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A basis for the unitary subgroup of the group
of units in a finite commutative group algebra

By A. A. BOVDI (Debrecen) and A. SZAKÁCS (Eger)

1. Introduction

Let G be a finite abelian group, K the field GF (pm) of pm elements
and V(KG) the group of normalized units (that is units of augmentation 1)
in the group algebra KG.

For x =
∑

g∈G

αgg ∈ KG, we say that the element x∗ =
∑

g∈G

αgg
−1 is

conjugate to x, and if x∗ = x, we say that x is selfconjugate. The map
x → x∗ is easily seen to be an involutory anti-automorphism (involution) of
the algebra KG. An element u ∈ V (KG) is called unitary if u−1 = u∗. The
set of all unitary elements of the group V (KG) is obviously a subgroup;
we call it the unitary subgroup of V (KG), and we denote it by V∗(KG).

S. P. Novikov had raised the problem of determining the invariants
of V∗(KG) when G has p-power order. This was solved by the authors
in [1]; and in case p > 2,m = 1, we gave an explicit basis for V∗(KG).
Here we continue this work by giving a basis for the Sylow p-subgroup
of V∗(KG) whenever G is an arbitrary finite abelian group, without any
restriction on p or m.

We shall write F for the field GF (p) of p elements, C for the Sylow p-
subgroup of G, and H for the direct complement of C in G: thus G = C×
H. Further, C[p] = {g ∈ C | gp = 1} ; Cpi

=
{

gpi
∣∣∣ g ∈ C

}
; fi(C) denotes

the number of components of order pi in the decomposition of the group C
into a direct product of cyclic groups; r(C) = f1(C)+f2(C)+ · · · denotes
the p-rank of C; J = J(C) denotes the ideal of the algebra KG generated
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by the elements g−1 (g ∈ C); and Vp(KG) (respectively Wp(KG)) denotes
the Sylow p-subgroup of the group V (KG) (respectively V∗(KG)). Of
course J is nilpotent, and Vp(KG) = 1 + J .

Note that the words ’basis’ and ’independent’ are used in two different
senses to describe subsets of KG: on the one hand, additively, as subsets
of the vector space KG; on the other, multiplicatively, as subsets of the
abelian group Vp(KG). The context should make it clear which meaning
is intended.

It is easy to prove the following statements using methods of proofs
from [1].

Proposition 1.1. Let be p > 2. Then

r(Wp(KG)) =
m

2
|H| (|C| − |Cp|)

and

fi(Wp(KG)) =
m

2
|H|

(∣∣∣Cpi−1
∣∣∣− 2

∣∣∣Cpi
∣∣∣ +

∣∣∣Cpi+1
∣∣∣
)

(i = 1, 2, 3, . . . ).

Proposition 1.2. W2(KG) = C ×D(C)× T (C),

r(W2(KG)) =
m

2
(|H| (|C| −

∣∣C2
∣∣) + |C[2]|+

∣∣C2[2]
∣∣− 2

)
,

f1(T (C)) = r(T (C)) = m(|C[2]| − 1)− f1(C),

and fi(D(C)) = ti−1 − 2ti + ti+1 − fi+1(C) (i = 1, 2, 3, . . . )

where tj =
m

2

(
|H|

(∣∣∣C2j
∣∣∣− 1

)
−

∣∣∣C2j

[2]
∣∣∣ + 1

)
(j = 0, 1, 2, . . . ).

2. A basis for Vp(KG)

We shall use the following notation: C = 〈a1〉× · · ·× 〈an〉 is a decom-
position of the p-group C as direct product of cyclic subgroups; qi is the
order of the element ai (i = 1, . . . , n); and L(C) is the set of all n-tuples
of integers (α1, . . . , αn) = α for which 0 ≤ αi < qi and p - αi for some i.

R. Sandling [2] proved that the set

{xα = 1 + (a1 − 1)α1 · · · (an − 1)αn | α ∈ L(C)}
is a basis for V (FC). We extend this result to the group Vp(KG).

It is known (see [3], Theorem 2.35) that K has an F -basis of the form

(2.1) ε, εp, . . . , εpm−1
.

The following statement was proved by S. A. Jennings (see [4],
p. 89).
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Lemma 2.1. Let A = A(KC) denote the augmentation ideal of the
modular group algebra KC. Then the elements y(α1, . . . , αn) =

y(α) = (a1 − 1)α1 · · · (an − 1)αn (0 ≤ αi < qi, α1 + · · ·+ αn ≥ k)

form a K-basis for Ak.

Lemma 2.2. Let J = J(C) be the ideal of the algebra KG defined
above and

y(i, h, α) = y(i, h, α1, . . . , αn) = εpi

h(a1 − 1)α1 · · · (an − 1)αn .

Then

Mk = {y(i, h, α) | 0 ≤ i < m, h ∈ H, 0 ≤ αj < qj (j = 1, . . . , n),

α1 + · · ·+ αn ≥ k}
is an F -basis for Jk.

Proof. It is known that the elements h(c1 − 1) · · · (cr − 1) (h ∈ H,
ci ∈ C, r ≥ k) form a K-basis for Jk. By writing the elements
(c1 − 1) · · · (cr − 1)∈Jk in terms of the basis given in Lemma 2.1, and the
elements of K in terms of the basis (2.1), we can obtain a proof of the
lemma.

Theorem 2.3. The set

B(G) = {x(i, h, α) = 1 + y(i, h, α) | 0 ≤ i < m, h ∈ H, α ∈ L(C)}
is a basis for Vp(KG).

Proof. It is easy to see that

M̃k =
{
y(i, h, α) + Jk+1 | y(i, h, α) ∈ Mk, α1 + · · ·+ αn = k

}

is an F -basis for the vector space Jk/Jk+1. The additive group Jk/Jk+1 is
isomorphic to the multiplicative group 1+Jk/1+Jk+1, so this factor-group
is generated by the elements

(1 + y(i, h, α))
(
1 + Jk+1

)
(α1 + · · ·+ αn = k).

The subgroups 1+Jk (k = 1, 2, 3, . . . ) of Vp(KG) = 1+J form a finite series
descending to 1, because J is nilpotent. Therefore Vp(KG) is generated
by the elements x(i, h, α) = 1 + y(i, h, α) (y(i, h, α) ∈ M1). If α1 =
β1p

s, . . . , αn = βnps and p - βt for some t, then

x(i, h, α) =
(
1 + εpj

g (a1 − 1)β1 · · · (an − 1)βn

)ps

= x(j, g, β)ps

,
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where h = gps

, β = (β1, . . . , βn) ∈ L(C) and j ≡ i − s (mod m). Conse-
quently, x(j, g, β) ∈ B(G) and so it follows that Vp(KG) is generated by
B(G).

It is obvious that the cardinality | B(G) | of the set B(G) coincides
with the rank of Vp(KG). Let x(i, h, α) be an element from B(G) for which

x(i, h, α)pk

= 1 + εpi+k

hpk
(
a1

pk − 1
)α1 · · ·

(
an

pk − 1
)αn 6= 1.

Then αj <
qj

pk
for every j = 1, . . . , n and x(i, h, α)pk ∈ B

(
Cpk×H

)
.

Therefore, the cardinality of the set B(G)pk

=
{

xpk | x ∈ B(G)
}

coin-

cides with
∣∣∣B

(
Cpk ×H

)∣∣∣ = m |H|
(∣∣∣Cpk

∣∣∣−
∣∣∣Cpk+1

∣∣∣
)
, and it follows that

the number of elements of B(G) of order pk equals
∣∣∣B(G)pk−1

∣∣∣−
∣∣∣B(G)pk

∣∣∣ =
fk (Vp(KG)). This completes the proof of our theorem.

Using this theorem, we describe a basis of the Sylow p-subgroup
Wp(KG) of the unitary subgroup V∗(KG). First we consider the case
p > 2.

3. A basis for Wp(KG) in the case p > 2

It is easy to prove the following lemma by induction on n.

Lemma 3.1. For p > 2 the cardinality of the set

L1(C) = {(α1, . . . , αn) ∈ L(C) | α1 + · · ·+ αn is an odd number}

is equal to
1
2

(|C| − |Cp|).

Theorem 3.2. Let p > 2, H[2] = {h ∈ H | h2 = 1}, E be a subset of
H \H[2] having a unique representative in every set of the form {h, h−1},

B1(G) = {x(i, h, α)∗x(i, h, α)−1 | x(i, h, α) ∈ B(G), h ∈ E}
and

B2(G) =
{
x(i, h, α)∗x(i, h, α)−1 | x(i, h, α) ∈ B(G), h ∈ H[2],

α1 + · · ·+ αn is an odd number } .

Then B∗(G) = B1(G) ∪B2(G) is a basis for Wp(KG).

Proof. Let bi = ai − 1, k = α1 + · · ·+ αn and

y(α) = y(α1, . . . , αn) = (a1 − 1)α1 · · · (an − 1)αn .
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By virtue of the equality

1 + bi
qi = (1 + bi)

(
1− bi + bi

2 − bi
3 + · · ·+ bi

qi−1
)

= 1

it is easy to obtain that

(3.1) bi
∗ = −bi + bi

2 − bi
3 + · · ·+ bi

qi−1.

Then y(α)∗ = (−1)ky(α) + v for some v in Jk+1(C) and

x(i, h, α)∗ =
(
1 + εpi

hy(α)
)∗

= 1+(−1)kεpi

h−1y(α)+ ṽ (ṽ ∈ Jk+1(C)).

Clearly, for the x(i, h, α) = 1 + εpi

hy(α) ∈ B(G) the element y(α) is nilpo-
tent and

x(i, h, α)−1 = 1− εpi

hy(α) +
(
εpi

hy(α)
)2

−
(
εpi

hy(α)
)3

+ · · · .

Since

x(i, h, α)∗x(i, h, α)−1 = 1 + ((−1)kh−1 − h)εpi

y(α) + v

for some v in Jk+1(C), it follows that x(i, h, α)∗x(i, h, α)−1 6= 1 when-
ever h ∈ E or k is odd. As an immediate consequence we have that
x(i, h, α)∗x(i, h, α)−1 6= x(j, g, β)∗x(j, g, β)−1 if i 6= j or α 6= β or
{h, h−1} 6= {g, g−1}. This shows that the set B∗(G) consists of pairwise
distinct unitary elements. According to Lemma 3.1,

|B2(G)| = m

2
|H[2]|(|C| − |Cp|). Since |E| = 1

2
(|H| − |H[2]|), we also know

that
|B1(G)| = m

2
(|H| − |H[2]|)(|C| − |Cp|).

Therefore, by Proposition 1.2, |B∗(G)| = r(Wp(KG)).
We shall prove that (B∗(H × C))ps

= B∗
(
H × Cps)

. Suppose that
w(i, g, α) = x(i, g, α)∗x(i, g, α)−1 and w(j, h, β) = x(j, h, β)∗x(j, h, β)−1

are the different elements from B∗(G) and their orders greater than ps, yet
w(i, g, α)ps

=w(j, h, β)ps

. Then the element v=(x(i, g, α))ps

(x(j, h, β)∗)ps

is selfconjugate in the group algebra of the group H × Cps

. Let

cj = aj
ps

, z(α) = z(α1, . . . , αn) = (c1 − 1)α1 · · · (cn − 1)αn ,

(x(i, g, α))ps

= 1 + εpi+s

gps

z(α), (x(j, h, β))ps

= 1 + εpj+s

hps

z(β)

and k = α1 + · · ·+ αn ≤ β1 + · · ·+ βn. Then, according to (3.1), we have

v ≡ 1 + εpi+s

gps

z(α) + (−1)kεpj+s

h−ps

z(β) (mod Jk+1(Cps

)),



102 A. A. Bovdi and A. Szakács

v∗ ≡ 1 + (−1)kεpi+s

g−ps

z(α) + εpj+s

hps

z(β) (mod Jk+1(Cps

)).

Therefore from the condition v = v∗ we deduce that

εpi+s
(
gps − (−1)kg−ps

)
z(α)

(3.2)
−εpj+s

(
hps − (−1)kh−ps

)
z(β) ≡ 0 (mod Jk+1(Cps

)),

where
(
gps − (−1)kg−ps)

z(α) 6= 0 since w(i, g, α) ∈ B∗(G). For any two
different elements w(i, g, α) and w(j, h, β) of B∗(G) at least one of the
following conditions holds: a) i 6= j; b) α 6= β; c) {g, g−1} 6= {h, h−1}.
Since w(i, g, α) ∈ B∗(G), it follows that g 6= (−1)kg−1 and neither the
order of g nor the order of h is divisible by p, so c) is equivalent to
the condition

{
gps

, g−ps} 6= {
hps

, h−ps}
. Hence (3.2) contradicts Lemma

2.2. Consequently, (B∗(H×C))ps

= B∗
(
H×Cps)

and B∗(G) has exactly∣∣∣B∗(G)ps−1
∣∣∣−

∣∣B∗(G)ps ∣∣ = fs(Wp(KG)) elements of order ps.
We shall prove the independence of B∗(G). Let

w
(
i1, h1, α

(1)
)

, . . . , w
(
is, hs, α

(s)
)

be different elements from B∗(G), and let

w
(
i1, h1, α

(1)
)k1 · · ·w

(
is, hs, α

(s)
)ks

= 1.

Then it is easy to see that the element

v = x
(
i1, h1, α

(1)
)k1 · · ·x

(
is, hs, α

(s)
)ks

is selfconjugate. Let kr = trp
ν(r) and p - tr. Then

x
(
ir, hr, α

(r)
)kr

= x
(
jr, gr, β

(r)
)tr

,

where jr ≡ ir + ν(r) (mod m), gr = hr
pν(r)

and

β(r) =
(
pν(r)α

(r)
1 , . . . , pν(r)α(r)

n

)
.

Hence v can be written in the form

v = x
(
j1, g1, β

(1)
)t1 · · ·x

(
js, gs, β

(s)
)ts

,

where p - t1t2 · · · ts. Let y(i, g, α) = εpi

g(a1 − 1)α1 · · · (an − 1)αn and
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k= min
1≤r≤s

{
β

(r)
1 + · · ·+ β(r)

n

}
. Therefore x

(
jr, gr, β

(r)
)
=1 + y

(
jr, gr, β

(r)
)

(r = 1, . . . , s) and

v ≡ 1 + t1y
(
j1, g1, β

(1)
)

+ · · ·+ tsy
(
js, gs, β

(s)
)

(mod Jk+1(C)).

Without loss of generality we can assume that

k = β
(1)
1 + · · ·+ β(1)

n = · · · = β
(s)
1 + · · ·+ β(s)

n .

It is clear that

v∗ ≡ 1 + (−1)kt1y
(
j1, g

−1
1 , β(1)

)
+ · · ·+ (−1)ktsy

(
js, g

−1
s , β(s)

)

(mod Jk+1(C)).

Hence, by virtue of the equality v = v∗, we have

t1

(
y

(
j1, g1, β

(1)
)
− (−1)ky

(
j1, g

−1
1 , β(1)

))
+ · · ·+(3.3)

ts

(
y

(
js, gs, β

(s)
)
− (−1)ky

(
js, g

−1
s , β(s)

))
≡ 0 (mod Jk+1(C)).

Since w
(
ir, hr, α

(r)
) ∈ B∗(G) and p > 2, it follows that gr 6= (−1)kgr

−1

and the summand ur = y
(
jr, gr, β

(r)
) − (−1)ky

(
jr, g

−1
r , β(r)

)
is nonze-

ro. If β(r) 6= β(q), then obviously ur 6= uq. Hence from (3.3) follows
that β(1) = · · · = β(s) = β and gr = hr

pν

(r = 1, . . . , s) for a fixed ν.
If {hr, h

−1
r } 6= {hq, h

−1
q }, then {gr, g

−1
r } 6= {gq, g

−1
q } (p does not divide

the order of hr, hq) and ur 6= uq. Therefore, from (3.3) we deduce that
{g1, g

−1
1 } = · · · = {gs, g

−1
s }. Since y(j1, g1, β), . . . , y(js, g1, β) are the pair-

wise distinct elements, it follows from (3.3) that t1ε
pj1 + · · · + tsε

pjs ≡ 0
(mod p) which is impossible because p - t1t2 · · · ts. This completes the
proof of the theorem.

4. A basis for W2(KG)

We now turn to the case p = 2. First we describe a basis B∗(C) for
the unitary subgroup V∗(KC). It is obvious that V∗(KC) = V (KC) when
C is elementary abelian or C is the cyclic group of order 4. Therefore we
shall assume that the exponent of C is greater than 2 and C is not the
cyclic group of order 4.

Let N(C) denote the set of all n-tuples of integers (α1, . . . , αn) 6=
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(0, . . . , 0) for which αi ∈ {0, qi − 1} and

T (C) =



1 +

∑

α∈N(C)

λα(1 + a1)α1 · · · (1 + an)αn

∣∣∣ λα ∈ K



 .

It is easy to see that T (C) is an elementary subgroup of V∗(KC),
T (C) ∩ C = {ai | ai

2 = 1, i = 1, . . . , n} and the group T (C) has a basis
of the form

BT (C) =
{

1 + ε2r

(1 + a1)α1 · · · (1 + an)αn
∣∣ 0 ≤ r < m, α ∈ N(C)

}

where ε, ε2, . . . , ε2m−1
is a GF (2)-basis of the field K = GF (2m) (see

(2.1)). According to Proposition 1.2,

V∗(KC) = 〈ai | ai
2 6= 1〉 × T (C)×D(C)

where by [1] D(C) ⊂ {x∗x−1 | x ∈ V (KC)}. In the following we shall
construct a basis of the group D(C).

From now on, let F be the field of 2 elements, C a finite abelian 2-
group of exponent greater than 2 and different from the cyclic group of
order 4, A = A(FC) the augmentation ideal of the algebra FC,
L2(C) = {(α1, . . . , αn) | αi ∈ {0, 2, 4, . . . , qi − 2}, i = 1, 2, . . . , n} and

µ(C) =
1
2

(|C| − ∣∣C2
∣∣− |C[2]|+ ∣∣C2[2]

∣∣)− r(C2).

We shall construct a subset L∗(C) of L(C) for which the set

B0(C)=
{
xα

∗xα
−1 | xα=1 + (a1 + 1)α1 · · · (an + 1)αn∈B(C), α ∈ L∗(C)

}

is a basis of the group D(C). For the proof of this fact we shall construct
a subsets L0(C) ⊂ L(C) ∪ L2(C) and L1(C) ⊂ L(C) and we shall prove
that they have the following properties:

a1) there exists a one-to-one map ψ from L∗(C) onto L0(C);

a2) L0(C) ∩ L∗(C) = ∅ (empty set);

a3) L0(C) ∩ L1(C) = ∅;
a4) |L∗(C)| = µ(C);

a5) if α = (α1, . . . , αn) ∈ L∗(C) and ψ(α) = α = (α1, . . . , αn) ∈ L0(C),
then α1 + · · ·+ αn = α1 + · · ·+ αn − 1 = k and

xα
∗xα

−1 = xα


 ∏

τ∈Q

xτ




(∏

ν∈R

xν

)
(1 + y) (y ∈ Ak+2)
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where Q ⊂ {τ ∈ L∗(C) | τ1 + · · ·+ τn = k + 1} and
R ⊂ {ν ∈ L1(C) | ν1 + · · ·+ νn = k + 1}.
Note that the subsets Q and R may be empty.
For the proof of property a5) and the following below theorems we

need two lemmas.

Lemma 4.1. Let a be an element of order q in the 2-group C and let
γ = a + 1. Then (γ∗)s = (a−1 + 1)s = `0γ

s + `1γ
s+1 + `2γ

s+2 + v for some
v in As+3, with `0, `1, `2 defined in terms of s as follows:

if s ≡ 0 (mod 4) or s ∈ {q − 1, q − 2}, then `0 = 1, `1 = `2 = 0;
if s ≡ 1 (mod 4), then `0 = `1 = `2 = 1;
if s ≡ 2 (mod 4) and s < q − 2, then `0 = `2 = 1, `1 = 0;
if s ≡ 3 (mod 4) and s < q − 1, then `0 = `1 = 1, `2 = 0.

Proof. According to (3.1), γ∗ = γ + γ2 + · · · + γq−1. Since KC is
a ring of characteristic 2, it follows that (γ∗)2 = γ2 + γ4 + · · ·+ γq−2 and
(γ∗)4 = γ4 +γ8 + · · ·+γq−4. Hence we easily obtain a proof of the lemma.

Lemma 4.2. Let α = (α1, . . . , αn) ∈ L(C), α1 + · · · + αn = k and
xα = 1 + (a1 + 1)α1 · · · (an + 1)αn . Then

xα
∗xα

−1 =

(∏
τ

xτ

)
(1 + y) (y ∈ Ak+3)

where the product is taken over all τ = (τ1, . . . , τn) such that k + 1 ≤
τ1+ · · ·+τn ≤ k+2 and the components τi satisfy the following conditions:

1) τi = αi, if αi ≡ 0(mod 4) or αi∈{qi − 1, qi − 2};
2) τi ∈ {αi, αi + 1, αi + 2}, if αi ≡ 1(mod 4);
3) τi ∈ {αi, αi + 2}, if αi ≡ 2(mod 4) and αi < qi − 2;
4) τi ∈ {αi, αi + 1}, if αi ≡ 3(mod 4) and αi < qi − 1.

Proof. In the following we shall make frequent use of the fact: if
u ∈ Ak and v ∈ Ar there exists a z ∈ Ak+r for which

(4.1) 1 + u + v = (1 + u)(1 + v)(1 + z).

According to Lemma 4.1,

(4.2) (ai
−1 +1)αi = `

(i)
0 (ai +1)αi + `

(i)
1 (ai +1)αi+1 + `

(i)
2 (ai +1)αi+2 +vi,

where vi ∈ Aαi+3 and `
(i)
0 , `

(i)
1 , `

(i)
2 we defined as in Lemma 4.1 (with ref-

erence to s = αi). By definition, xα
∗ = 1 + (a1

−1 + 1)α1 · · · (an
−1 + 1)αn ,
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and so by (4.2),

xα
∗ =1 +


v1 +

2∑

j1=0

`
(1)
j1

(a1 + 1)α1+j1


 · · ·


vn +

2∑

jn=0

`
(n)
jn

(an + 1)αn+jn




= 1 +
∑

j1,... ,jn

`
(1)
j1

(a1 + 1)α1+j1 · · · `(n)
jn

(an + 1)αn+jn + v (v ∈ Ak+3).

Obviously, we can assume that j1 + · · ·+ jn ≤ 2. Therefore, according to

(4.1), we have xα
∗ = xα

(∏
τ

xτ

)
(1 + y) (y ∈ Ak+3), where the product

is taken over all those τ = (τ1, . . . , τn) for which k + 1 ≤ τ1 + · · · + τn ≤
k + 2 and whose components τi satisfy the conditions of the lemma. This
completes the proof.

We now turn to the construction of the sets L∗(C), L0(C) and L1(C).
Let C = 〈a1〉×· · ·×〈an〉, n ≥ 1, q1 = 2t, q1 ≥ q2 ≥ · · · ≥ qn and a1, . . . , as

(s ≤ n) be all those basic elements of the group C, which have orders
greater than 2. We shall construct the sets L∗(C), L0(C), L1(C) by
induction on s. The first step of the induction (the cases s = n = 1; s = 1
and n > 1; s = n = 2) is the following three lemmas.

Lemma 4.3. Let C be a cyclic group of order q1 > 4. Put L1(C) = ∅,

L∗(C) =
{

α = (4i + 1)
∣∣∣ i = 1, . . . ,

1
4
q1 − 1

}

and

L0(C) =
{

α = (4i + 2)
∣∣∣ i = 1, . . . ,

1
4
q1 − 1

}
.

Then L∗(C), L0(C) and L1(C) have properties a1) – a5).

Proof. Properties a2) and a3) are obvious. We define the one-to-one
map ψ of L∗(C) onto L0(C) the following way: ψ((4i + 1)) = (4i + 2). It

is easy to see that µ(C) =
1
2

(
q1 − 1

2
q1

)
− 1 =

1
4
q1 − 1 and so |L∗(C)| =

µ(C). According to Lemma 4.2,

(x(4i+1))∗(x(4i+1))−1 = x(4i+2)(1 + y) (y ∈ A4i+3).

The proof is complete.
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Lemma 4.4. Let be n > 1, q1 ≥ 4 and q2 = · · · = qn = 2. Put

L1(C) = ∅, L∗(C) =
{

α = (4i + 1, 0, . . . , 0) | i = 1, . . . ,
1
4
q1 − 1

}
∪

∪
{

α = (2i− 1, α2, . . . , αn)
∣∣∣ i = 1, . . . ,

1
2
q1 − 1, α2 + · · ·+ αn > 0

}

and

L0(C) =
{

α = (4i + 2, 0, . . . , 0)
∣∣∣ i = 1, . . . ,

1
4
q1 − 1

}
∪

∪
{

α = (2i, α2, . . . , αn)
∣∣∣ i = 1, . . . ,

1
2
q1 − 1, α2 + · · ·+ αn > 0

}
.

Then L∗(C), L0(C) and L1(C) have properties a1) – a5).

Proof. Properties a2) and a3) are obvious. We define ψ the following
way: ψ((α1, α2, . . . , αn)) = (α1 + 1, α2, . . . , αn). It is clear that

|L∗(C)| =
(

1
4
q1 − 1

)
+

(
1
2
q1 − 1

) (
2n−1 − 1

)
and

µ(C) =
1
2

(
q12n−1 − 1

2
q1 − 2n + 2

)
− 1, so a4) holds. If α ∈ L∗(C) and

ψ(α) = α ∈ L0(C), then by Lemma 4.2,

xα
∗xα

−1 = xα(1 + y)
(
y ∈ Aα1+···+αn+2

)
.

So the lemma is true.

Lemma 4.5. Let n = 2, q1 = 2t ≥ q2 ≥ 4. Put

L1(C) = {(α1, α2) | α1 ≡ 0 (mod 4), α2 ≡ 1 (mod 4)}∪
∪{(α1, α2) |α1 ≡ 3 (mod 4), α1 6= 2i − 1 (1< i≤ t), α2 ≡ 0 (mod 4)},

L∗(C) = {(0, α2) | α2 ≡ 1 (mod 4), α2 > 1}∪
∪{(2i, α2) | 1 < i < t, α2 ≡ 1 (mod 4)}∪

∪{(1, α2) | α2 > 0} ∪ {(α1, α2) | α1 ≡ 1 (mod 4), α1 > 1}∪
∪{(α1, α2) | α1 ≡ 3 (mod 4), α2 ≡ 1 (mod 4)}∪

∪{(α1, α2) |α1 ≡ 3 (mod 4), α1 6= 2i − 1(1< i ≤ t), α2 ≡ 3 (mod 4)}
and

L0(C) = {(0, α2) | α2 ≡ 2 (mod 4), α2 > 2}∪
∪{(2i, α2) | 1 < i < t, α2 ≡ 2 (mod 4)}∪
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∪{(2, α2) | α2 > 0} ∪ {(α1, α2) | α1 ≡ 2 (mod 4), α1 > 2}∪
∪{(α1, α2) | α1 ≡ 3 (mod 4), α2 ≡ 2 (mod 4)}∪

∪{(α1, α2) |α1 ≡ 0 (mod 4), α1 6= 2i(1<i<t), α2 ≡ 3 (mod 4)}.
Then L∗(C), L0(C) and L1(C) have properties a1) – a5).

Proof. First we define the one-to-one map ψ:

ψ((α1, α2)) =
{

(α1, α2 + 1), if α2 ≡ 1 (mod 4) and α1 6≡ 1 (mod 4),
(α1 + 1, α2), otherwise.

Let β = (β1, β2) ∈ L0(C) ∩ L∗(C). If β1 is odd, then from β ∈
L0(C) it follows that β1 ≡ 3 (mod 4) and β2 ≡ 2 (mod 4). But from
(β1, β2) ∈ L∗(C), β1 ≡ 3 (mod 4) we have that β2 ≡ 1 (mod 2), which
is impossible. Similarly, if β1 is even, then from β ∈ L∗(C) it follows
β1 ∈ {0; 2i (1 < i < t)} and β2 ≡ 1 (mod 4). However for (β1, β2) ∈ L0(C)
we have β2 ≡ 2 (mod 4) and, therefore, L0(C) ∩ L∗(C) = ∅.

Let now β = (β1, β2) ∈ L0(C) ∩ L1(C). If β1 ≡ 0 (mod 4), then
β2 ≡ 1 (mod 4) for the elements β of L1(C), and β2 ≡ 2 (mod 4) or
β2 ≡ 3 (mod 4) for β ∈ L0(C), so we get a contradiction. Similarly, if
β1 ≡ 3 (mod 4), then on the one hand, β2 ≡ 0 (mod 4) and on the other,
β2 ≡ 2 (mod 4). Therefore, L0(C) ∩ L1(C) = ∅.

It is easy to see that |L∗(C)|=
(

1
4
q2 − 1

)
+ (t− 2)

1
4
q2+ (q2 − 1)+

(
1
4
q1 − 1

)
q2 +

1
4
q1

1
4
q2 +

(
1
4
q1 − (t− 1)

)
1
4
q2 =

3
8
q1q2 − 2, which equals

µ(C) =
1
2

(
q1q2 − 1

4
q1q2 − 4 + 4

)
− 2.

Let now α = (α1, α2) ∈ L∗(C). Then according to Lemma 4.2,

xα
∗xα

−1 =
(
x(α1+1,α2)

)k1
(
x(α1,α2+1)

)k2 (1 + y)
(
y ∈ Aα1+α2+2

)

where

ki =
{

0, if αi ≡ 0 (mod 2) or αi = qi − 1,

1, if αi ≡ 1 (mod 2) and αi < qi − 1.

So if α1 ≡ 0 (mod 4) and α2 ≡ 1 (mod 4), then k1 = 0 and the element
(α1, α2 + 1) coincides with ψ(α) ∈ L0(C). Suppose that α1 ≡ 1 (mod 4).
Then (α1 + 1, α2) coincides with ψ(α) and (α1, α2 + 1) ∈ L∗(C) whenever
k2 6= 0. Let now α1 ≡ 3 (mod 4) and α2 ≡ 1 (mod 4). Then (α1, α2+1) =
ψ(α) and (α1 + 1, α2) ∈ L1(C) in case α1 < q1 − 1. At last, if α1 ≡ 3
(mod 4), α1 6= 2i − 1 and α2 ≡ 3 (mod 4), then (α1 + 1, α2) = ψ(α) ∈
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L0(C) and (α1, α2 + 1) ∈ L1(C) whenever α2 < q2 − 1. The proof is
complete.

We remind that we shall construct by induction on the p-rank of the
group C such sets L∗(C), L0(C) and L1(C) which have properties a1) –
a5). In the Lemmas 4.3–4.5 the first step of the induction is proved. Now
we present the group C as the direct product of groups 〈a1 | a1

2t

= 1〉
and C̃ = 〈a2, . . . , an〉. According to Lemmas 4.3–4.5, we can assume that
the sets L∗(C̃), L0(C̃) and L1(C̃) exist and have properties a1) – a5). We
remind that

N(C) = {(α1, . . . , αn) | αi = 0 or qi − 1, α1 + · · ·+ αn > 0},
L2(C) = {(α1, . . . , αn) | αi ∈ {0, 2, 4, . . . , qi − 2}, i = 1, 2, . . . , n}.
Let L∗i denotes the set of all elements from L(C) for which the condi-

tion i) holds:

1) α1 = 0 and (α2, . . . , αn) ∈ L∗(C̃);

2) α1 = 1 and α2 + · · ·+ αn > 0;

3) α1 ≡ 1 (mod 4), α1 > 1;

4) α1 = 2i − 1 (1 < i ≤ t) and (α2, . . . , αn) ∈ L∗(C̃);

5) α1 = 2i − 1 (1 < i < t), (α2, . . . , αn) ∈ N(C̃), s < n and
αs+1 + · · ·+ αn > 0;

6) α1 = 2i − 1 (1 < i ≤ t) and α has the form

η(j) = (α1, 0, . . . , 0, 1, 0, . . . , 0) (1 in the j-th position)

where j = 2, . . . , s;

7) α1 ≡ 3 (mod 4), α1 6= 2i − 1 (1 < i ≤ t) and (α2, . . . , αn) ∈ L(C̃);

8) α1 = 2i (1 < i < t) and (α2, . . . , αn) ∈ L∗(C̃);

9) α1 = 2i (1 < i < t) and α ∈ {η(2), η(3), . . . , η(s)}.
Let L0

i denotes the set of all elements from L(C) ∪ L2(C) for which
the condition i′) holds:

1′) α1 = 0 and (α2, . . . , αn) ∈ L0(C̃);

2′) α1 = 2 and α2 + · · ·+ αn > 0;

3′) α1 ≡ 2 (mod 4), α1 > 2;
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4′) α1 = 2i − 1 (1 < i ≤ t) and (α2, . . . , αn) ∈ L0(C̃);

5′) α1 = 2i (1 < i < t), (α2, . . . , αn) ∈ N(C̃), s < n and
αs+1 + · · ·+ αn > 0;

6′) α1 = 2i − 1 (1 < i ≤ t) and α has the form

η(j) = (α1, 0, . . . , 0, 2, 0, . . . , 0) (2 in the j-th position)

where j = 2, . . . , s;

7′) α1 ≡ 0 (mod 4), α1 > 0, α1 6= 2i (1 < i ≤ t) and (α2, . . . , αn) ∈
L(C̃);

8′) α1 = 2i (1 < i < t) and (α2, . . . , αn) ∈ L0(C̃);

9′) α1 = 2i (1 < i < t) and α ∈ {η(2), η(3), . . . , η(s)}.
Lemma 4.6. Put L∗(C) = L∗1 ∪ L∗2 ∪ · · · ∪ L∗9,

L0(C) = L0
1 ∪ L0

2 ∪ · · · ∪ L0
9 and

L1(C) = {(α1, α2, . . . , αn) |α1 ≡ 3 (mod 4), α1 6= 2i − 1, 1< i ≤ t}∪
∪{

(α1, α2, . . . , αn) | α1 ∈ {0; 2i (1 < i < t); 2i − 1 (1 < i ≤ t)
}

,

(α2, . . . , αn) ∈ L1(C̃)}.
Then L∗(C), L0(C) and L1(C) have properties a1) – a5).

Remark. Note that in case n > 2, q1 ≥ q2 ≥ 4, q3 = · · ·= qn = 2 the
set L1(C̃) is empty (see Lemma 4.4) and so L1(C) has the form

L1(C) = {(α1, α2, . . . , αn) | α1 ≡ 3 (mod 4), α1 6= 2i − 1, 1 < i ≤ t}.

Proof of the Lemma. First we prove that if qn = 2 and
qs > qs+1 = · · · = qn = 2, then

(4.3) L0(C) ∩ {(γ1, . . . , γn) ∈ N(C) | γs+1 + · · ·+ γn > 0} = ∅.
We shall use induction on s. In case s = 1 (4.3) follows from Lemma 4.4.
Suppose that s > 1 and

δ=(δ1, δ2,. . ., δn)∈L0(C) ∩ {(γ1,. . ., γn)∈N(C) | γs+1 + · · ·+ γn >0}.
If δ1 = 0, then the element (δ2, . . . , δn) belongs to the set

L0(C̃) ∩ {(γ2, . . . , γn) ∈ N(C̃) | γs+1 + · · ·+ γn > 0}
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which, by the induction hypothesis, is empty. Hence, using the form of the
elements from N(C), it follows that δ1 = q1 − 1. Then for δ ∈ L0(C) con-
dition 4′) holds and, therefore, (δ2, . . . , δn) ∈ L0(C̃). Since (δ2, . . . , δn) ∈
N(C̃) and δs+1 + · · ·+ δn > 0, it follows that

(δ2, . . . , δn) ∈ L0(C̃) ∩ {(γ2, . . . , γn) ∈ N(C̃) | γs+1 + · · ·+ γn > 0}
and, by the induction hypothesis, we get a contradiction. The statement
is proved.

Let us prove now by induction on s that

(4.4) N(C) ∩ (L∗(C) ∪ L1(C)) = ∅.
In cases s = 1 or s = n = 2 (4.4) immediately follows from Lemmas 4.3–
4.5. Suppose that N(C̃) ∩

(
L∗(C̃) ∪ L1(C̃)

)
= ∅ and δ = (δ1, δ2, . . . , δn)

belongs to the set N(C)∩ (L∗(C) ∪ L1(C)) . If δ1 = 0, then (δ2, . . . , δn) ∈
N(C̃) ∩

(
L∗(C̃) ∪ L1(C̃)

)
, which contradicts the induction hypothesis.

So δ1 = q1 − 1. It is easy to see that (q1 − 1, 0, . . . , 0) 6∈ L∗(C) ∪ L1(C).
Clearly, (δ2, . . . , δn) ∈ N(C̃) and from (q1−1, δ2, . . . , δn) ∈ L∗(C)∪L1(C)
it follows that (δ2, . . . , δn) ∈ L1(C̃) ∪ L∗(C̃) or δ has the form η(j) =
(q1−1, 0, . . . , 0, 1, 0, . . . , 0) (1 in the j-th position and 2 ≤ j ≤ s). By the
induction hypothesis, (δ2, . . . , δn) can not belongs to the set L∗(C̃)∪L1(C̃).
Obviously, η(j) 6∈ N(C) and so (4.4) is proved.

Now we turn to the proof of the lemma. According to Lemmas 4.3–4.5,
we shall assume that the sets L∗(C̃), L0(C̃) and L1(C̃) have properties
a1) – a5).

By the induction hypothesis, we can assume that if (α2, . . . , αn) ∈
L∗(C̃), there exists an element (α2, . . . , αn) in L0(C̃). So we can define ψ
the following way:

ψ(α) =





(α1, 0, . . . , 0, 2, 0, . . . , 0), if α ∈ L∗6 ∪ L∗9,
(α1, α2, . . . , αn), if α ∈ L∗1 ∪ L∗4 ∪ L∗8,
(α1 + 1, α2, . . . , αn), if α ∈ L∗2 ∪ L∗3 ∪ L∗5 ∪ L∗7.

Obviously if α = (α1, . . . , αn) ∈ L∗i , then ψ(α) ∈ L0
i .

Let us prove a2). Suppose that γ = (γ1, γ2, . . . , γn) ∈ L0(C)∩L∗(C).
If γ1 = 0, then (γ2, . . . , γn) belongs to the set L0(C̃)∩L∗(C̃), which, by the
induction hypothesis, is empty. Therefore, comparing the first components
of elements from L0(C) and L∗(C), we have that γ1 = 2i (1 < i < t) or
γ1 = 2i − 1 (1 < i ≤ t).

Suppose γ1 = 2i (1 < i < t). Then for γ ∈ L0(C) one of the con-
ditions 5′), 8′), 9′) holds and from the condition γ ∈ L∗(C) we have
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that (γ2, . . . , γn) ∈ L∗(C̃) or γ ∈ {η(2), . . . , η(s)}. It is easy to see
that the elements η(2), . . . , η(s) are not in the set L0

5 ∪ L0
8 ∪ L0

9. Hence
(γ2, . . . , γn) ∈ L∗(C̃). The induction hypothesis L∗(C̃) ∩ L0(C̃) = ∅ gives
that γ 6∈ L0

8, and from (4.4) it follows γ 6∈ L0
5. So γ ∈ L0

9, that is γ

coincides with some η(r) = (2i, 0, . . . , 0, 2, 0, . . . , 0), which contradicts the
condition (γ2, . . . , γn) ∈ L∗(C̃).

Suppose now γ1 = 2i−1 (1 < i ≤ t). Then for the element γ ∈ L∗(C)
one of the conditions 4), 5), 6) holds and from γ ∈ L0(C) it follows that
(γ2, . . . , γn) ∈ L0(C̃) or γ ∈ {η(2), . . . , η(s)}. Since for η(2), . . . , η(s) the
conditions 4), 5), 6) do not hold, we have that (γ2, . . . , γn) ∈ L0(C̃) and
γ ∈ L∗4 ∪ L∗5 ∪ L∗6. From the induction hypothesis L∗(C̃) ∩ L0(C̃) = ∅ we
have that (γ2, . . . , γn) 6∈ L∗4 ∪ L∗6 and hence

(γ2, . . . , γn) ∈ L0(C̃) ∩N(C̃), γs+1 + · · ·+ γn > 0,

which contradicts (4.3). So property a2) is proved.
Let now γ = (γ1, γ2, . . . , γn) ∈ L0(C)∩L1(C). If γ such element from

L1(C) for which γ1 ≡ 3 (mod 4), γ1 6= 2i − 1, 1 < i ≤ t, then obviously
γ can not belong to the set L0(C). So for the element γ from L1(C) the
conditions

γ1 ∈ {0; 2i (1 < i < t); 2i − 1 (1 < i ≤ t)}, (γ2, . . . , γn) ∈ L1(C̃)

hold. Hence γ (as an element of the set L0(C)) belongs to the set L0
1∪L0

4∪
L0

5 ∪ L0
6 ∪ L0

8 ∪ L0
9. Using the induction hypothesis L0(C̃) ∩L1(C̃) = ∅,

it follows that γ 6∈ L0
1 ∪ L0

4 ∪ L0
8. If γ ∈ L0

6 ∪ L0
9, then the element

(γ2, . . . , γn) ∈ L1(C̃) has the form (0, . . . , 0, 2, 0, . . . , 0), which contradicts
to the construction of the set L1(C̃). So γ ∈ L0

5, that is, (γ2, . . . , γn) ∈
N(C̃). Hence from the condition (γ2, . . . , γn) ∈ L1(C̃) using (4.4) we get
a contradiction. Property a3) is proved.

Let us prove a4). Using the induction hypothesis we have

|L∗1| =
∣∣∣L∗(C̃)

∣∣∣ = µ(C̃) =
1
2

(∣∣∣C̃
∣∣∣−

∣∣∣C̃2
∣∣∣−

∣∣∣C̃[2]
∣∣∣ +

∣∣∣C̃2[2]
∣∣∣
)
− r

(
C̃2

)
.

It is easy to see that |L∗4| = (t− 1) |L∗1| , |L∗8| = (t− 2) |L∗1| ,
|L∗2| =

∣∣∣C̃
∣∣∣− 1, |L∗6| = (t− 1) r

(
C̃2

)
, |L∗9| = (t− 2) r

(
C̃2

)
, |L∗3| =(

2t−2 − 1
) ∣∣∣C̃

∣∣∣ and |L∗7| =
(
2t−2 − t + 1

) (∣∣∣C̃
∣∣∣−

∣∣∣C̃2
∣∣∣
)
. Therefore

|L∗1 ∪ L∗4 ∪ L∗6 ∪ L∗8 ∪ L∗9| =

(1 + (t− 1) + (t− 2))
1
2

(∣∣∣C̃
∣∣∣−

∣∣∣C̃2
∣∣∣−

∣∣∣C̃[2]
∣∣∣ +

∣∣∣C̃2[2]
∣∣∣
)
− r

(
C̃2

)
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and
|L∗2 ∪ L∗3 ∪ L∗7| =

(∣∣∣C̃
∣∣∣− 1

)
+

(
2t−2

∣∣∣C̃
∣∣∣−

∣∣∣C̃
∣∣∣
)

+
(
2t−2 − t + 1

) (∣∣∣C̃
∣∣∣−

∣∣∣C̃2
∣∣∣
)

=

2t−1
∣∣∣C̃

∣∣∣− 1− (t− 1)
(∣∣∣C̃

∣∣∣−
∣∣∣C̃2

∣∣∣
)
− 2t−2

∣∣∣C̃2
∣∣∣ .

It is clear that
∣∣∣N

(
C̃

)∣∣∣ =
∣∣∣C̃[2]

∣∣∣− 1 and the cardinality of the set
{

(γ1, . . . , γs, 0, . . . , 0) ∈ N
(
C̃

)}

is equal to
∣∣∣C̃2[2]

∣∣∣− 1. Hence |L∗5| = (t− 2)
(∣∣∣C̃[2]

∣∣∣−
∣∣∣C̃2[2]

∣∣∣
)
. So

|L∗(C)| = (t− 1)
(∣∣∣C̃

∣∣∣−
∣∣∣C̃2

∣∣∣−
∣∣∣C̃[2]

∣∣∣ +
∣∣∣C̃2[2]

∣∣∣
)
− r

(
C̃2

)
+

(t− 2)
(∣∣∣C̃[2]

∣∣∣−
∣∣∣C̃2[2]

∣∣∣
)

+ 2t−1
∣∣∣C̃

∣∣∣− 1− (t− 1)
(∣∣∣C̃

∣∣∣−
∣∣∣C̃2

∣∣∣
)
−

2t−2
∣∣∣C̃2

∣∣∣ = 2t−1
∣∣∣C̃

∣∣∣− 2t−2
∣∣∣C̃2

∣∣∣−
∣∣∣C̃[2]

∣∣∣ +
∣∣∣C̃2[2]

∣∣∣− r
(
C̃2

)

and since

µ(C) =
1
2

(
2t

∣∣∣C̃
∣∣∣− 2t−1

∣∣∣C̃2
∣∣∣− 2

∣∣∣C̃[2]
∣∣∣ + 2

∣∣∣C̃2[2]
∣∣∣
)
− r(C2),

it follows that property a4) is proved.
Let α = (α1, α2, . . . , αn) ∈ L∗(C) and α1+α2+· · ·+αn = k. Suppose

that α̃ = (α2, . . . , αn) ∈ L∗(C̃). Then, by the induction hypothesis,

(4.5) xα̃
∗xα̃

−1 = x(α2,... ,αn)


 ∏

τ̃∈Q

xτ̃




(∏

ν̃∈R

xν̃

)
(1 + ỹ)

where Q ⊂ L∗(C̃), R ⊂ L1(C̃), ỹ ∈ Ak−α1+2 and τ2 + · · ·+ τn =
ν2 + · · ·+νn = α2 + · · ·+αn +1. If α1 = 0, then x(α1,α2,... ,αn) = x(α2,... ,αn)

and a5) follows from (4.5). If α1 = 2i (1 < i < t), then, by Lemma 4.2,

xα
∗xα

−1 = x(α1,α2,... ,αn)

(∏
τ

x(α1,τ2,... ,τn)

)(∏
ν

x(α1,ν2,... ,νn)

)
(1 + y)

where y ∈ Ak+2. Since (α1, α2, . . . , αn) = ψ(α) ∈ L0
8, τ ∈ L∗8 and ν ∈

L1(C), it follows that a5) is proved for the elements from L∗8. If α1 = 2i−1
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(1 < i ≤ t), then, according to Lemma 4.2,

xα
∗xα

−1 = x(α1,α2,... ,αn) x(α1+1,α2,... ,αn)

·
(∏

τ

x(α1,τ2,... ,τn)

)(∏
ν

x(α1,ν2,... ,νn)

)
(1 + y),

(
y ∈ Ak+2

)

where (α1, α2, . . . , αn) ∈ L0
4, (α1 + 1, α2, . . . , αn) ∈ L∗8, τ ∈ L∗4 and ν ∈

L1(C). Therefore a5) is proved for the elements from L∗4. Suppose now
that α ∈ L∗2 ∪ L∗3 ∪ L∗5 ∪ L∗7. Then, by Lemma 4.2,

xα
∗xα

−1 = x(α1+1,α2,... ,αn)


 ∏

τ∈Q

x(α1,τ2,... ,τn)


 (1 + y) (y∈Ak+2)

where the product is taken over those τ = (α1, τ2, . . . , τn) for which α1+
τ2 + · · ·+ τn = k + 1 and

τi =
{

αi, when αi is divisible by 2 or αi = qi − 1,

αi + 1, when αi is an odd number and αi < qi − 1.

Obviously, the element (α1 +1, α2, . . . , αn) coincides with ψ(α) and Q = ∅
whenever every αi (i = 2, . . . , n) is even or equals qi − 1. It is easy to see
also that

Q ⊂
{

L∗(C), when α ∈ L∗2 ∪ L∗3,
L1(C), when α ∈ L∗7.

So a5) is proved for the elements from L∗2∪L∗3∪L∗5∪L∗7. If α has the form
(2i, 0, . . . , 0, 1, 0, . . . , 0) or (2i − 1, 0, . . . , 0, 1, 0, . . . , 0), then, by Lemma
4.2, there exists y ∈ Ak+2 such that the equations

xα
∗xα

−1 = x(2i,0,... ,0,2,0,... ,0) (1 + y)

and
xα

∗xα
−1 = x(2i−1,0,... ,0,2,0,... ,0) x(2i,0,... ,0,1,0,... ,0) (1 + y)

hold respectively. Obviously (2i, 0, . . . , 0, 2, 0, . . . , 0) ∈ L0
9,

(2i−1, 0, . . . , 0, 2, 0, . . . , 0) ∈ L0
6 and (2i, 0, . . . , 0, 1, 0, . . . , 0) ∈ L∗9. There-

fore condition a5) is fully proved and the lemma is true.

Theorem 4.7. Let K be the field of 2 elements, C = 〈a1, . . . , an〉 a
finite abelian 2-group, a1, . . . , as (s ≤ n) all basic elements of the group
C whith orders greater than 2, L∗(C) is the set constructed above,

B0(C) =
{
zα = xα

∗xα
−1 | xα = 1 + (a1 + 1)α1 · · · (an + 1)αn , α ∈ L∗(C)

}
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and BT (C) = {xα | α ∈ N(C)}. Then the elements of the set

B∗(C) = {ai | ai
2 6= 1, i = 1, . . . , n} ∪BT (C) ∪B0(C)

form a basis of the group V∗(KC).

Proof. Let T (C) denote the subgroup

T (C) =



1 +

∑

α∈N(C)

λα(1 + a1)α1 · · · (1 + an)αn

∣∣∣ λα ∈ K



 .

It is easy to see that T (C) ⊂ V∗(KC), BT (C) is a basis of the group T (C)
and T (C)∩C = {ai | ai

2 = 1, i = 1, . . . , n}. According to Proposition 1.2,

V∗(KC) = 〈a1, . . . , as〉 × T (C)×D(C)

where, by [1], D(C) ⊂ {x∗x−1 | x ∈ V (KC)}. Therefore it suffices to
prove that B0(C) is a basis of D(C).

Let L∗(C), L0(C) and L1(C) be the sets defined by Lemmas 4.3–4.6.
Then, according to Lemmas 4.3–4.6, the sets L∗(C), L0(C) and L1(C)
have properties a1) – a5). It is easy to see that the set B0(C) consists of
pairwise distinct unitary elements, not equal to one.

We shall prove by induction on the exponent of C that the number
of elements of order 2i of the set B0(C) coincides with fi(D(C)). If C
is a group of exponent 4, then

∣∣C2
∣∣ =

∣∣C2[2]
∣∣ and, according to property

a4), we have that |B0(C)| = |L∗(C)| = µ(C) =
1
2
(|C| − |C[2]|)− r(C2)

which, by Proposition 1.2, equals f1(D(C)). Suppose now that C is a
group of exponent greater than 4 and the number of elements of order 2i

of the set B0(C2) equals fi(D(C2)) (i = 1, 2, 3 . . . ). It is easy to prove
that (D(C))2 = D(C2) (see [1]) and hence the number of elements of
order 2i of the set B0(C) coincides with fi−1(D(C2)) = fi(D(C)) (i =
2, 3, . . . ). Therefore f1(D(C)) = |B0(C)| − ∣∣B0(C2)

∣∣ and, by property
a4), f1(D(C)) = µ(C) − µ(C2) which coincides with the number defined
by Proposition 1.2. The statement is proved.

Let us prove the independence of B0(C). We shall use again induction
on the exponent of C. Let C be a group of exponent 4. Then every element
from B0(C) has order 2. Suppose that

(4.6) zα(1) · · · zα(r) = 1

for the distinct elements α(i) = (α(i)
1 , . . . , α

(i)
n ) (i = 1, . . . , r) from L∗(C).

Let k = min
1≤i≤r

{
α

(i)
1 + · · ·+ α(i)

n

}
. Without loss of generality we can as-

sume that k = α
(1)
1 +· · ·+α

(1)
n = · · ·=α

(s)
1 +· · ·+α

(s)
n for some s ≤ r. Then,
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according to property a5), we have that for every i = 1, . . . , s

zα(i) = xα(i)viwi(1 + yi) (yi ∈ Ak+2)

where α(i) ∈ L0(C), vi =
∏

τ∈Qi⊂L∗(C)

xτ and wi =
∏

ν∈Ri⊂L1(C)

xν . Hence

u = zα(1) · · · zα(r) = (xα(1) · · ·xα(s))(v1 · · · vs)(w1 · · ·ws)(1 + y),

where y ∈ Ak+2, α(1), . . . , α(s) ∈ L0(C), v1 · · · vs =
∏

τ∈Q⊂L∗(C)

xτ and

w1 · · ·ws =
∏

ν∈R⊂L1(C)

xν . According to (4.1), u + Ak+2 =

= 1 +
s∑

i=1

(xα(i) + 1) +
∑

τ∈Q⊂L∗(C)

(xτ + 1) +
∑

ν∈R⊂L1(C)

(xν + 1) + Ak+2.

Since, by properties a2) and a3), the sets L∗(C) ∪ L1(C) and L0(C) are
disjoint, it follows that

{
α(1), . . . , α(s)

} ∩ (Q ∪R) = ∅. Obviously the set{
α(1), . . . , α(s)

}
is not empty and, by Lemma 2.1, the elements (xα(i)+1),

(xτ + 1), (xν + 1) are the distinct basic elements of the additive group of
the factor-ring Ak+1/Ak+2. Then u+Ak+2 6= 1+Ak+2, which contradicts
(4.6). The independence of the set B0(C) is proved for the group C of
exponent 4.

Let C be a group of exponent greater than 4. Suppose that for some
distinct elements α(1), . . . , α(r) from L∗(C) the equation

(4.7) u = (zα(1))j1 · · · (zα(r))jr = 1

holds. If every ji = 2ti (i = 1, . . . , r), then the elements zτ(i) = (zα(i))2

belong to the set B0(C2) and, according to (4.7), the equation

(zτ(1))t1 · · · (zτ(r))tr = 1

holds, which contradicts the induction hypothesis. If ji = 2ti + 1 (i =
1, . . . , s) are all the odd ones among the numbers j1, . . . , jr, then equation
(4.7) has the form

(4.8) u = zα(1) · · · zα(s) v2 = 1

and v2 ∈ D(C2). It is easy to see that y = zα(1) · · · zα(s) 6∈ D(C2). Indeed,
as in above we can assume that

k = min
1≤i≤s

{
α

(i)
1 + · · ·+ α(i)

n

}
= α

(1)
1 + · · ·+ α(1)

n = · · ·= α
(s)
1 + · · ·+ α(s)

n .
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So, according to Lemmas 4.3–4.6,

zα(i) = xα(i)viwi(1 + yi) (yi ∈ Ak+2)

where α(i) ∈ L0(C), vi =
∏

τ∈Qi⊂L∗(C)

xτ and wi =
∏

ν∈Ri⊂L1(C)

xν . Using

(4.1) we have

y + Ak+2 = 1 +
s∑

i=1

(xα(i) + 1) +
∑

τ∈Q

(xτ + 1) +
∑

ν∈R

(xν + 1) + Ak+2

where Q = Q1 ∪ · · · ∪ Qs ⊂ L∗(C) and R = R1 ∪ · · · ∪ Rs ⊂ L1(C). By
Lemma 2.1, the elements xα(i) +1 (i = 1, . . . , s), xτ +1 (τ ∈ Q), xν+1 (ν ∈
R) are the distinct basic elements of the additive group of the factor-ring
Ak+1/Ak+2. According to properties a1) − a3),

{
α(1), . . . , α(s)

} ∩ (Q ∪
R)=∅. Therefore, if among the elements α(1), . . . , α(s) exists at least one
α(j) which belongs to the set L(C), then obviously y 6∈ D(C2). Suppose
now that every α(1), . . . , α(s) belongs to the set L2(C). According to
Lemma 4.2, it can may be only in case when every α(i) consists only one
odd component which, by the construction of the set L∗(C), is congruent
with one modulo 4. Without loss of generality we can assume that α

(i)
1

is the only one odd number among the the components of the element
α(i) = τ . Then Lemma 4.2 gives that

zτ = x(τ1+1,τ2,... ,τn) x(τ1+2,τ2,... ,τn)

∏

ν∈Si

x(τ1,ν2,... ,νn) (1 + y)

where y ∈ Ak+3, Si ⊂ L∗(C) (see the construction of the set L∗(C)) and
the product is taken over all ν = (τ1, ν2, . . . , νn) such that τ1 + ν2 + · · ·+
νn = k + 2 and

νj =
{

τj , when τj ≡ 0 (mod 4) or τj = qj − 2,

τj + 2, when τj ≡ 2 (mod 4) and τj < qj − 2.

Since τ1 ≡ 1 (mod 4), it follows that the element α̃(i) = (τ1 +2, τ2, . . . , τn)
belongs to the set L(C)\L∗(C). Therefore

{
α̃(1), . . . , α̃(s)

}
and S1∪· · ·∪Ss

are the disjoint subsets of the set L(C). Hence, in the expression y +Ak+3

we can write the element y using (4.1), and, as in above, we can prove that
zα(1) · · · zα(s) 6∈ D(C2).

So it follows from (4.8) that zα(1) · · · zα(s) = 1. This equation can not
hold in the group V (KC) for the distinct elements α(i) =

(
α

(i)
1 , . . . , α

(i)
n

)
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(i = 1, . . . , s) from L∗(C). Really, let k = min
1≤i≤s

{
α

(i)
1 + · · ·+ α(i)

n

}
. With-

out loss of generality we can assume that k = α
(1)
1 + · · ·+α

(1)
n = · · · =

α
(s)
1 + · · ·+α

(s)
n . Then, according to property a5), we have that for every

i = 1, . . . , s

zα(i) = xα(i)viwi(1 + yi) (yi ∈ Ak+2)

where α(i) ∈ L0(C), vi =
∏

τ∈Qi⊂L∗(C)

xτ and wi =
∏

ν∈Ri⊂L1(C)

xν . Hence

u = zα(1) · · · zα(s) = (xα(1) · · ·xα(s)) (v1 · · · vs) (w1 · · ·ws) (1 + y),

where y ∈ Ak+2, α(1), . . . , α(s) ∈ L0(C), v1 · · · vs =
∏

τ∈Q⊂L∗(C)

xτ and

w1 · · ·ws =
∏

ν∈R⊂L1(C)

xν . According to (4.1), u + Ak+2 =

= 1 +
s∑

i=1

(xα(i) + 1) +
∑

τ∈Q⊂L∗(C)

(xτ + 1) +
∑

ν∈R⊂L1(C)

(xν + 1) + Ak+2.

Since, by properties a2) and a3), the sets L∗(C) ∪ L1(C) and L0(C) are
disjoint, it follows that

{
α(1), . . . , α(s)

} ∩ (Q ∪R) = ∅. Obviously the set{
α(1), . . . , α(s)

}
is not empty and, by Lemma 2.1, the elements (xα(i) +

1), (xτ +1), (xν +1) are the distinct basic elements of the additive group
of the factor-ring Ak+1/Ak+2. Then u + Ak+2 6= 1 + Ak+2, so we get a
contradiction. The independence of the set B0(C) is proved. The proof of
the theorem is complete.

Theorem 4.8. Let K be the field of 2m (m > 1) elements,

ε, ε2, . . . , ε2m−1
a basis of K over GF (2), C a finite abelian 2-group,

x(i, α) = 1 + ε2i

(a1 − 1)α1 · · · (an − 1)αn ,

B1(C) =
{

x(i, α)∗x(i, α)−1
∣∣∣ 0 ≤ i < m, α ∈ L∗(C)

}
,

B2(C) =
{ (

1 + ε2i

(1 + aj)
)∗ (

1 + ε2i

(1 + aj)
)−1 ∣∣∣ 0 ≤ i < m− 1,

aj
2 6= 1

}

and BT (C) = {x(i, α) | 0 ≤ i < m, α ∈ N(C)}. Then

B∗(C) = {ai | ai
2 6= 1, i = 1, . . . , n} ∪BT (C) ∪B1(C) ∪B2(C)
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is a basis for V∗(KC).
Proof. Let us write the identity element of K in the form

1 = γ0ε + γ1ε
2 + · · ·+ γm−1ε

2m−1
.

Raising this equation to the powers 2, 4, 8, . . . we get that γ0 = γ1 =
· · · = γm−1 = 1. Therefore the elements 1, ε, ε2, . . . , ε2m−2

of the field
K are independent over GF (2). From this the independence of the set
C ∪ B2(C) follows by Lemma 2.2 and as in the proof of Theorem 4.7 we
can prove this theorem too.

Theorem 4.9. Let K be the field of 2m elements, C a Sylow 2-
subgroup of a finite abelian group G = C×F , E a subset of the set F \{1},
that has a unique representative in every subset of the form {g, g−1},

B̃(G) =
{

x(i, g, α)∗x(i, g, α)−1
∣∣∣ x(i, g, α) ∈ B(G), g ∈ E

}

and B∗(C) is a basis of V∗(KC). Then the elements of the set

B∗(G) = B̃(G) ∪B∗(C)

form a basis of the Sylow 2-subgroup W2(KG) of the group V∗(KG).
Proof. Let k = α1 + · · ·+ αn and

z(α1, . . . , αn) = (a1 − 1)α1 · · · (an − 1)αn .

Using equation (3.1) it is easy to prove that

x(i, g, α)∗ = 1 + ε2i

g−1z(α1, . . . , αn) + v1

and
x(i, g, α)−1 = 1 + ε2i

gz(α1, . . . , αn) + v2

where the elements v1 and v2 belong to the (k + 1)-th power of the ideal
J = J(C) of the group algebra KG. Hence

x(i, g, α)∗x(i, g, α)−1 = 1 + ε2i (
g + g−1

)
z(α1, . . . , αn) + v

(
v ∈ Jk+1

)

and as in the proof of theorem 4.7 we can prove that the elements of the
set B̃(G) are independent and belong to the basis of the group W2(KG).
According to Lemma 2.2, the elements of the set B̃(G) ∪B∗(C) are inde-
pendent and form a basis of W2(KG). Indeed, since∣∣∣B̃(G)

∣∣∣ = m
|F | − 1

2
(|C| − ∣∣C2

∣∣) and

|B∗(C)| = m

2
(|C|−

∣∣C2
∣∣+ |C[2]|+

∣∣C2[2]
∣∣− 2

)
, it follows that the cardi-

nality of the set B̃(G) ∪ B∗(C) coincides with the 2-rank of the group
W2(KG). This completes the proof of the theorem.
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