting an observed fraction of the sky onto
a plane rather than a sphere [Plal4].

In this paper, our object is to continue the frequency domain investigations
published in our paper [Ter14], where, additional to the covariance and the spec-
trum, the connection between the bicovariance and the bispectrum has been stud-
ied in details. Here the trispectrum and all higher order spectra of such random
fields are described in terms of Bessel functions. The connection between the tri-
covariance and the trispectrum is similar to the one between the bicovariance
and the bispectrum. It was necessary to prove some particular integrals of Bessel
functions, given in terms of sides and angles of a multilateral.

We now summarize the contents of the paper. Some basic results of ho-
mogeneous and isotropic random field as properties of spectrum and bispectrum
are included in Introduction. In Section 2, we show a connection between the
trispectrum and tricovariance in terms of a kernel function. The generalization
of these results for higher order spectra and covariances are given in Section 3.
Some technical Lemmas concerning integrals of Bessel functions, Dirac-function
in polar coordinates and higher order cumulants of spectral measures are set in
Appendix.

1.1. Isotropy. A homogeneous measurable real valued stochastic field X (),
z € R?, which is continuous (in mean square sense), has the spectral representa-
tion
X (z)= / €27 (dw), w,z€R?
R2

with EX (z) = 0, and the orthogonal complex random spectral measure Z (dw)
has F|Z (dw)|> = Fy (dw). Homogeneity is defined in strict sense, i.e. all the
finite dimensional distributions of X (x) are translation invariant, see [Yag87| for
details. We can rewrite X (z) in terms of polar coordinates:

oo 2
X (r,p) = / / e’ 7 (pdpdn)
0 0

where z = (r,¢), w = (p,n) are polar coordinates, r = |z| = /23 + 22, p = |w|,
z-w = rpcos (p —n). This representation provides an isotropic random field if
Fy (dw) is isotropic, i.e. Fp(dw) = E|Z (dw)|* = E|Z(paf,0d77)|2 = F (pdp) dn.
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The isotropy is usually defined through the invariance of the covariance structure
under rotations. A rotation g € SO (2) is characterized by an angle v. We con-
sider rotations g about the origin of the coordinate system. If z € R? is given in
polar coordinates x = (r, ¢), then gz = (r, ¢ — ), and as usual, the operator A (g)
acts on functions f (r, ¢), such that A (g) f (r,¢) = f (97" (r,¢)) = f (.o +7).

The invariance of the covariance function is satisfactory for Gaussian cases,
but for non-Gaussian random fields we need invariance of higher order cumulants
as well.

Definition 1. A homogeneous stochastic field X (z) is strictly isotropic if all
finite dimensional distributions of X (z) are invariant under all rotations g €
SO (2), i.e. all finite dimensional distributions of X (z) and A (g) X (z) are the
same.

As far as the homogeneous random field X () is Gaussian, the isotropy of the
spectral measure Fj (dw), i.e. in polar coordinates Fy (dw) = F' (pdp) dn, implies

Cov (A (g) X (z1),A(9) X (23)) = Cov (X (z1), X (25)),

for each z;, x5 and for every g € SO (2). It will be convenient for us later if
we assume the existence of all moments of the random field X (), in this way
from the isotropy follows that all higher order moments and cumulants are also
invariant under rotations.

Example 1. Consider a Gaussian homogeneous and isotropic random field
X (z), then X (z) + X2 () is clearly a homogeneous and isotropic non-Gaussian
random field.

Let us consider a homogeneous and isotropic stochastic field X (z) = X (r, ¢),
(r >0, ¢ € [0,2m)) on the plane, and put it into spectral representation, see
[Ter14],

X ()= 30 ¢ [ i tor) Zu o). ()

{=—o00

where J; denotes the Bessel function of the first kind, and

27
Zi(pdp) = [ e 2 (pdpi). (1:2)
0
Zy are complex-valued random measures, orthogonal to each other:

Cov (Zf1 (pldpl) ) Z€2 (p2d102)) = 651—52F (pdp) ’
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where 0, denotes the Kronecker-§. Note that the spectral measure F (pdp) of
the stochastic spectral measure Z; (pdp) does not depend on £. In representa-
tion (1.1) e**# plays a role of spherical harmonics of degree ¢ with complex values
on the plane. It follows that an isotropic random field X (z) can be decomposed
into a countable number of mutually uncorrelated spectral measures with a one-
dimensional parameter.

The isotropy of X (r,¢) implies that the distribution of X (r,¢) does not
change under rotations g € SO (2)

MO X 0io)= 30 ¢ [alon e zitpdo= Y ¢ [T or) 2e o),

{=—00 {=—00
hence the distribution of Z, (pdp) and €Y Z; (pdp) should be the same. Therefore,
under isotropy assumption we have

Cum (Z, (prdp1) , Zu, (padps)) = €27 Cum (Zy, (prdph) , Zu, (padps))
for each «, hence either ¢; + 2 = 0 or Cum (Zy, (p1dp1), Ze, (p2dp2)) = 0. In
general, under isotropy assumption we have
Cum (Zél (Pldpl) PRI pr (ppdpp))

= !t +6)Y Cym (Zg1 (prdpr), ..., 2y, (ppdpp)) ,
that is either ¢1+£5 - - -+£, = 0, or Cum (Zg1 (prdp1), Zu, (padp2), ..., Z, (ppdpp))
= 0, should be fulfilled. In turn, if this assumption fulfils for each p, then all
cumulants Cum (Zy, (p1dp1) , ..., Zs, (ppdpp)) are invariant under rotations, and

if in addition the distributions of X (r,¢) are determined by the moments, then
the random field is isotropic.

1.2. Spectrum and bispectrum. It is well known from the theory of Gaussian
random fields that

Cov (X (z),X (y)) = /0 et (pr) F (pdp)

where 7 = |z — y|, see [Yad83], [Yag87], [Bri74]. The covariances and the spectral
measure uniquely define each other since the Hankel transform gives the inverse.
For absolutely continuous spectral measure we have F (pdp) = o2 |A(p)|? pdp,
and therefore

C2(r) = /OOO To (pr) o® | A (p)|” pdp,
PAPP = [ Jo(or)Cs (r) v,

where Cs (r) = Cov (X (z), X (y)), r = |z — y|.
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The third-order structure of a homogeneous and isotropic stochastic field
X () is described by either the third-order cumulants (bicovariances) in spatial
domain or the bispectrum in frequency domain, see [Terl4] for details. The
bicovariance of X (z) is

Cum (X (z,), X (22) , X (23))
= Cum (X (0), X (g9 (22 — 21)), X (|23 —2,|0)), (1.3)

where g denotes the rotation carrying x4 — z; into n = (0,1). The third-order
cumulant of the stochastic spectral measure Z (dw) of the homogeneous random
field X () is given by

Cum (Z (dw,) , Z (dws) , Z (dw3)) = 6 (SFwy,) 93 (wy, W, ws) dw; dwydws

3
=0 (33pk@y) S5 (p1, p2s as) [1Q(dy,) prdpr,
k=1

where @, = wy,/ |w;|. Now S5 (o, p2, p3) depends on 0 < a < m, in other words,
depends on (p1, p2,p3), such that these positive numbers form a triangle, see
Figure 2.

The bicovariance Cum (X (0), X (z,),X (rsn)) depends on the lengths rq,
r3 = |z, and the angle ¢ between them, this way a triangle is defined with length
of the third side r1, such that 7% = r3+r3 —2ryr3 cos (¢). According to this defini-
tion of ry, we introduce Cs (71,72, 73) = Cum (X (0), X (25), X (rsn)). Similarly,
the bispectrum S3 (possible with complex values in general) of the homogeneous
and isotropic stochastic field X (z) depends on wave numbers (p1, p2, p3) such
that pi, p2, p3 should form a triangle. It has been shown, see [Ter14], that

00 ” 3
C3 ((,O,TQ,T3) :2/// 7?3(04;P27P3|4Pa7”277'3) S3 (a7p2ap3) danpkdpkv
0 k=2
0

where the function

oo

Ts (. p2, p3l ra,m3) = Y cos () Je (parz) Je (psrs) cos (L) (1.4)

l=—o00

gives the transformation of the bispectrum S; (p1, p2,«) into the bicovariance
Cs (v, 72,73). Notice that both angles ¢ and « are related to the third sides p;
and 71 of the triangles, defined by the wave numbers (p1, p2, p3) and distances
(r1,72,73). Distances (r1,r2,73) are not the norm of (zq,z,,2z5) in (1.3) but
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defined by |z, — 4], |25 — 2], and the angle ¢ is the one between the differences.
By inversion of the bicovariance function, we obtain the bispectrum

S (p11p23p3 /// 75 CY ;027P3“P7T2>7"3)CB (Tl,T27T3)dSDHdeTk (1 5)

Note here that the bispectrum of a homogeneous and isotropic stochastic field is
real valued.

2. Trispectrum and tricovariance

The spectrum and bispectrum of a homogeneous and isotropic stochastic field
have particular form, and as it will be seen, considering trispectrum, they do not
show the general pattern for higher order spectra.

From now on, we introduce a short notation for vectors using sets for indices,
for instance, w;.,, where 1:4 = (1,2,3,4), denotes (w;,ws,ws,w,), and so on.

Consider the spectral representation of the fourth-order cumulant of a ho-
mogeneous random field

Cum (X (z,), X (22), X (23), X (24))

um (
/ / iz, ) Si(wy.q)0 ( 1Wk) Hdwkv
Jr: R

and under isotropy assumption for each g € SO (2) we have in addition
Cum (X (gz,), X (925) , X (923) , X (924))

/R2 /Rz P8, (gwna) 8 (St) Hdwk

= Cum (X (Ql) X (&2) X (£3) ;X (LL)) )

hence Sy (wy.4) = Sa (wy.3, —S3w, ), and at the same time Sy (gwy.4) = Si (wy.4)-
Now w;., is defined by eight coordinates, and if X{w, = 0, then these vectors
form a quadrilateral, in general. This quadrilateral has invariants under rotations.
In this way, Sy (wq.4) = S4 (a1, p2, p3, pa, B2), see Figure 3.

Now, let us shift the vectors (z,,z,,z5,24) by the vector —z,, and rotate

this new set of vectors (zo — 21,25 — 21,24 — ;) = (gwﬂ?ﬂ&) such that y, =
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‘y4‘ n, where n = (1,0), the locations (Q, g27g37y4) will be given by ro = ‘yQ

)

rg = ‘yg‘, ry= ’y4 , together with angles (rq, ¢2), (73, p3). From now on, we shall
consider the cumulants at locations defined by their invariants ((r,¢),.5,74) =
((r2,2), (r3,¢3) ;74)-

We use the invariance of the cumulants under the shift and rotation to obtain

Cum (X (1), X (22), X (23), X (24))
= Cum (X (0), X (25 — 1), X (23 — 1), X (24 — 7))
= Cum (X (0), X (g (2 —21)), X (9 (x5 —21)), X (9 (24 — 21)))

where g denotes the rotation carrying the x, — z; into the z-axis. The general
form of cumulants is Cum (X (0), X (z,), X (23), X (r4n)), where z, and z, are
arbitrary locations, and n = (1,0). The fourth-order cumulants of a homogeneous
and isotropic stochastic field X (z) are determined by the quantities r4, z, and z,
in other words, by ((r,¢),.5,74), see Figure 1. Let

Ca ((r2,02), (r3,p3) ,74) = Cum (X (z4), X (z,), X (r3n), X (0)),

and the trispectrum Sy (a1, p2.4, B2) be given on the domain of variables (a1, p2, p3,

P4, B2), where aq, B2 € (0,7), and 0 < pa, p3, pa.
Now let

7:1 (alv P2:4, 62| (7", 90)2:3 ’ 7’4)

o

= > o), (pora)Ju, (pars) eyt e, (para) cos (Laan) cos (bros—Es3s),

22,23:—00

where the angle s is determined by po, p3, pa, ie. (p3+ p3 — p3) / (2p2p1) =
cos ag, see Figure 3.

Theorem 1. Let X (z) be a homogeneous and isotropic stochastic field on
the plane, then the trispectrum Sy of X (z) is real valued, and the tricovariance
function C4 and the trispectrum S, are connected by the kernel function Ty,
namely,

Ca((r,@)ag r4) = 4/7/ //;7?1 (a1, p2ia; Bo| (1,9)2.5,74)
0

X Sy (a1, paua, B2) 11 prdprdondfa,
F=2
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conversely,

x 27
Si (al,p2:4,ﬁ2>(271r)4/0///0 Ta (a1, pots Bl (s ©) g s 74)
4

X Cy ((1,9) 9.3, 7a) [ rrdridpades, (2.1)
k=2

provided these integrals exist.

PROOF. We apply the series representation (1.1) of X (z), and rewrite it for
particular cases n = (1,0):

Xiw= 3 | eon) 22 o). (2:2)
x0- [ 2= [ " 2o (pd). (2.3)

We obtain

Cum (X (0), X (z,), X (23), X (r4n))

oo

= > 6i(€w2+ews)/// Ju, (p2r2) Jes (p3rs) Ju, (para)
0

£2,03,84=—00

x Cam (Zo (prdp1)  Ze, (p2dp2) , Ze, (p3dps) , Ze, (padpa))

oo

S ciltaerttan / / / / Tes (p372) Joy (p373) Tty 60y (pra)
0

52,23:—00

x Cum (ZO (pldpl) s 2ty (p2dp2) s 2ty (p3dp3) ) Z*(¢2+€3) (p4dp4))

oo

Z ei(€2¢2+€3¢3) //// Jzz <p27‘2) Jfa (p37"3) szJrés (p47“4) (_1)52-5-@3
0

EQ,Z;;:—OO

x Cum (Zo (prdpr)  Ze, (p2dp2) s Zuy (p3dps) , Z—(03445) (Padpa)) ,

in polar coordinates. The fourth-order cumulant of the stochastic spectral mea-
sure Z (dw) according to a homogeneous random field X (z) fulfils the following
equation:

4

Cum (Z (dwy) , Z (dws) , Z (dws) , Z (dwy)) = 6 (E%Qk) Sy (wr.4) kl;lld%ﬁ
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and the stochastic spectral measures Z; (pdp) are connected to Z (dw) by (1.2) in
frequency domain, hence

Cum (Zo (prdp1) , Ze, (p2dp2)  Ze, (p3dps) , Z— (e, +¢5) (Padps))

=4(-1)Th / 3(Blpr, p2,r) (A|p1., P2 ) cos (la0r)
0 piksinag
4
X cos (bocxg + l3582) Sy (a1, pa.a, B2) dB2 ] prdpk, (2.4)
k=1

where @, = w,,/ |wi| = (cosng,sinn) defines the angle ng, and 6 (A|p1, p2, k) is
zero if (p1, p2, k) does not form a triangle, otherwise it is 1. Notice that the cumu-
lants Cum (X (0), X (z5), X (z3), X (r4n)) are given in terms of three distances
and two angles ((r,¢),.5,74), see Figure 1.

X, T2

0.0
I

-0.5
I

-1.0

X3, I3

-15

-2.0
I

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1. Locations on the plane.

The function C4 (((7,©)q.5,74)) is expressed as

Cum (X (0), X (z5), X (z3), X (ran))

o0

=4 ) et //// Juy (p212) Jug (p373) Joy105 (paTa)
0

[2,[3=—OO

4
% %.’p%'KL)e—i@z(C>é1—0m,)—i£3ﬁ254 (al,p2;4,ﬁg) dBs H prdpr =
pok sin g g
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=4 ) et /// Ju, (par2) Jos (p313) Jesta5 (para)
0

[2,[3=—OO

X // cos (La0u1) cos (Laag + U302) Sa (a1, pa:a, f2) dardfs H Prdpr,

k=2

p1dp1 = Kkpasin (aq) dag, where £ = \/p§ + pi — 2p3p4 cos B2, and s = arccos
[(03 — p3 — K?) /2kp4], hence ag is determined by p3, ps and B2. The result of
the above summation is real, therefore the imaginary part is zero.

Now, for proving (2.1), consider the integral

27 [e%s)
4
// // T (a1, pa:a, Ba| (1,0) 5.5, 74) Ca (7, 90) .5, 74) dpadps [ rrdry
B2

—4//// Ta (a1, p2:a, Ba] (1,0) 9.5 ,74) //// Ta (A4, Py Bol (7,0) 9.3 5 74)

X Sy (), ph.y, By) daydfy H Prdp)dpardps H rrdry

k=2

=4 (2m)* Z ////// Jo, (Pr2) Jos (P573) Jesit, (P4r4) e, (p2r2)

Lo, f3=—00

X Juy (p373) Jogtes (Para) H rLdr // cos (l2a)) cos (Laay + €335)
X cos (faa1) cos (Caaz + l3B2) Su (ay, ph.y, Bs) daydBsy H Prdpy,

4 (27) // Z cos (laa)) cos (baaly + £33%) cos (baary) cos (b2az + £3/32)

42,53—700

x Sy (061,P2:4,52)d041d5§ = (2”)4 Sy (ai, p2.a, B2) .

To show the last equality, one can turn cosine to exponential and get the
result, since both 82 and B} are positive, similarly ag and of. If 82 = B4, then
a3 = aof follows, and finally, a; = of. O
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3. Expression for higher order spectra

Theorem 1 can be generalized for higher order spectra. Put pa., =(p2, ..., pp),

ﬂl:P*?’,Q = (ﬂl,Q’ s 751)73,2)’ <T7 ()0)2:1;71 y = ((7"2, 802) [ (Tpfh ¢p71)>7 and define
the transformation

7;7 (al’ (T7 SD)Z:pfl ,’f'p)
o p—1
T k-
= > Ty, (Pp7p) [T €%+ T, (prrs) cos (ak—12j:§fj - fkﬁkﬂ) ;
borenly 1=—00 k=2

where 0412;:263' =0.

Theorem 2. Let X (z) be a homogeneous and isotropic stochastic field on
the plane, then the p—spectrum S, of X (z) Is real valued and the p—covariance
function C, and the p—spectrum S, are connected by the kernel function T,
namely,

Cp ((7‘, ©)op_1 ,rp)

= 2P~ 2/ / / / alaPQPaﬂl;D 3,2/ (7, )zzp_lﬂ"p)

X Sp (a1, p2:ps B1:p—3,2) HpkdpkdOélHdBkZ
=2 k=1

Conversely,

S (a17p2p761p 32

= p =} / / / / alv P2:p; ﬂl:p73,2| (7“, 90)2:]3—1 ) Tp)
x Cp ((7“ P)op_1 ,rp) rpdry H TrRdredpg,
k=2

provided these integrals exist.

PRrROOF. The argument of obtaining higher order spectra is similar to the
evaluation of the trispectrum, the only difference is that instead of using Lemma 2
one has to use Theorem 3. (]
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Appendix A. Some integrals of Bessel functions

One of the key formula necessary for deriving an expression for the bispec-
trum (see [Ter14]), is the integral

° cos (£ arccos (R)) cos (bay)
Ji A)J, A)J, A) AdA = = : )
| 30000 3 (023) 7 033 S e

where p? = p3 + p3 — 2paps cosay and R = (p3 + p3 — p3) / (2p2p3) = cos oy (see
[PBMS86, 2.12.41.16]). This expression is a special case of the following result.

Lemma 1. Let py > 0, |[pa — p3| < p1 < pa + p3, and p] = p3 + p3 —
2pap3 cos o, then

cos (L1ae — foary)

TP2p3 SiN

/ Tor (010) Je (020) Jes 0 (p30) AdA =
0

otherwise, if p1, p2 and ps do not form a triangle, then the integral is zero.

%, P3

T T T T T T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Figure 2. Triangle

PROOF. Formulae for integrals of Bessel functions require care and attention,
see, for instance, [Vil68, p. 224], and the Addition Theorem [Kor02, p. 27]. The
assumptions imply that a triangle according to (p1,p2,p3) can be formed, see
Figure 2. Formally, the following relations are valid; p? = p3 + p3 — 2pap3 cos aq,
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P2 — p3Cosay = pjcosag, pzsina; = pysinaz, [EMOTS8L, p. 54], equivalently,

\/4p§p§ —(p% — p3 — p§)2 = 2papssinay, ag € (0, 7). Let us start with the Graf’s
Addition Theorem:

lZlOQJKl ,01 Z Jm ,02 m+l1 (p3) elmen,

m=—0o0

The system €™ is orthogonal on the [0,27], but the angle a; is changing on

interval [0, 7], in this case, we have the integral

/77 i(m—t2)ag T if m =4/,
e o= , m— .
0 P (1 - (-1 52) if m# by,

hence

/ 1% ]y, (p1) e day = / Z Tm (p2) Tty (p3) €2 doy
0

m=—00
oo

= 7TJ42 (pQ) Jfl-‘rl'z (P3) + 2 Z

k=—o0

oh 1k (p2) J2kt1+0,+¢, (P3) -

The real part of the above equality provides

/ cos (Lrag — baar) Joy (Ap1) dag = T, (Ap2) Joy 40, (Ap3) - (A1)
0

Now integrate over Ad\, and applying the formula (B.1) we get

[ 90 (010) T (92) Ty, (pa2) A
0
- / o, (1)) / cos (£102 — £37) Jo, (pA) dyAdA
0

p2Fps cos (¢ —/ d
- / / Tor () Jo, (o) AN 102 = L) pip

p2—ps| p2ps3siny
B /pz+pa cos (L1ag — Loy) 6 (p1 — p) dp = &% (lag — lray)
T J|p2—psl p2p3 siny P1 pap TP2p3 SIN Qi '

The integral is zero if the inequality |p2 — p3| < p1 < p2 + ps is not satisfied
[Vil68, p. 224]. d
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We consider a quadrilateral according to the wave numbers (a1, p2, ps3, p4)
defined by two triangles (p1, p2, k) and (k, p3, p4), where k = || is the diagonal
and p; = |gj|, see Figure 3. In other words, (w;,w,, k) and (ws,w,, —K) are
triangulars, and their sides (p1, p2, ) and (k, ps, ps) fulfil the triangle relation,
i.e. the assumption

max (|pz2 = p1|, [pa — ps]) < £ <min(p1 + p2,p3 + pa)

fulfils, see Figure 3.

3.0
I

2.0

1.0 15

0.5

W4, P4

-05 0.0

-1.0 -0.5 0.0 0.5

Figure 3. Quadrilateral

Lemma 2. Assume r% = p3 + p3 — 2p3pycos B2, B2 € (0,7) and (p1, p2, k)
defines a triangle, see Figure 3, then

o0
/ Tor (010) Je (020) Jes (93) Jes 0525 (93X) AdA
0

1 (" cos (L1ag — lyau
-3 cos ((£1 + £2) az — £3[2) (s — yon)
0

. 5(A|p1»/}27"$) dﬁQa
P2k SN (v

where the notations correspond to Figure 3, and § (A\|p1, p2, k) is zero if (p1, pa2, K)
does not form a triangle, otherwise it is 1.

PROOF. The equation (A.1) and Lemma 1 give

1 [rstea cos ({1 + ¥4y) g — ¢ KkdK
Jug (p3N) Jos 405125 (PaN) = 7T/ lJz1+£2 (KA) (5 p32p)4 anﬁ2 362)
P4a—pP3

Y
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COS (41042 — 52041)

/ Ton (010) Jey (020) Jes 3 (RA) AA = 5(Blo1, ps )
0

TP1K Sin Qg

hence

/ Joy (p12) Juy (p22) Jey (p32) Jey 405405 (paX) AdA
0

1 /p4+”3 cos (01 + £2) az — £3032)
[pa—ps| p3pasin o
1 [Pates oog ((61 4+ £2) ag — £3P2) cos (L1 — Lary)

— - . (5(A|p1,p2,/€) Kkdk
T J|pa—ps] p3pasin o P1K S Qe

1 s
= —2/ cos (€1 + £2) az — £3532)
™ Jo

/ JZI (pl)‘) sz (P2>\) J51+52 (’%A) AdAkdr
0

COS (510(2 — 62051)

p 5(A|p17p25’€)dﬁ27
pok sin g

2 . . .
where \/(2P3P4)2 — (k2 —p3—p3)" = 2pspasin Pa, kdrk=psps sin (B2) dfBs, p1 sin B
= ksinag, see Figure 3. Note that if we are given wave numbers (p1, p2, 3, p4)
and if k changes, then not only B8y will change, but all the angles as well. O

For further generalization of Lemma 1, we consider multilaterals on the plane.
A multilateral of order 5, say, has 5 vertices and 2 diagonals, see Figure 4. Under
the motion of a rigid body, the angles, the lengths of the sides, and the diagonals
are invariant. The multilateral will be well defined if the length of the sides and
diagonals are given, one may replace the diagonals by the angle opposite them.
For instance, the ko = |ky| and angle S22 are equivalent in determining the
triangle together with sides py = |w,| and ps = |ws].

Theorem 3. Let p > 4 and consider a multilateral of order p, then
00 p—1
/ Tsp-1g, (PpA H Jo, (pEA) A
0
_ / / cos (lraz — o)
T P2 paky sin (aq)

X H cos (Oék+1zj:1 = €k+1ﬂk—1,2> 8 (Al prt2s Kk Krt1) dBr—1,2,

where each angle oy, is opposite to pi, and angles By 1, Br2 are opposite to
diagonal k), on the right and on the left, respectively, see Figure 4 for notations.



486 Gyorgy Terdik

%: Ps

-1.0 -0.5 0.0 0.5

Figure 4. Multilateral

PRrROOF. A multilateral can be split up into p — 2 triangles, see Figure 4. We
show that from p = 4 follows p = 5, such that the pattern of general induction
shows up. By the Addition Theorem, we have

JZ4 (p4)‘) J51+52+Z3+54 (PS)\>

1 iy
= ;/ Joy +ta+05 (F2A) cos (€1 + lo + l3) o — Laf22) dB2 2,
0

and the result of Lemma 2 leads us to the formula

/ J€1 (pl/\) JEQ (pQ)‘) Jfa (p3>\) ']514—52-"—@3 (KQ)\) AdA
0

dBi o

1 T
= ﬁ /0 COS ((61 + [2) a3 — 8351’2) COS (41042 — €2a1) ok Sin o s

hence we obtain

/ Toy (01N) Tea (92) Ty (030) Tes (PiN) o sty 61 (p3) AA
0

1 & ™
- ﬁ/ le (P1>\) JZZ (P2>\) J£3 (/73)\)/ J£1+52+23 (HQA)
0 0
x cos (1 + lo + €3) ay — L4f22) dB2aNd)
1 s s
= ﬁ/ / COS (61052 762051)005 ((El +€2) Q3 *£3B172)
o Jo

5 08 (b1 + Ly + €3) ag — £afa2) dB2 2dfr 2
p2k1 Sin aq ’
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Appendix B. Dirac-function in polar coordinates

The covariance function of a homogeneous random field has a symmetric
spectral representation where the Dirac ‘function’ is involved. Let 6 () denote
the Dirac ‘function’, more precisely, ¢ (+) is a distribution putting all the mass at
zero, for instance, the integral of Bessel functions provides Dirac function

[ee]

5(p—

/Jg pr) Jo (kr) rdr = M, (B.1)
J P

see [AWO01, Section 11, p. 691]. We shall apply the Jacobi-Anger expansion on

the plane

oo
etrreos(e—n) — Z i Jy (pr) ette=m, (B.2)
{=—o00
In order to understand the influence of the Dirac ‘function’ in polar coordi-
nates, we express it by the integral through the Jacobi—Anger expansion (B.2),
and obtain

1 . P
5 (Shpuldy) = (2m)? / !By, (B.3)
R2

where the sum of vectors is invariant under permutation:

0 (Ezl)Pka)
oo 2m p

— i T, (prA) €T X adg
2m)Jo Jo

k l’m;C —o00
) 27 o . P
— Z Z'Zifmkelzfmk(”?k—ﬁ)njmk (pk)\) AdAd¢
(2m)" Jo 0 my,=—c0 k=1
52”mk > — P g (g —np) o
_ 0 S e I ptn, (pA) [T Tmse (06 X) AdA
mi.p—1=—00 k=1
5P oo e - p— Pl
== ST e ) g (0, ) [ e (piA) AdA
0 mi:;p1=—00 ! k=1
5Epm e > iSP " Yy (g —np— =
- ! 0 S e )lef,lm (0o A) T Jrmse (0 A) AdA
mip—1=—00 k=1
since XYmy, = 0, m,, = —E’f*lmk. We can apply here Theorem 3 for a clear

expression. Some particular cases are as follows.
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(1) Ifp=2,

5 (Do) = / Z )™ M) L (p1A) i (p2 ) AdA
LM i eim(nl—nz—ﬂ) _ M(s(

— 1y — ),
o o1 L o m — "2 )

hence the integral is taken according to the subspace p1 = ps and 171 = 12 + 7, it
corresponds to w; = —w,, this subspace is the one what is expected.

(2) For p = 3, we apply Lemma 1,
§ (Z3pry,)

2
/ Z ZZ 1M (M —n3— W)Jm1+m2 p3)\ H . pk)\ /\d)\

mi1.2=—00

2 o
e EmE (=15 =7) cog (mgay — myasg)

— 5(A|p17p2ap3) i
272 pop3 sin ag o0
_ 5(A|P17P2»P3) ( Z eiml(nlfngfﬂfaz) Z eimz(’l’]277’]37ﬂ+a1)

(27)? paps sin oy

mij=—00 mMo=—00

oo oo
+ Z eim1(m—n3—ﬂ+az) Z eim2(7]2—’f]3—77—061)

_ 5(A|P1».P27P3) (5(
P2P3 SN Qg
+6(m —n3 —m+a2)d(ne —n3 —7—ai)), (B.4)

m-—m3—7m—a2)d(n2—n3—mT+a)

where the notations of Figure 2 are used. Here the Dirac ‘function’ is concentrated
on the subspace when (p1, p2, p3) forms a triangle, this triangle defines angles a;,
g, ag, see Figure 2. Once oy, a9, ag are given, there are two possible choices
for angles 17 — n3, 2 — N3, such that n3 varies from 0 to 27. Actually, we plotted
the case when 73 = 0, see Figure 2. One can also check that the set X3pp&, = 0
will not change if we put mg = —my — ms in (B.4) instead of m3 = —m; — ma,

although it may be counted when the principal domain of the bispectrum is of
interest.
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(3) Similarly, for p = 4, we have
0 (E%pk@c)

3
/ Z i S (1 —na— 7r)(]m1_~_mz_~_md (pa)) H me (PEA) AdA
0 k=1

miq.3=—00
1 = s i
=53 E elzlmk("’“_"r”)/ cos (myag — maay)
mi.3=—00 0

5 (Alp1, p2, K)

X COS ((m1 +m2) a3 —mgﬁg) -
P2k 81

dfa, (B.5)
see Lemma 2 and Figure 3 for this case. Since py@, are given, one can expect
some more precise expression. Indeed,
1 .- iS5 m (g —na—)
— E e'*1 cos (myag —maaq ) cos ((my+ms) ag—msfa)

273
m1.3=—00

=0(m—ma—m+astaz)d (ne—ms—m—ay+az)d (n3—nys—m—fF2)
+o(m—m—mtaz—az)d(me—nm—7T—ar—az)d(mz—n— 7+ P2)
+6(m—m—m—aztaz)d (ne—na—7m+ar+az)d (n3—ns—m—Pa)
+0(m—nma—m—az—az)d (p—m—m+or—az)d (n3—m—n+p52). (B.6)

Now, for a given ay, p2, p3, p4, the diagonal x and S are equivalent, x (B2) =
\/pg + p3 — 2p3p4 cos Ba, say, and let B2 be the subject of changes. Hence ag is
determined, together with a; and as, see Figure 3. It follows that ns—n4 = m£ 59,
then with each choice of 13 — 14 we have two possibilities for 71 — 14 and 72 — 74.
These later angles 1; — n4 and 17y — 14 are determined by a;, as and ag.

Appendix C. Cumulants of spectral measures Z, (pdp)

We generalize the joint cumulant stochastic spectral measures

Cum (Zo (p1dp1) , Ze (p2dp2) . Z— (p3dps))

s (Larccos (R)) 3
— 2(=1)' 6 (Alpy, pa, C%( S5 (p1, pa, dpy,,
(—=1)" 6 (Alp1, p2; p3) P 3 (p1, P2, P3) l;Ilpk Pk

where R = (p3 + p5 — p?) / (2p2p3) = cos o and & (Alp1, p2, p3) = 1, if p1, pa, p3
constitute a triangle, and 0 otherwise, see [Terl4] in order to get the formula
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for trispectrum and higher order spectra. 0 (A|p1, p2,p3) implies that the wave
numbers pi, p2, and p3 should satisfy the triangle relation.
Consider the fourth-order cumulant

Cum (Zo (prdp1) , Ze, (p2dp2) s Zey (p3dp3) s Z—(15445) (padpa))

27
ila(n2—mna)—ilz(n3— ~ 4 4
= //// e~ Helmamna)=ita(ns=na) 5 (919, &, ) Sa (a1, poca, B2) T1 diwe [1 prdpr,
=1
0

k=1 k=

replace the Dirac-function by (B.3), (B.5), and use the orthogonality of the ‘spher-
ical harmonics’,

2
. ) . 4
//// e~ #2(12—14) = il3 (113 —n4) T mr (e —na) T dnk = O, Ormy—s0ms—es (271-)47
; k=1
and a particular case of Lemma 2

/ To (010) ey (92X) Tty (p3A) Tea et (9aX) AdA
0

1 i 3 —
= cos ((51 +£2) Qg —£352) cos (€1a2 €2a1)5

7T2 0

: (Alp1, p2, k) dfa,
TPok Sin g

see Figure 3 for notations. The result is

Cum (ZO (pldpl) 7Z@2 (p2dp2) 7Z€3 (p3dp3) ) Z*(Z2+53) (p4d,04))
=4(-1)th /” 3 (Alp1, pa, k)
0

" COS (62041) COS (620&3 — é3,82)
P1R SN Qg

4
X Sy (a1, p2:a, B2) dfB2 [ prdpr.
F=1

We obtain the cumulant similarly for general p, it follows from a particular
case of Theorem 3, when ¢; = 0, see Figure 4.

Lemma 3.

Cum (Zo (p1dpr) s Ze, (p2dp2) s Zeg (p3dps) s - - s Z— (s 40540, 1) (Ppdpyp))
_ (_1)22-‘!-@3”.-&-&7—1 2p72/ . / Sp (041, P2ps ﬂl:p—3,2)
0 0

pP—2 P
X L (la:p—1,01, Brp—3.1) [[ dBr—-1,2 T[] pmdpm,
k=2 m=1
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L (62:]3—13 A1:p—1, ﬂl:p—l 2)

cos ( fzal
pglil sin Oél

H cos (akHZ] o £k+16k71,2) O (Al prs2s Kiy K1) -
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