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A basis for the unitary subgroup of the group
of units in a finite commutative group algebra

By A. A. BOVDI (Debrecen) and A. SZAKACS (Eger)

1. Introduction

Let G be a finite abelian group, K the field GF(p™) of p™ elements
and V(KG) the group of normalized units (that is units of augmentation 1)
in the group algebra KG.

For = = Z agg9 € KG, we say that the element ™ = Z gt s

geG geG

conjugate to x, and if x* = x, we say that z is selfconjugate. The map
x — x* is easily seen to be an involutory anti-automorphism (involution) of
the algebra KG. An element u € V(KG) is called unitary if u=! = u*. The
set of all unitary elements of the group V(K G) is obviously a subgroup;
we call it the unitary subgroup of V(K G), and we denote it by V. (KG).

S. P. Novikov had raised the problem of determining the invariants
of V.(KG) when G has p-power order. This was solved by the authors
in [1]; and in case p > 2,m = 1, we gave an explicit basis for V,(KGQG).
Here we continue this work by giving a basis for the Sylow p-subgroup
of V,(KG) whenever G is an arbitrary finite abelian group, without any
restriction on p or m.

We shall write F for the field GF(p) of p elements, C for the Sylow p-
subgroup of GG, and H for the direct complement of C in G: thus G = C' x

H. Further, Clp] = {g € C | g = 1}; CP' = {gpi g€ C} ; fi(C) denotes
the number of components of order p’ in the decomposition of the group C

into a direct product of cyclic groups; r(C) = f1(C)+ fo(C)+--- denotes
the p-rank of C; J = J(C) denotes the ideal of the algebra K G generated
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by the elements g—1 (g € C); and V,(KG) (respectively W,(KG)) denotes
the Sylow p-subgroup of the group V(KG) (respectively V,(KG)). Of
course J is nilpotent, and V,(KG) =1+ J.

Note that the words ’basis’ and 'independent’ are used in two different
senses to describe subsets of KG: on the one hand, additively, as subsets
of the vector space KG; on the other, multiplicatively, as subsets of the
abelian group V,(KG). The context should make it clear which meaning
is intended.

It is easy to prove the following statements using methods of proofs
from [1].

Proposition 1.1. Let be p > 2. Then
m
r(Wp(KG)) = S |H|(IC] = |C7])
and

R e

+‘Cpi+1 ) (i=1,2,3,...).

Proposition 1.2. WQ(KG) =CxD(C)xT(C),
r(W2(KG)) = (|H| ICl—|C?|) + |C[2]] +|C?[2]| - 2),
fl(T(C)) =r(T(C)) =m(|C[2]| - 1) = f1(C),
and fi(D(C)) = ti1 — 2t; + tip1 — fir1(C) (i=1,2,3,...)
where t; = % (| | ((023 - 1) . ’CQj[Q]‘ +1) (j=0,1,2,...).

2. A basis for V,(KG)

We shall use the following notation: C' = (a1) x - - - X (ay,) is a decom-
position of the p-group C' as direct product of cyclic subgroups; ¢; is the
order of the element a; (i = 1,...,n); and L(C) is the set of all n-tuples
of integers (aq, ... ,ay) = a for which 0 < a; < ¢; and p 1 a; for some i.

R. SANDLING [2] proved that the set

{rea =14 (a3 — D) - -(a, — 1) |« € L(C)}

is a basis for V(FC). We extend this result to the group V,(KG).
It is known (see [3], Theorem 2.35) that K has an F-basis of the form

m—1

(2.1) g, el ..., eP

The following statement was proved by S. A. JENNINGS (see [4],
p. 89).
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Lemma 2.1. Let A = A(KC) denote the augmentation ideal of the
modular group algebra KC'. Then the elements y(ay,... ,o,) =

y(@)= (a1 — 1) (a, — 1) 0<a;<q, a1+ +a,>k)
form a K-basis for AF.

Lemma 2.2. Let J = J(C') be the ideal of the algebra KG defined
above and

y(i,h,a) = y(i,h,aq,... o) zapih(al — D% (a, — 1),
Then
My ={y(i,h,a) |0<i<m, he H 0<o; <q; (j=1,...,n),
a1+ -+ a, >k}

is an F-basis for J*.

Proo¥r. It is known that the elements h(c; —1)---(¢, — 1) (h € H,
c; € C, r>k) forma K-basis for J*. By writing the elements
(c1 —1)--- (e, —1)€J* in terms of the basis given in Lemma 2.1, and the
elements of K in terms of the basis (2.1), we can obtain a proof of the
lemma.

Theorem 2.3. The set
B(G) = {z(i,h,a) =1+ y(i,h,a) |0<i<m, h€ H, a € L(C)}
is a basis for V,(KG).

ProOF. It is easy to see that
Mk = {y(i,h,a)—FJkH | y(i,h,a) € My, a3+ -+ ay :k}

is an F-basis for the vector space J*/J**1. The additive group J*/Jk*1 is
isomorphic to the multiplicative group 14 .J%/1+.J%*+1 so this factor-group
is generated by the elements

(1+y(i h,a) (1+ J]H'l) (a1 + - +a, =k).

The subgroups 1+J* (k =1,2,3,...) of V,(KG) = 1+J form a finite series
descending to 1, because J is nilpotent. Therefore V,,(KG) is generated
by the elements z(i,h,a) = 1 + y(i,h, ) (y(i,h,a) € My). If oy =
G1p°, ... ,apn = Bpp® and p1 B; for some ¢, then

S

o(isha) = (14 g (0 = )" - (an = )™) =a(3,9.8)""



100 A. A. Bovdi and A. Szakécs

where h = g?", 3= (B31,...,0,) € L(C) and j =i — s (mod m). Conse-
quently, z(j,g,3) € B(G) and so it follows that V,,(KG) is generated by
B(G).

It is obvious that the cardinality | B(G) | of the set B(G) coincides
with the rank of V,(KG). Let x(i, h, @) be an element from B(G) for which

x(i,h,a)pk =142 (alpk - 1) L (anpk — 1) # 1.
Then «; < q—i: for every j = 1,...,n and x(i,h,a)pk € B(C’pka)
p
Therefore, the cardinality of the set B(G)P" = {xpk | z € B(G)} coin-
cides with ‘B (cp’“ X H)‘ — m |H| <‘0Pk - ‘Cp’““

the number of elements of B(G) of order p* equals ‘B(G)pkf1 ‘—‘B(G)pk
fr (Vo(KQG)). This completes the proof of our theorem.

), and it follows that

Using this theorem, we describe a basis of the Sylow p-subgroup
W,(KG) of the unitary subgroup V,.(KG). First we consider the case
p > 2.

3. A basis for W,(KG) in the case p > 2

It is easy to prove the following lemma by induction on n.
Lemma 3.1. For p > 2 the cardinality of the set
Li(C)={(a1,... ,an) € L(C) | a1 + - - - + «, is an odd number}
is equal to %(|C’| —|CP)).
Theorem 3.2. Let p>2, H[2] ={h € H | h? =1}, E be a subset of
H \ H[2] having a unique representative in every set of the form {h,h~'},
Bi(G) = {x(i,h,a)*x(i,h,a) " | (i, h,a) € B(G), h € E}
and
By(G) = {x(i,h,a)*z(i,h,a)"" | z(i,h,a) € B(G), h € H[2],
a1 + -+ + a, is an odd number } .
Then B,(G) = B1(G) U By(G) is a basis for W,(KG).
ProoFr. Let b;=a; — 1, k=a1 + -+ «, and
yla) =ylag, ... ,an) = (ag — D) - (a, — 1),



A basis for the unitary subgroup of the group ... 101

By virtue of the equality
L4+ b;% =(140b) (1—bi+b°—b>+- +b77") =1
it is easy to obtain that
(3.1) bi* = —b; + b2 —b;® + -+ b0
Then y(a)* = (—1)*y(a) + v for some v in J¥+1(C) and

(i, h,a)* = (1 + Epihy(a))* =1+ (~D)F P ly(@)+7 (3 e JHH(C)).

Clearly, for the (i, h,a) =1+ e?' hy(«a) € B(G) the element y(«) is nilpo-
tent and
3

2(i hy )™ =1 — e hy(a) + <5pih?/(04)>2 B (‘gpihy(oz)) T
Since
z(i,h, ) z(i,h,a) =1+ ((-1)Fp! = h)spiy(a) +v

for some v in J**t1(C), it follows that x(i, h,a)*z(i,h,a)™! # 1 when-
ever h € E or k is odd. As an immediate consequence we have that
2(i, by 0) (i, h,a) "L £ 3(j, g, B)(j, 9, 8) L i i # j or a £ B or
{h,h=1} # {g,97'}. This shows that the set B.(G) consists of pairwise
distinct unitary elements. According to Lemma 3.1,
1

|B2(G)| = %]H[Q]MC’] — |CP]). Since |E| = §(|H| — |H[2]|), we also know
that m

1B1(G)| = 5 (1H] = [H[2])(|C] = |C7]).

Therefore, by Proposition 1.2, |B.(G)| = r(W,(KQ)).

We shall prove that (B.(H x C))P" = B, (H x C?"). Suppose that
w(i,g,a) = z(i,9,)*x(i,g,a) "t and w(j, h,8) = x(j,h, 3)*x(4,h,B) "
are the different elements from B, (G) and their orders greater than p*, yet
w(i, g, )P =w(j, h, 3)P". Then the element v=(x(i,g,))" (z(j, h, 5)*)"
is selfconjugate in the group algebra of the group H x C?". Let

s

c; =a;", z(a) =z(a1,...,an) = (c1 —1)* - (¢, — 1),

(2(isg,0)" =1+ g7 2(a), (2(j,h,B) =1+ 1" 2(8)
and k=a; + -+ a, <01+ -+ By Then, according to (3.1), we have

Jj+s

Jj+s

v=1+e" g z(a) + (=1)*e” TR 2(B)  (mod JFTH(CP')),
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v =1+ (—1)kspi+sg’psz(0z) + epHshpsz(ﬁ) (mod JE*1(CP™)).
Therefore from the condition v = v* we deduce that
" (97" = (-1t 2(a)

e (W~ (1)) 2(8) =0 (mod JEH(CT)),

(3.2)

where (g?" — (—1)%g7?") z(a) # 0 since w(i, g, @) € B.(G). For any two
different elements w(i, g, ) and w(j, h,3) of B.(G) at least one of the
following conditions holds: a) i # j; b) a # 3; ¢) {g,97'} # {h,h™1}.
Since w(i,g,a) € B.(G), it follows that g # (—1)*¢~! and neither the
order of g nor the order of h is divisible by p, so ¢) is equivalent to
the condition {gps,g_ps} + {hps,h_ps}. Hence (3.2) contradicts Lemma

2.2. Consequently, (By(HxC))"" = B, (HxCP") and B.(G) has exactly
’B*(G)ps_1 — |B(G)P"| = fs(W,(KG)) elements of order p*.
We shall prove the independence of B, (G). Let

w <i1,h1,a(1)) e, W (is,hs,a(s)>

be different elements from B, (G), and let

w (i, by, kl---w is, hs, a® ks:l.
)"l

Then it is easy to see that the element

k1 ks
v=u (il,hl,a(1)> ceex (is, hs,a(5)>

is selfconjugate. Let k, = t,p*(") and p{t,. Then

k. tr
x (ir; hraa(r)> =T <jr7gr7ﬁ(r)> )

where j,. =i, +v(r) (mod m), g, = hrpm) and

B = <pu<r>a§r>7 L pumag)) _

Hence v can be written in the form
t1 ts
U:x<j17gluﬁ(1)> "'x<jsagsaﬁ(8)> )

where p t t1ts - -ts. Let y(i,g,a) = gPig(al — 1% ... (a, — 1) and
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— mi (r) ... (r)} ; ()Y — : ()
k 1?:28{31 + -+ 3) .Thereforem(jr,gr,ﬁ ) 1+y(]r,gr,ﬁ )

(r=1,...,s) and

v=1+ tly <j179176(1)> + 4+ tsy (js;gmﬁ(S)) (mOd ']k+1(0))
Without loss of generality we can assume that

k= 51)_|_..._|_57(L1):...:gis)+...+57(LS)_

It is clear that

o = 1 (1)t (G197 8D ) 4o+ (<1 ey (o0 8))
(mod J*T1(C)).

Hence, by virtue of the equality v = v*, we have

(3.3) t (y <j1,g1,ﬁ(1)) — (=)*y <j1,91_1,ﬁ(1)>) 4y
to (4 (s 96 89) = (=1 y (jor 97", 8)) ) = 0 (mod J*1(C)).

Since w (i, by, ™) € B,(G) and p > 2, it follows that g, # (—1)Fg,~*
and the summand u, = y (jr,gr,ﬁ(r)) — (=1)ky (jr,g,r_l,ﬁ(’")) is nonze-
ro. If 3" # B9 then obviously u, # wu,. Hence from (3.3) follows
that gV = ... = ) = 3 and g, = h,,py('r’ =1,...,s) for a fixed v.
If {h.,h; '} # {hg,h;'}, then {gr, 9.} # {94,9;'} (p does not divide
the order of h,,hy) and u, # u,. Therefore, from (3.3) we deduce that
{g1.9: '} = ={gs,95 '} Since y(j1,91,8), - .. ,y(js, g1, 3) are the pair-
wise distinct elements, it follows from (3.3) that t;e?’" 4 --- + t,e?’” =0

(mod p) which is impossible because p 1 tity---ts. This completes the
proof of the theorem.

4. A basis for W3(KQG)

We now turn to the case p = 2. First we describe a basis B,.(C) for
the unitary subgroup V. (KC). It is obvious that V,(KC) = V(KC) when
C is elementary abelian or C' is the cyclic group of order 4. Therefore we
shall assume that the exponent of C' is greater than 2 and C is not the
cyclic group of order 4.

Let N(C) denote the set of all n-tuples of integers (a1,...,a,) #
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(0,...,0) for which o; € {0,¢; — 1} and

T(C)=41+ Y Aall+a)* - (1+a)™ | A €K
aeEN(C)

It is easy to see that T'(C) is an elementary subgroup of V. (KC),
T(C)NC ={a;|a;?=1,i=1,...,n} and the group T(C) has a basis
of the form

Br(C) = {1+52T(1+a1)a1 (l4a,)™ [0<r<m, ac N(C)}

where €,e2,...,e2" " is a GF(2)-basis of the field K = GF(2™) (see
(2.1)). According to Proposition 1.2,
V.(KC) = {a; | ;> # 1) x T(C) x D(O)

where by [1] D(C) C {z*z~! | z € V(KC)}. In the following we shall
construct a basis of the group D(C).

From now on, let F' be the field of 2 elements, C a finite abelian 2-
group of exponent greater than 2 and different from the cyclic group of
order 4, A = A(FC) the augmentation ideal of the algebra F'C,

Lo(C) ={(a1,... ,an) | a; €{0,2,4,... ,q; — 2}, i=1,2,... ,n} and

1
w(C) =5 (IC1=|c?| = [CR) + |C*[2]) = r(C?).
We shall construct a subset L, (C') of L(C) for which the set

Bo(C)={za"za " | za=1+ (a1 + 1)* -+ (a, + 1)*"€B(C), a € L.(C)}

is a basis of the group D(C). For the proof of this fact we shall construct
a subsets Lo(C) C L(C)U Ly(C) and L1(C) C L(C) and we shall prove
that they have the following properties:

ay) there exists a one-to-one map 9 from L, (C) onto Ly(C);

az) Lo(C) N Ly(C) =0 (empty set);

az) Lo(C) N L1 (C) = 0;

ag) |L.(C)| = p(C);

as) if a=(aq,...,a,) € Ly(C) and ¥(«) = (ay,...,ap) € Lo(0O),

thenay +--4+a, =1 +---+a, — 1

xa*xa_l = Ta H Lr <H .’13,,) (1 + y) (y S Ak+2)

TEQ
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where Q C {r € L.(C) |+ -+ 7, =k+ 1} and
Rc{veLi(C)|lvi+ - +v,=k+1}.

Note that the subsets () and R may be empty.
For the proof of property as) and the following below theorems we
need two lemmas.

Lemma 4.1. Let a be an element of order q in the 2-group C' and let
v=a+1. Then (v*)* = (a=! +1)% = loy* + l17° T + Loy12 + v for some
v in A3, with £y, {1,y defined in terms of s as follows:

ifs=0 (mod 4) or s€{q—1,q—2}, thenly=1, {1 =03 =0;
if s=1 (mod 4), then by = {1 =l = 1;

ifs=2 (mod 4) and s < q—2, then by =ty =1, {1 =0;
ifs=3 (mod 4) and s<q—1, then by =¥¢1 =1, ¢5 =0.

PROOF. According to (3.1), v* = v+ %+ --- + 971, Since KC is
a ring of characteristic 2, it follows that (v*)2 =42 +~4% + .-+ ++972 and
(v)* =4* +~98 +-- -4+ ~97% Hence we easily obtain a proof of the lemma.

Lemma 4.2. Leta—(al,... n) € L(C), an +---+ o, = k and
To =14+ (a1 +1)* - (a, +1)*. Then

To Ty (H acT) 1+y) (ye AM?)

where the product is taken over all T = (71,...,7,) such that k + 1 <
T1+---+7, < k+2 and the components 7; satisfy the following conditions:

1) 1, = «, if oy :O(mod 4) or ;€{q; — 1,q; — 2};
2) 1 € {ay,a; + 1,05 + 2}, if ; = 1(mod 4);

3) 7 € {ay, a; + 2}, if a; = 2(mod 4) and o; < q; — 2;

4) 7; € {ay, a; + 1}, if a; = 3(mod 4) and «o; < q; — 1.

ProoOF. In the following we shall make frequent use of the fact: if
u € A* and v € A" there exists a z € A**" for which

(4.1) l+u+v=_>1+u)(l+v)(1+ z).
According to Lemma 4.1,
(4.2) (a; '+ 1) = €7 (a;+ 1) + 69 (a; + 1)* T+ 65 (a; + 1)+ v,

where v; € A% 13 and €éi),£§i), Egi) we defined as in Lemma 4.1 (with ref-
erence to s = ;). By definition, 2,* =14 (ay "' + 1) -+ (a, "t + 1)*,
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and so by (4.2),

2 2
2. =1+ vl_i_zeg)(al_'_l)m—i—jl Un‘|‘Z €§:)(an+1)an+jn

-1 —i-' Z 41)((11 + 1)a1+j1 “‘55-:)(% + 1)ozn+jn +v (ve Ak+3)_

J1s--5dn

Obviously, we can assume that j; + -+ 7, < 2. Therefore, according to

(4.1), we have z," = x, (H xT) (1+y) (y € A**3), where the product

is taken over all those 7 = (71,...,7,) for which k+1 <7+ -+ 7, <
k + 2 and whose components 7; satisfy the conditions of the lemma. This
completes the proof.

We now turn to the construction of the sets L.(C), Lo(C) and L1 (C).
Let C = {(a1)x---x{an),n>1, 1 =2 g1 >q > - >quanday,...,as
(s < n) be all those basic elements of the group C, which have orders
greater than 2. We shall construct the sets L.(C), Lo(C), Li(C) by
induction on s. The first step of the induction (the cases s=n=1; s=1
and n > 1; s =n = 2) is the following three lemmas.

Lemma 4.3. Let C be a cyclic group of order q; > 4. Put L1(C) = 0,

i 1
z=1,...,—q1—1}

L.(C) = {a = (4i+1) ;

and

LO(C):{a:(4i+2)‘z‘:1,... ,iq1—1}.

Then L.(C), Lyo(C) and Ly (C) have properties a1) — as).

PROOF. Properties az) and a3) are obvious. We define the one-to-one
map v of L.(C) onto Lo(C') the following way: 1 ((4i + 1)) = (4i +2). It
1 1 1
is easy to see that u(C) = B (q1 — §q1) —1= 10 1 and so |L.(C)| =
w(C). According to Lemma 4.2,

(2i+1)" (@@iv)) T = 2aivy (1 +y)  (y € AYF).

The proof is complete.
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Lemma 4.4. Let ben >1, ¢t >4 and go =--- = q, = 2. Put

Li(C) =10, L*(C’):{a:(4i+1,0,... 0)i=1,... ,iql—l}u

1
,—q1—1, 062+"'+Oén>0}

U{a:(Qi—l,ag,... ,an))izl,... )

and

1
LO(C):{a:(4i+2,O,... ,0)’@:1,... ,qu—l}u

1
u{a: (24,9, ... , ) )izl,... )50 -1, ag+ -+ a, >0}.
Then L.(C), Lo(C) and L, (C) have properties a1) — as).

PROOF. Properties az) and ag) are obvious. We define 1 the following
way: ¥((a1,a9,...,ap)) = (a1 + 1, a9,... ). It is clear that

L. (C)] = qu - 1) + (%ql - 1) (2"~' —1) and

u(C) = % 2"t — %ql 2"+ 2) — 1, 80 a4) holds. If @ € L,(C) and
Y(a) =@ € Lo(C), then by Lemma 4.2,
To re = 15(l +y) (y € AO‘1+"'+O‘”+2) )
So the lemma is true.
Lemma 4.5. Let n =2, q; = 2! > ¢o > 4. Put
Li(C)={(a1,a2) |1 =0 (mod 4), ap =1 (mod 4)}U
U{(a1,a0) a1 =3 (mod 4), a; #2' —1 (1<i<t), az =0 (mod 4)},
L.(C)={(0,a2) |azg =1 (mod4), as >1}U
U{(2 o) [1<i<t, ap=1 (mod 4)}U
U{(1,a2) | aa > 0} U{(a1,02) |1 =1 (mod 4), oy > 1}U
U{(a1,a2) | a1 =3 (mod 4), ap =1 (mod 4)}U
U{(a1,a0)|a; =3 (mod 4), a; #2° —1(1<i<t), ap =3 (mod 4)}

and
Lo(C) = {(0,@2) | g =2 (mod 4), Qo > Q}U

U{(2" @) |1 <i<t, @p =2 (mod 4)}U
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U{(2,a2) | @2 > 0} U{(@1,02) | @1 =2 (mod 4), a3 > 2}U
U{(@y,a2) |@1 =3 (mod 4), az =2 (mod 4)}U
U{(ai,az)|a1 =0 (mod 4), @ #2(1<i<t), @ =3 (mod 4)}.
Then L,(C), Lo(C) and Ly (C) have properties ai) — as).
ProoOF. First we define the one-to-one map 1:

(1,0 + 1), if ag =1 (mod 4) and a7 Z1 (mod 4),
(a1 + 1, a2), otherwise.

Y((o, 2)) = {

Let B8 = ((1,02) € Lo(C) N L.(C). If By is odd, then from 8 €
Ly(C) it follows that $; = 3 (mod 4) and (2 = 2 (mod 4). But from
(B1,02) € L.(C), f1 = 3 (mod 4) we have that S = 1 (mod 2), which
is impossible. Similarly, if 8; is even, then from § € L.(C) it follows
B1€{0;2° (1 <i<t)}and B2 =1 (mod 4). However for (81, 32) € Lo(C)
we have B3 =2 (mod 4) and, therefore, Ly(C) N L.(C) = 0.

Let now 3 = (81, 02) € Lo(C) N L1(C). If f1 =0 (mod 4), then

B2 =1 (mod 4) for the elements ( of Li(C), and B2 =2 (mod 4) or
B2 =3 (mod 4) for 5 € Ly(C), so we get a contradiction. Similarly, if
B1 =3 (mod 4), then on the one hand, §; = 0 (mod 4) and on the other,

B2 =2 (mod 4). Therefore, Lo(C) N L1(C) = 0.

1 1
It is easy to see that |L.(C)|= (Zqz — 1) +(t— 2)16124- (g2 — 1)+

1 1 1 1 1 3
(Z(h — 1) ¢+ et (th —(t— 1)) 1= gnaz — 2, which equals

() = % <Q1Q2 - iqqu —4+ 4> -2.
Let now o = (a1, ) € L, (C). Then according to Lemma 4.2,
T o = (x(a1+17042)>k1 (x(a170¢2+1))k2 (1+y) (y € Aa1+az+2)
where )
b — { 0, if oy

1, if (67

0 (mod 2) or a; = ¢q; — 1,
1 (mod 2) and a; < ¢; — 1.

So if &y =0 (mod 4) and as = 1 (mod 4), then k; = 0 and the element
(a1, a2 + 1) coincides with ¥ («) € Lo(C). Suppose that a3 =1 (mod 4).
Then (a7 + 1, a3) coincides with ¥ (a) and (a1, + 1) € L.(C) whenever
ko # 0. Let now ay = 3 (mod 4) and ag = 1 (mod 4). Then (ay,as+1) =
Y(a) and (ag + 1,a0) € L1(C) in case a; < g1 — 1. At last, if oy = 3
(mod 4), a3 # 2° — 1 and as = 3 (mod 4), then (a1 + 1, a2) = ¥(a) €

~—
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Lo(C) and (ay,a2 + 1) € Li(C) whenever ay < ¢qa — 1. The proof is
complete.

We remind that we shall construct by induction on the p-rank of the
group C such sets L,(C), Lo(C) and L;(C) which have properties a;) —
as). In the Lemmas 4.3-4.5 the first step of the induction is proved. Now
we present the group C' as the direct product of groups (a; | a2 = 1)
and C = (ag,...,an). According to Lemmas 4.3-4.5, we can assume that

the sets L.(C), Lo(C) and L(C) exist and have properties a1) — as). We
remind that

N(C) ={(u,... ,an) s =00r ¢; — 1, a1 +--- + a, > 0},
Lo(C) ={(a1,... ,an) | a; €{0,2,4,... ,¢; — 2}, i =1,2,... ,n}.

Let L} denotes the set of all elements from L(C') for which the condi-
tion 4) holds:

1) oy =0 and (az,...,a,) € L(C);
) ag=1and ag + -+ a, > 0;

3) a1 =1 (mod 4), ag > 1;
)
)

a1 =2 —1(1<i<t)and (as,...,an) € L.(C);

ap=2—1(1<i<t), (ag,...,a,) € N(C), s <n and
Qa1 + o g > 0

6) ay =2 —1 (1 <i<t)and a has the form
nY) = (a1,0,...,0,1,0,...,0) (1 in the j-th position)
where 7 =2,... ,s;
7) ap =3 (mod4), ay £2 —1 (1 <i<t)and (ag,...,a,) € L(C);

8) a1 =2 (1 <i<t)and (ag,...,an) € L.(0);
9) ag =2" (1<i<t)and a € {77(2),77(3)»--- ,n(s)}_

Let LY denotes the set of all elements from L(C) U Ly(C) for which
the condition ") holds:

0 and (@y,...,q,) € Lo(C);
2and ap + -+ + @, > 0;
2 (mod 4), a; > 2;

1) @
2") ay
3 ay
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A)ya =2"—1(1<i<t)and (@,...,a,) € Lo(C);
5) @y =20 (1<i<t), (@,...,0,) € N(C), s <n and
Qi1+ -+ @, > 0;

6') @1 =2 —1 (1 <i<t)and @ has the form

i) = (@1,0,...,0,2,0,...,0) (2in the j-th position)

where j =2,... ,s;
7) @ =0 (mod 4), @y >0, a; #2° (1 <i<t)and (@g,...,0,) €
L(C);

8) a; =2 (1<i<t)and (az,...,aq,) € Lo(O);
M a=2 (1<i<t)andae {H7P,70,. .. 71
Lemma 4.6. Put L,(C) =L UL U-- U L,
Lo(C)=LYULYuU---ULJ and
Li(C) = {(a1,az,...,a) a1 =3 (mod 4), 0y #2' —1,1< i < t}U

U{(a1,a2,...,a5) a1 €{0;2" (1<i<t); 2'—1(1<i<t)},

(qvg,...,an) € Li(C)}.
Then L.(C), Lyo(C) and Ly (C) have properties a1) — as).
Remark. Note that in casen > 2, ¢1 > g2 >4, q3 =---= q, = 2 the

set L1(C) is empty (see Lemma 4.4) and so L;(C) has the form
Li(C) = {(a1,a2,...,ap) | a1 =3 (mod 4), a; #2° —1, 1 <i <t}

PRrROOF of the Lemma. First we prove that if ¢,, = 2 and
ds > qs+1 = - = qn = 2, then

(4.3) Lo(C)N{(m,--- 1) ENCO) [Vs1 + -+ > 0F =0

We shall use induction on s. In case s =1 (4.3) follows from Lemma 4.4.
Suppose that s > 1 and

6:(51a527' . 75n)€L0(0) N {(717' . '77n) GN(C) | Ys41 + 00+ 7n>0}
If 61 = 0, then the element (d2, ... ,d,) belongs to the set

Lo(C) N {(72,- - ,¥m) € N(C) | Yag1 + -+ +Yn > 0}
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which, by the induction hypothesis, is empty. Hence, using the form of the
elements from N(C), it follows that 6; = ¢; — 1. Then for § € Ly(C) con-

dition 4') holds and, therefore, (d2,...,d,) € Lo(C). Since (da,...,0,) €
N(C) and 6541 + -+ + 6, > 0, it follows that

((527 ,5n)ELO(5)ﬂ{(72, 77n)EN(6’)|’75+1++’yn>0}

and, by the induction hypothesis, we get a contradiction. The statement
is proved.
Let us prove now by induction on s that

(4.4) N(C) N (L.(C) U L1 (C)) = 0.

Incasess=1or s=n=2 (4.4) immediately follows from Lemmas 4.3—

4.5. Suppose that N(C) N (L*(C’) U L1(0)> — (0 and 6 = (61,09, ... ,0,)
belongs to the set N(C) N (L.(C)U L1(C)). If 61 =0, then (d2,...,0,) €

N(C) N <L* (C) ULl(C’)) , which contradicts the induction hypothesis.
So 61 = q1 — 1. It is easy to see that (¢1 — 1,0,...,0) & L.(C) U L (C).

Clearly, (3, ... ,0,) € N(C) and from (g1 — 1,8, ... ,6,) € Ly (C)UL (C)
it follows that (dz,...,d0,) € L1(C) U L,(C) or 6 has the form n) =
(@1 —1,0,...,0,1,0,...,0) (1in the j-th position and 2 < j < s). By the

induction hypothesis, (d2, . .. ,d,) can not belongs to the set L.(C)UL(C).
Obviously, ) ¢ N(C) and so (4.4) is proved.
Now we turn to the proof of the lemma. According to Lemmas 4.3-4.5,

we shall assume that the sets L.(C), Lo(C) and L;(C) have properties

a) — as).
By the induction hypothesis, we can assume that if (ag,...,q,) €
L.(C), there exists an element (@a,... ,@,) in Ly(C). So we can define ¢

the following way:

(1,0,...,0,2,0,...,0), ifae LiUL,
Y(a) =< (aq,ds,...,4,), ifo e LTUL; UL,
(1 +1,00,...,00), ifoe LULULEULE.

Obviously if o = (o, ... ,a,) € LY, then ¥(a) € LY.

Let us prove ag). Suppose that v = (1,72, ... ,7) € Lo(C)NL.(C).
If 1 = 0, then (72, ... ,7,) belongs to the set Ly(C)NL,(C), which, by the
induction hypothesis, is empty. Therefore, comparing the first components
of elements from Lo(C) and L.(C), we have that y; = 2¢ (1 < i < t) or
=2—-1(1<i<t).

Suppose y; = 2° (1 < i < t). Then for v € Lo(C) one of the con-
ditions 5’), 8), 9’) holds and from the condition v € L,(C) we have
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that (y2,...,7n) € L.(C) or v € {n®,... n®}. It is easy to see
that the elements 7 ,... 7 are not in the set L2 U LY U LY. Hence

(Y2, - ,n) € Li(C). The induction hypothesis L.(C) N Ly(C) = 0 gives
that v ¢ LY, and from (4.4) it follows v ¢ LY. So v € L3, that is ~y
coincides with some 7(") = (2%,0,...,0,2,0,...,0), which contradicts the

condition (yz,...,7n) € L«(C).
Suppose now 73 = 2°—1 (1 < i <t). Then for the element v € L,(C)
one of the conditions 4), 5), 6) holds and from v € L(C) it follows that

(Y2,--- ,¥m) € Lo(C) or v € {®,... .5}, Since for 5@,... 7 the

conditions 4), 5), 6) do not hold, we have that (y2,...,7,) € Lo(C) and

v € L; UL: U LE. From the induction hypothesis L.(C) N Lo(C) = 0 we
have that (y2,...,7v,) € Lj U L§ and hence

(72;--- 7%1) ELQ(C)QN(C),75+1+...+771 >0,

which contradicts (4.3). So property as) is proved.

Let now v = (71,72, - ,¥n) € Lo(C)N L1 (C). If 4 such element from
L1(C) for which v; = 3 (mod 4), v, # 2" — 1, 1 < i < t, then obviously
~ can not belong to the set Ly(C). So for the element v from L;(C) the
conditions

11 €{0;2" (1<i<t); 2°—1 (1<i<t)}, (y2,...,7m) € L1(O)
hold. Hence v (as an element of the set Ly(C)) belongs to the set LU LU

LOU LY U L U LY. Using the induction hypothesis Lo(C) NL1(C) = 0,
it follows that v ¢ LYU LY U LY. If v € LY U LY, then the element

(Y2, - ,n) € L1(C) has the form (0,...,0,2,0,...,0), which contradicts

to the construction of the set Li(C). So v € LY, that is, (y2,...,7m) €

N(C). Hence from the condition (va,...,v,) € L1(C) using (4.4) we get
a contradiction. Property as) is proved.
Let us prove ay4). Using the induction hypothesis we have

)= (@)
It is easy to see that |Lj| = (¢t — 1) |L3|, |L§| = (t —2) |L7],

51 =|C] 1, ILgl = (¢ =1) r (C?), L5l = (1= 2) r (C?), |L5] =
(2072 —1) ‘5" and |L%| = (2072 -t 4+ 1) <‘6’ - }52D Therefore

IHE ’L*(é)‘ _ u(0) = % (’5‘ - ‘52‘ -

CP2)| + |C*[2)

|ILTULyUL;UL;ULS| =

=== (- - o+ ) 29
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and
L5 U LU L7| =

(Ie]=1) + (2=2[e]=[e]) + = - e+ (€] - [e]) -
1] - (] -[eo) -]
It is clear that ’N (6) ’ - ’5[2]’ 1 and the cardinality of the set
{700,000 e N ()]

is equal to (52[2]] 1. Hence |LZ| = (t — 2) ()5[2]( . ‘52[2]]). So

L.(O) = (t-1) (|C] - || - |er1| +|e2@)]) - (¢2) +
(t=2)(|Ct2)| - e +27{6] -1 = e - vy ([ - [e) -

22 |02| = 21 |0] — 22| 2| - | Clal| + | 22| - r (C?)

and since

n(C) = % (2

it follows that property ay4) is proved.
Let @ = (o, a0,... ,a,) € L,(C) and oy +ag+- - - +ay, = k. Suppose

that @ = (ag,...,a,) € Ly(C). Then, by the induction hypothesis,

(4.5) R e T(a,,... @n) H Tz (H m;) (1+7)

TEQ veR

5‘ _gt-1 ]52] _9 \5[2]\ 42 ‘52[2])) —r(C?),

where Q C L*(C), R C Ll(C), gE Ak—a1+2 4nd To+ o 4T, =
Vot t+vp =ag+t - Fap+1. Ifag =0, then 24, ... an) = T(as,... an)
and as) follows from (4.5). If a1 = 2° (1 < i < t), then, by Lemma 4.2,

xa*xa_l - x(al,ag,...,an) <Hx(()é1,7'2,...,7'n)> (Hx(al,yg,.l.,un)> (1 +y)

where y € A2, Since (a1, a2,...,a,) = ¥(a) € LY, 7 € L and v €
L1(C), it follows that as) is proved for the elements from Lj. If a; = 2°—1
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(1 < i <t), then, according to Lemma 4.2,

* -1 __
Lo Ty - x(al,EQ,...,En) x(a1+1,o¢2,...,an)

: (Hm(al,Tg,...,Tn)> (H'T(al,llg,...,l/n)> (1 +y)7 (y E Ak+2)

where (a1, @, ... ,a,) € LY, (a1 +1,a9,...,ap) € LE, 7€ L and v €
L,(C). Therefore as) is proved for the elements from L. Suppose now
that « € L5 U L5 U L U L. Then, by Lemma 4.2,

xa*xail = L(a1+1,aa,... ,an) H T(ay,ma,... ,Tn) (1 + y) (yEAk+2)

TEQ

where the product is taken over those 7 = (1,79, ... ,7,) for which a;+
o+--+7,=k+1and

Q;, when «; is divisible by 2 or a; = ¢; — 1,

Ty = .

a; +1, when oy is an odd number and «; < ¢; — 1.
Obviously, the element (a1 +1, as, ... , ;) coincides with ¢ («) and Q = ()
whenever every «; (i =2,...,n) is even or equals ¢; — 1. It is easy to see
also that

Q L.(C), whenae€ LiUL%,
L,(C), when a € L3.
So as) is proved for the elements from L3 U L5 UL U L%, If « has the form
(2¢,0,...,0,1,0,...,0) or (2 —1,0,...,0,1,0,...,0), then, by Lemma
4.2, there exists y € A¥*2 such that the equations
To et = T(2i0,...,0,2,0,...,0) (1 +¥)
and

* -1 _ ) )
To Lo ~ = T(20-1,0,...,0,2,0,...,0) £(2¢,0,...,0,1,0,...,0) (1 + ?J)

hold respectively. Obviously (2¢,0,...,0,2,0,...,0) € L3,
(2°~1,0,...,0,2,0,...,0) € L and (2%,0,...,0,1,0,...,0) € L. There-
fore condition as) is fully proved and the lemma is true.

Theorem 4.7. Let K be the field of 2 elements, C = (ay,... ,a,) a
finite abelian 2-group, ay,... ,as (s < n) all basic elements of the group
C whith orders greater than 2, L,(C') is the set constructed above,

By(C) = {za =2 20 2o =14 (a1 + D™ -~ (a, + 1), a € L*(C’)}
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and Bp(C) = {z, | « € N(C)}. Then the elements of the set
B.(C)={a; |a;?#1,i=1,... ,n} UBp(C)U By(O)
form a basis of the group V,(KC).
PRrROOF. Let T'(C') denote the subgroup

TC)=41+ > Aa(l+a)™ - (1+a,)" |\ €K
aeEN(C)

It is easy to see that T'(C') C V. (KC), Br(C) is a basis of the group T'(C)
and T(C)NC = {a; | a;> =1, i=1,... ,n}. According to Proposition 1.2,

Vi(KC) = {ay,...,as) x T(C) x D(C)

where, by [1], D(C) C {a*z~! | = € V(KC)}. Therefore it suffices to
prove that Bo(C) is a basis of D(C).

Let L.(C), Lo(C) and L1(C) be the sets defined by Lemmas 4.3-4.6.
Then, according to Lemmas 4.3-4.6, the sets L.(C), Lo(C) and L1(C)
have properties a1) — as). It is easy to see that the set By(C) consists of
pairwise distinct unitary elements, not equal to one.

We shall prove by induction on the exponent of C that the number
of elements of order 2¢ of the set By(C) coincides with f;(D(C)). If C

is a group of exponent 4, then |C?| = |C?[2]| and, according to property
1
as), we have that |Bo(C)| = |L.(C)| = u(C) = 5(|C] = |C[2])) - 7(C?)

which, by Proposition 1.2, equals f;(D(C)). Suppose now that C' is a
group of exponent greater than 4 and the number of elements of order 2
of the set Bo(C?) equals f;(D(C?)) (i = 1,2,3...). It is easy to prove
that (D(C))*> = D(C?) (see [1]) and hence the number of clements of
order 2° of the set Bo(C) coincides with f;_1(D(C?)) = f;(D(C)) (i =
2,3,...). Therefore f1(D(C)) = |Bo(C)| — |Bo(C?)| and, by property
as), f1(D(C)) = u(C) — u(C?) which coincides with the number defined
by Proposition 1.2. The statement is proved.

Let us prove the independence of By(C'). We shall use again induction
on the exponent of C'. Let C' be a group of exponent 4. Then every element
from By(C') has order 2. Suppose that

(4.6) Za) "t Za(r) = 1
for the distinct elements o(*) = (agi), e ,ag)) (i=1,...,r) from L.(C).

Let k = 1r£1_i£1 {agi) +-- Oz?(f)}. Without loss of generality we can as-
SIST

sume that k = a§1)+- . -+0z§3) = -:ags)—I—- . -—|—oz,(f) for some s < r. Then,
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according to property as), we have that for every i =1,... s

Zo i) = xa@)viwi(l +yi) (yi € Ak+2)

where a(® € Lo(C), v; = H z, and w; = H z,. Hence
TEQ; CLL(C) vER;CL1(C)
U= 240) 2o = (Tga) -+ Ty ) (V1 -+ - Vs) (w1 -+ ws ) (1 + y),
where y € A¥2 a .. @) e Ly(C), vy---vs = H x, and
TEQCL.(C)
Wy We = H z,. According to (4.1), u + AF+2 =
VvERCL1(C)

S

=14+ (o +D+ > (@ +D+ DY (z,+1)+ A

i=1 TEQCL.(C) vERCL1(C)

Since, by properties as) and ag), the sets L.(C) U L1(C) and Ly(C) are
disjoint, it follows that {6(1), . ,a(S>} N (Q U R) = (. Obviously the set
{a(U, e ,6(3)} is not empty and, by Lemma 2.1, the elements (x5)+1),
(x; + 1), (z, + 1) are the distinct basic elements of the additive group of
the factor-ring A**1/A**2 Then u + A¥+2 #£ 1+ A¥+2 which contradicts
(4.6). The independence of the set By(C) is proved for the group C' of
exponent 4.

Let C be a group of exponent greater than 4. Suppose that for some
distinct elements oV, ...  a(") from L,(C) the equation

(4.7) U = (Zau))jl oo (Za(r))jr =1
holds. If every j; = 2t; (i = 1,...,r), then the elements z ) = (zam)2
belong to the set Bo(C?) and, according to (4.7), the equation

(ZT(l))tl e (ZT(T))tT =1

holds, which contradicts the induction hypothesis. If j; = 2¢t; +1 (i =

1,...,s) are all the odd ones among the numbers ji, ... , j,., then equation
(4.7) has the form

(4.8) U= 240) Zge) V2 =1

and v? € D(C?). It is easy to see that y = z,1) - -+ Z,») & D(C?). Indeed,
as in above we can assume that

k = min {aﬁi)+---+a§f)} =aV 4ol ==l ),
1<i<s
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So, according to Lemmas 4.3-4.6,
2oty = Txmviwi(1+1y;) (v € Ak+2)

where a(® € Lo(C), v; = H z, and w; = H x,. Using
(4.1) we have

S

Y+ AT =14 (g + D+ ) (1) + D (m, +1) + A
i=1 TEQ VER

where Q = Q1 U---UQs C Ly(C)and R =R, U---URs; C L1(C). By
Lemma 2.1, the elements 2o +1 (i =1,...,s), z,+1 (1 € Q),x,+1 (v €
R) are the distinct basic elements of the additive group of the factor-ring
AR/ AR+2 - According to properties ai) — as), {6(1), e ,a<8>} N(QU
R)=0. Therefore, if among the elements al, ... &l exists at least one
@) which belongs to the set L(C), then obviously y ¢ D(C?). Suppose
now that every @), ... , @) belongs to the set Ly(C). According to
Lemma 4.2, it can may be only in case when every @® consists only one
odd component which, by the construction of the set L,(C'), is congruent
with one modulo 4. Without loss of generality we can assume that aﬁ”
is the only one odd number among the the components of the element
@) = 7. Then Lemma 4.2 gives that

ZT - x(Tl-i-l,Tg,...,Tn) m(’f‘1+2,’7’2,... ,Tn) H x(Tl,IJg,... ,Vn) (1 + y)
VGSi

where y € A**3, S; C L.(C) (see the construction of the set L,(C)) and

the product is taken over all v = (71,v5,... ,v,) such that 7 +vp +--- +
Uy, = k -+ 2 and
T when 7; =0 (mod 4) or 7; = ¢; — 2,
Vi = 7, +2, when 7, =2 (mod 4) and 7; < ¢; — 2.

Since 71 = 1 (mod 4), it follows that the element @® = (7142, 70,... ,7)
belongs to the set L(C)\ L (C). Therefore {aV),... ,a(®} and S;U---US,
are the disjoint subsets of the set L(C). Hence, in the expression y+ A¥+3
we can write the element y using (4.1), and, as in above, we can prove that
Za) * " Zh(s) 9_1 D(C2)

So it follows from (4.8) that z,) - - - 2z, = 1. This equation can not
hold in the group V(K C) for the distinct elements o(*) = (agi), . ,a,@)
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(i=1,...,s) from L,(C). Really, let k = min {agi) +-+ qu(f)}. With-

1<i<s
out loss of generality we can assume that k = agl) +---—|—Oz§11) =... =

a§5)+- .+a'¥). Then, according to property as), we have that for every
1=1,...,s
Zoi) = xa(i)viwi(l + yz) (y, S Ak+2)

where a9 € Lo(C), v; = H rr and w; = H x,. Hence
TEQ;CL.(C) vER;CL1(C)
U= 250 " Zos) = (Tza) -+ Tg) (V1 vg) (w1 -+ wg) (14 y),
where y € A¥2 @ .. @) e Ly(C), vy---vs = H z, and
TEQCL,(O)
Wy We = H z,. According to (4.1), u + AF+2 =
VvERCL1(C)

S

=14+ (@0 +D+ > (@+D+ Y (z,+1)+ A

i=1 TEQCL.(C) VERCL:(C)
Since, by properties ag) and as), the sets L,(C) U L1 (C) and Lo(C) are
disjoint, it follows that {6(1), e ,6(5)} N (Q U R) = 0. Obviously the set
{a(U, . ,a<3)} is not empty and, by Lemma 2.1, the elements (z5) +
1), (zr+1), (z,+1) are the distinct basic elements of the additive group
of the factor-ring A¥*1/A*+2. Then u + A2 #£ 1 + A¥2 50 we get a
contradiction. The independence of the set By(C) is proved. The proof of
the theorem is complete.

Theorem 4.8. Let K be the field of 2™ (m > 1) elements,

€,€2,... ,€2m_1 a basis of K over GF(2), C a finite abelian 2-group,

w(i,a0) =14 €% (a1 — 1) - (a, — 1),
B.(C) = {x(i,a)*x(i,a)_l \ 0<i<m, ac L*(C)} ,
By (C) :{ (1 F (14 aj))* (1 +e (14 aj))_1 ) 0<i<m-—1,
0 #1}
and Br(C) = {z(i,a) |0 <i<m, a € N(C)}. Then
B.(C)={a;|a;®>#1,i=1,... ,n} UBp(C)U B (C) U By(C)
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is a basis for V. (KC).
PROOF. Let us write the identity element of K in the form

m—1

1= ’70€+’71€2 + - +’7m_162

Raising this equation to the powers 2,4,8,... we get that v = 11 =

= Ym_1 = 1. Therefore the elements 1 £,62, ... .e2" " of the field
K are independent over GF'(2). From this the mdependence of the set
C' U By(C) follows by Lemma 2.2 and as in the proof of Theorem 4.7 we
can prove this theorem too.

Theorem 4.9. Let K be the field of 2™ elements, C' a Sylow 2-
subgroup of a finite abelian group G = C'x F', E a subset of the set F'\ {1},
that has a unique representative in every subset of the form {g, g~ '},

B(G) = {x(i,g,a)*x(i,g,a)_l z(i,g9,a) € B(G),g € E}
and B, (C) is a basis of V,(KC). Then the elements of the set
B.(G) = B(G) U B,(C)
form a basis of the Sylow 2-subgroup Wy(KG) of the group V,.(KG).
PrROOF. Let k= a7 +---+ «, and
z(ag, ... o) = (@ — D) - (a, — 1),
Using equation (3.1) it is easy to prove that

2(i,g,0) =1+ g7

z(ag, ... o) + 01

and .
2(i,g,0) " =1+e¥gz(ar, ... ,an) + v

where the elements v; and vy belong to the (k 4+ 1)-th power of the ideal
J = J(C) of the group algebra KG. Hence

z(i,g,0) a(i,g,0) " =1+ (g+g7) 2lar,... ,an) +v (v e T
and as in the proof of theorem 4.7 we can prove that the elements of the
set B(G) are independent and belong to the basis of the group Wy (KG).

According to Lemma 2.2, the elements of the set B(G) U B, (C) are inde-
pendent and form a basis of Wo(KG). Indeed, since

- F
’B(G)‘ _plFl=t | Y01 |c?]) and
|B.(C)] = % (|C’\— |C?|+|C[2]] + |C?[2]| - 2), it follows that the cardi-

nality of the set B(G) U B,(C) coincides with the 2-rank of the group
W5(KG). This completes the proof of the theorem.
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