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Derivations into various duals of Lau product
of Banach algebras

By MOHAMMAD RAMEZANPOUR (Damghan)

Abstract. For two Banach algebras A and B, an interesting product A×θB, called

the θ-Lau product, was recently introduced and studied for some non-zero multiplicative

linear functional θ on B. In this paper, by discussing general necessary and sufficient

conditions for n-weak amenability of A ×θ B, we extend some results on the n-weak

amenability of the unitization A] of A, to the θ-Lau product A ×θ B. In particular,

we improve several known results on n-weak amenability of A ×θ B and answer some

questions on this topic.

1. Introduction and some preliminaries

Let A and B be Banach algebras with σ(B) 6= ∅, and let θ ∈ σ(B), where

σ(B) is the set of all non-zero multiplicative linear functionals on B. The θ-Lau

product A ×θ B is a Banach algebra which is defined as the vector space A × B
equipped with the algebra multiplication

(a1, b1)(a2, b2) = (a1a2 + θ(b2)a1 + θ(b1)a2, b1b2) (a1, a2 ∈ A, b1, b2 ∈ B),

and the norm ‖(a, b)‖ = ‖a‖+‖b‖. This type of product was introduced by Lau [8]

for a certain class of Banach algebras known as Lau algebras, and was extended by

Sangani Monfared [9] for arbitrary Banach algebras. The unitization A] of A

can be regarded as the ι-Lau product A×ιC, where ι ∈ σ(C) is the identity map.

This product provides not only new examples of Banach algebras by them-

selves, but it can also serve as a source of (counter-) examples for various pur-

poses in functional and harmonic analysis. From the homological algebra point
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of view, A×θB is a strongly splitting Banach algebra extension of B by A, which

means that A is a closed two-sided ideal of A×θ B, and the quotient (A×θ B)/A

is isometrically isomorphic to B. The Lau product of Banach algebras enjoys

some properties that are not shared in general by arbitrary strongly splitting ex-

tensions. For instance, commutativity is not preserved by a generally strongly

splitting extension. However, A×θB is commutative if and only if both A and B

are commutative.

Many basic properties of A], some notions of amenability and some homolog-

ical properties are extended to A×θB by many authors; see, for example, [4], [7],

[9], [10] and [11]. In particular, Ghaderi, Nasr-Isfahani and Nemati [4] ex-

tended some results on n-weak amenability of A], obtained by Dales, Ghahra-

mani and Gronbeak [3], to A×θ B. They showed that if A and B are (2n+ 1)-

weakly amenable, then A ×θ B is (2n + 1)-weakly amenable, [4, Theorem 4.1].

For a continuous derivation D : A×θ B → (A×θ B)(2n+1) with D(a, 0) = 0, they

claim that D(0, b) ∈ B(2n+1). By a careful look at their proof, we could only

conclude that (ι(2n+1) ◦D)(0, b) = 0 on the subspace 〈AA(2n) ∪A(2n)A〉 of A(2n),

where ι : A → A ×θ B is the natural embedding. So, there appear to be some

gaps in their proof. This result, under a suitable condition on A, was proved by

Ebrahimi Vishki and Khoddami [12], but the question of whether there is an

analogue to this result for the even case was left open. Moreover, in the case when

A is unital, it was shown that A ×θ B is n-weakly amenable if and only if both

A and B are n-weakly amenable. It was also left as an open question whether

this result holds for the case when A has a bounded approximate identity.

The n-weak amenability of the unitization A] of a Banach algebra A was also

studied by Zhang [13]. As a main result of [13, Section 3.2], he showed that if A

is weakly amenable or has a bounded approximate identity, then for each n ≥ 0,

A] is n-weakly amenable if and only if A is n-weakly amenable [13, Theorem 3.16].

In this paper, we discuss general necessary and sufficient conditions for A×θB
to be n-weakly amenable, for an integer n ≥ 0. We extend some results about

the n-weak amenability of A], obtained by Zhang, to the θ-Lau product A×θ B.

In particular, we improve several results on n-weak amenability of A×θB, fix the

gap in Theorem 4.1 of [4], and partially answer some questions on this topic.

2. (2n + 1)-weak amenability

We start this section with some preliminaries about n-weak amenability.

Let A be a Banach algebra, and X a Banach A-bimodule. Then the dual space X∗
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of X becomes a dual Banach A-bimodule with the module actions defined by

(fa)(x) = f(ax), (af)(x) = f(xa),

for all a ∈ A, x ∈ X and f ∈ X∗. Similarly, the n-th dual X(n) of X is a

Banach A-bimodule. In particular, A(n) is a Banach A-bimodule. A derivation

from A into X is a linear mapping D : A→ X, satisfying

D(ab) = D(a)b+ aD(b) (a, b ∈ A).

If x ∈ X, then dx : A→ X defined by dx(a) = ax− xa is a derivation. A deriva-

tion D is inner if there is an x ∈ X such that D = dx.

A Banach algebra A is called n-weakly amenable, for an integer n ≥ 0, if

every continuous derivation from A into A(n) is inner, where A(0) = A. The

algebra A is said to be weakly amenable if it is 1-weakly amenable. The concept

of weak amenability was first introduced by Bade, Curtis and Dales in [1] for

commutative Banach algebras, and was extended to the noncommutative case

by Johnson [5]. Dales, Ghahramani and Grønbæk [3] initiated and inten-

sively developed the study of n-weak amenability of Banach algebras.

Throughout the paper, n is assumed to be a non-negative integer, A and B

are assumed to be Banach algebras, and θ an element of σ(B). For brevity of

notation, we usually identify an element of A with its canonical image in A(2n),

as well as an element of A∗ with its image in A(2n+1).

The Banach space (A ×θ B)(2n+1) can be identified with the Banach space

A(2n+1) × B(2n+1) equipped with the maximum norm ‖(f, g)‖ = max{‖f‖, ‖g‖}
in the natural way. By induction, we find that the (A×θ B)-bimodule actions on

(A×θ B)(2n+1) are formulated as follows:

(f, g)(a, b) = (fa+ θ(b)f, gb+ f(a)θ) ,

(a, b)(f, g) = (af + θ(b)f, bg + f(a)θ) ,

for a ∈ A, b ∈ B, f ∈ A(2n+1) and g ∈ B(2n+1).

To clarify the relation between (2n+1)-weak amenability of A×θB and that

of A and B, we begin with the following lemma which plays a key role in the

sequel. This lemma was proved in [12, Proposition 2.1].

Lemma 2.1. A mapping D : A ×θ B → (A ×θ B)(2n+1) is a continuous

derivation if and only if

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)),

for all a ∈ A and b ∈ B, where
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(a) DB : B → B(2n+1) is a continuous derivation.

(b) DA : B → A(2n+1) is a bounded linear operator such that DA(b1b2) =

θ(b1)DA(b2) + θ(b2)DA(b1) for all b1, b2 ∈ B, and DA(b)a = aDA(b) = 0 for

all a ∈ A and b ∈ B.

(c) TB : A → B(2n+1) is a bounded linear operator such that bTB(a) = TB(a)b

and θ(b)TB(a) = bTB(a) +DA(b)(a)θ for all a ∈ A and b ∈ B.

(d) TA : A → A(2n+1) is a continuous derivation such that (TA(a1)(a2)+

TA(a2)(a1)) θ = TB(a1a2) for a1, a2 ∈ A.
Moreover, D = d(f,g), for some f ∈ A(2n+1) and g ∈ B(2n+1), if and only if

DB = dg, TA = df , DA = 0 and TB = 0.

As a first result, we give general necessary and sufficient conditions for A×θB
to be (2n+ 1)-weakly amenable.

Theorem 2.2. The θ-Lau product A ×θ B is (2n + 1)-weakly amenable if

and only if

(1) B is (2n+ 1)-weakly amenable.

(2) The only bounded linear operator S : A → B(2n+1), such that S(a1a2) = 0

for all a1, a2 ∈ A and bS(a) = S(a)b = θ(b)S(a) for all b ∈ B and a ∈ A, is
zero.

(3) If T : A→ A(2n+1) is a continuous derivation such that there exists a bound-

ed linear operator S : A → B(2n+1) satisfying (T (a1)(a2)+T (a2)(a1)) θ =

S(a1a2) for all a1, a2 ∈ A, then T is inner.

Before we prove this theorem, we need the following lemmas.

Lemma 2.3. Condition (2) in Theorem 2.2 is equivalent to the density of

A2 in A.

Proof. Let condition (2) in Theorem 2.2 hold, and let f ∈ A∗ be such that

f |A2 = 0. Define S : A → B(2n+1) by S(a) = f(a)θ for all a ∈ A. Then S is a

bounded linear operator such that S(a1a2) = 0 for all a1, a2 ∈ A, and bS(a) =

S(a)b = θ(b)S(a) for all b ∈ B and a ∈ A. So, S = 0. This shows that f = 0.

Therefore, A2 is dense in A. The converse is clear. �

Lemma 2.4. Let B be a weakly amenable Banach algebra, and X be a

Banach space. If D : B → X is a bounded linear operator such that D(b1b2) =

θ(b1)D(b2) + θ(b2)D(b1) for all b1, b2 ∈ B, then D = 0.

Proof. Let f ∈ X∗. Then f ◦D : B → C is a continuous point derivation

at θ, so it is zero [3, Proposition 1.3]. This shows that D = 0. �
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Now, we are ready to prove Theorem 2.2.

Proof. To prove the necessity, suppose that A ×θ B is (2n + 1)-weakly

amenable. Let D : B → B(2n+1) be a continuous derivation. Then D : A×θ B →
(A ×θ B)(2n+1) defined by D(a, b) = (0, D(b)) is a continuous derivation, and

hence it is inner. Lemma 2.1 implies that D is also inner. So B is (2n+1)-weakly

amenable.

To prove (2), let S : A → B(2n+1) be a bounded linear operator such that

S(a1a2) = 0 for all a1, a2 ∈ A and bS(a) = S(a)b = θ(b)S(a) for all b ∈ B and

a ∈ A. Define D : A×θ B → (A×θ B)(2n+1) by D(a, b) = (0, S(a)). Then D is a

continuous derivation, by Lemma 2.1. Thus S = 0 by the innerness of D.

By a similar argument, we can prove (3). Indeed, suppose that T : A →
A(2n+1) is a continuous derivation, and S : A → B(2n+1) is a bounded linear

operator satisfying

(T (a)(c) + T (c)(a)) θ = S(ac),

for all a, c ∈ A. This, together with Lemma 2.3, implies that bS(a) = S(a)b =

θ(b)S(a) for all a ∈ A and b ∈ B. Define D : A ×θ B → (A ×θ B)(2n+1) by

D(a, b) = (T (a), S(a)). Then Lemma 2.1 implies thatD is a continuous derivation,

so it is inner. Therefore T is inner, as required. This completes the proof of

necessity.

To prove the sufficiency, suppose that conditions (1)–(3) hold. Let D : A×θ
B → (A×θ B)(2n+1) be a continuous derivation. Then

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)), (a ∈ A, b ∈ B),

in which the component mappings DA, DB , TA and TB are satisfying the condi-

tions (a)–(d) of Lemma 2.1. By condition (1) and [3, Proposition 1.2], B is weakly

amenable, and so Lemma 2.4 implies that DA = 0. By conditions (1) and (3),

DB and TA are inner derivations. Since DA = 0, it follows that bTB(a) =

TB(a)b = θ(b)TB(a) for all b ∈ B and a ∈ A. Moreover, since TA is inner,

TA(a1)(a2) + TA(a2)(a1) = 0, for all a1, a2 ∈ A. It follows that TB(a1a2) = 0 for

all a1, a2 ∈ A. From condition (2), TB = 0. Therefore, D is inner, by Lemma 2.1.

This proves that A×θ B is (2n+ 1)-weakly amenable, as claimed. �

As an immediate consequence of Theorem 2.2, we have the next result, which

was proved in [12, Proposition 2.3]. Before, we recall that A is called (2n + 1)-

cyclicly weakly amenable if every continuous derivation D : A → A(2n+1) for

which D(a1)(a2) +D(a2)(a1) = 0, for all a1, a2 ∈ A, is inner. This result, for the

case n = 0, was also proved in [9, Theorem 2.11].
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Corollary 2.5. If A×θ B is (2n+ 1)-weakly amenable, then B is (2n+ 1)-

weakly amenable and A is (2n+ 1)-cyclicly weakly amenable.

Proof. By condition (1) of Theorem 2.2, B is (2n + 1)-weakly amenable.

The (2n + 1)-cyclic weak amenability of A follows from condition (3) of Theo-

rem 2.2, if we take S = 0. �

Using Theorem 2.2, for B = C and θ = ι, we get the next result, which was

already proved in [13, Proposition 3.9].

Corollary 2.6. A] is (2n+ 1)-weakly amenable if and only if

(1) 〈A2〉, the linear span of A2, is dense in A.

(2) Every continuous derivation D : A→ A(2n+1), with the condition that there

is a T ∈ A∗ such that D(a1)(a2) +D(a2)(a1) = T (a1a2) for all a1, a2 ∈ A, is
inner.

We know from [3, Proposition 1.3] that if A is (2n+1)-weakly amenable, then

A2 is dense in A. Thus, as a consequence of Lemma 2.3 and Theorem 2.2, we have

the next result which extends the related results on (2n + 1)-weak amenability

of A] [3, Proposition 1.4], and improves [12, Proposition 2.4]. This result has

been proved in [4, Theorem 4.1], but the proof contains a gap that we fix here.

Proposition 2.7. Let A and B be (2n+ 1)-weakly amenable. Then A×θ B
is (2n+ 1)-weakly amenable.

Using Theorem 2.2 and Proposition 2.7, with B = A, we have the following.

Corollary 2.8. A is (2n + 1)-weakly amenable if and only if A ×θ A is

(2n+ 1)-weakly amenable.

It was shown in [13, Corollary 3.10 and 3.12] and [3, Proposition 1.4] that if

A is commutative or weakly amenable, or has a bounded approximate identity,

then A] is (2n+1)-weakly amenable if and only if A is (2n+1)-weakly amenable.

In the next result, which is a consequence of Theorem 2.2 and Proposition 2.7,

we extend it to A×θ B.

Theorem 2.9. Suppose that one of the following statements holds:

(i) A has a bounded approximate identity.

(ii) A is weakly amenable.

(iii) A and B are commutative.

Then A×θB is (2n+1)-weakly amenable if and only if both A and B are (2n+1)-

weakly amenable.
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Proof. By Proposition 2.7 and Theorem 2.2, in all three cases we have only

to show that the (2n + 1)-weak amenability of A ×θ B implies that A is weakly

amenable. So, assume that A ×θ B is (2n + 1)-weakly amenable. Assume that

(i) holds and D : A→ A(2n+1) is a continuous derivation. Let {eα} be a bounded

approximate identity of A, and E ∈ A∗∗ be a weak∗ cluster point of {eα}. Define

S : A→ B(2n+1) by S(a) = D(a)(E)θ. Then

S(a1a2) = (D(a1)a2 + a1D(a2))(E)θ

= (D(a1)(a2E) +D(a2)(Ea1))θ = (D(a1)(a2) +D(a2)(a1))θ,

for all a1, a2 ∈ A. So, condition (3) of Theorem 2.2 implies that D is inner, as

required.

Assume that (ii) holds and D : A→ A(2n+1) is a continuous derivation. Let

P : A(2n+1) → A∗ be the projection with kernel A⊥. Then P ◦D : A→ A∗ is an

inner derivation. On the other hand, the continuous derivation (I−P )◦D : A→
A⊥ ⊆ A(2n+1) satisfies condition (3) of Theorem 2.2, with S = 0. So, (I −P ) ◦D
is inner. This shows that D is inner. So A is (2n+ 1)-weakly amenable.

Finally, assume that (iii) holds. Since A×θB is commutative and A is a closed

ideal of A×θB, it is enough to show that A2 is dense in A, see [2, Theorem 2.8.69].

For this, we are assuming that A ×θ B is (2n + 1)-weakly amenable. Therefore,

condition (2) of Theorem 2.2 is satisfied. By Lemma 2.3, we have that A2 is dense

in A, and this completes the proof. �

3. (2n)-weak amenability

In this section, we examine the conditions in which A ×θ B is (2n)-weakly

amenable. First, we recall that the Banach space (A×θ B)(2n) can be also iden-

tified with the Banach space A(2n) × B(2n) equipped with the norm ‖(f, g)‖ =

‖f‖+ ‖g‖ in the natural way. By induction, we find that the (A×θ B)-bimodule

actions on (A×θ B)(2n) are formulated as follows:

(f, g)(a, b) = (fa+ g(θ)a+ θ(b)f, gb) ,

(a, b)(f, g) = (af + g(θ)a+ θ(b)f, bg) ,

for a ∈ A, b ∈ B, f ∈ A(2n) and g ∈ B(2n).

To clarify the relation between (2n)-weak amenability of A×θ B and that of

A and B, we need the following lemma that was proved in [12, Proposition 2.2].



500 Mohammad Ramezanpour

Lemma 3.1. A mapping D : A×θB → (A×θB)(2n) is a continuous deriva-

tion if and only if

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)),

for all a ∈ A and b ∈ B, where

(a) DB : B → B(2n) is a continuous derivation.

(b) DA : B → A(2n) is a bounded linear operator such that DA(b1b2) =

θ(b1)DA(b2) + θ(b2)DA(b1) for all b1, b2 ∈ B and DA(b)a = aDA(b) =

−DB(b)(θ)a for all a ∈ A and b ∈ B.

(c) TB : A→ B(2n) is a bounded linear operator such that TB(a1a2) = 0 for all

a1, a2 ∈ A and bTB(a) = TB(a)b = θ(b)TB(a) for all a ∈ A and b ∈ B.

(d) TA : A→ A(2n) is a bounded linear operator such that TA(a1a2)=a1TA(a2)+

TA(a1)a2 + TB(a2)(θ)a1 + TB(a1)(θ)a2 for a1, a2 ∈ A.
Moreover, D = d(f,g) for some f ∈ A(2n) and g ∈ B(2n) if and only if DB = dg,

TA = df , DA = 0 and TB = 0.

As a first result for (2n)-weak amenability of A ×θ B, we give the following

characterization, which extends the related results in [12].

Theorem 3.2. The θ-Lau product A ×θ B is (2n)-weakly amenable if and

only if

(1) A is (2n)-weakly amenable.

(2) If T : B → B(2n) is a continuous derivation such that there is a bounded

linear operator D : B → A(2n) satisfying D(b1b2) = θ(b1)D(b2) + θ(b2)D(b1)

for all b1, b2 ∈ B, and D(b)a = aD(b) = −T (b)(θ)a for all a ∈ A and b ∈ B,

then T is inner.

(3) The only bounded linear operator D : B → A(2n), such that D(b1b2) =

θ(b1)D(b2) + θ(b2)D(b1) for all b1, b2 ∈ B and aD(b) = D(b)a = 0 for all

a ∈ A and b ∈ B, is zero.

(4) If S : A → B(2n) is a bounded linear operator such that S(a1a2) = 0 for

all a1, a2 ∈ A and bS(a) = S(a)b = θ(b)S(a) for all a ∈ A and b ∈ B,

and there is a bounded linear operator T : A → A(2n) satisfying T (a1a2) =

a1T (a2) + T (a1)a2 + S(a1)(θ)a2 + S(a2)(θ)a1 for all a1, a2 ∈ A, then S = 0.

Proof. To prove the necessity, suppose thatA×θB is (2n)-weakly amenable.

Let D : A→ A(2n) be a continuous derivation. Then D : A×θ B → (A×θ B)(2n)

defined by D(a, b) = (D(a), 0) is a continuous derivation, and hence it is inner.

It follows from Lemma 3.1 that D is inner. Therefore, A is (2n)-weakly amenable.
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To prove (2), let T : B → B(2n) be a continuous derivation, and D : B →
A(2n) be a bounded linear operator satisfying (2). We define D : A ×θ B →
(A ×θ B)(2n) by D(a, b) = (D(b), T (b)). Then Lemma 3.1 implies that D is a

continuous derivation, so it is inner. Hence, T is inner, as required.

Let D : B → A(2n) be a bounded linear operator such that D(b1b2) =

θ(b1)D(b2) + θ(b2)D(b1) for all b1, b2 ∈ B and aD(b) = D(b)a = 0 for all a ∈ A
and b ∈ B. By Lemma 3.1, we conclude that D : A×θ B → (A×θ B)(2n), defined

by D(a, b) = (D(b), 0), is a continuous derivation, and so it is inner. Hence,

D = 0. This proves (3).

To prove (4), we use a similar argument. Indeed, if S : A → B(2n) and

T : A → A(2n) are bounded linear operators satisfying (4), then Lemma 3.1

implies that D : A ×θ B → (A ×θ B)(2n), given by D(a, b) = (T (a), S(a)), is a

continuous derivation, and so it is inner. Hence, S = 0. This completes the proof

of necessity.

For sufficiency, suppose that D : A ×θ B → (A ×θ B)(2n) is a continuous

derivation. By Lemma 3.1, D is in the form

D(a, b) = (DA(b) + TA(a), DB(b) + TB(a)), (a ∈ A, b ∈ B),

in which the component mappings DA, DB , TA and TB satisfy the conditions (a)–

(d) of Lemma 3.1. By condition (2), DB is an inner derivation. Thus, there is

g ∈ B(2n) such that DB = dg. Since DB(b)(θ) = (bg − gb)(θ) = g(θb − bθ) =

θ(b)g(θ − θ) = 0, from condition (3), we get DA = 0. By condition (4), TB = 0.

This, together with condition (d) of Lemma 3.1, implies that TA is a continuous

derivation. From condition (1), it follows that there is f ∈ A(2n+1) such that

TA = df . Therefore, D is inner. This proves that A×θB is (2n)-weakly amenable,

as claimed. �

As an immediate consequence of Theorem 3.2, we have the next result, which

has already been proved in [12, Proposition 2.5]; see also [3, Proposition 1.4].

Recall that B is called θ(2n)-null weakly amenable if every continuous derivation

D : B → B(2n) for which D(b)(θ) = 0, for all b ∈ B, is inner.

Corollary 3.3. If A ×θ B is (2n)-weakly amenable, then A is (2n)-weakly

amenable and B is θ(2n)-null weakly amenable.

Proof. By condition (1) of Theorem 3.2, A is (2n)-weakly amenable. The

θ(2n)-null weak amenability of B follows from condition (2) of Theorem 3.2, by

taking D = 0. �
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Proposition 3.4. Suppose that A has a bounded approximate identity and

n ≥ 1. Then condition (2) in Theorem 3.2 is equivalent to (2n)-weak amenability

of B. If A is unital, then the equivalence is also true for n = 0.

Proof. If B is (2n)-weakly amenable, then it is trivial that condition (2)

of Theorem 3.2 holds. For the converse, first let n ≥ 1, and let {eα} be a

bounded approximate identity of A. Suppose that T : B → B(2n) is a continuous

derivation. Define D : B → A(2n) by D(b) = −T (b)(θ)E, where E ∈ A∗∗ is a

weak∗ cluster point of {eα}. Then aD(b) = D(b)a = −T (b)(θ)a for all a ∈ A and

b ∈ B. Moreover,

D(b1b2) = −T (b1b2)(θ)E = (−T (b1)b2 − b1T (b2))(θ)E

= −θ(b2)T (b1)(θ)E − θ(b1)T (b2)(θ)E = θ(b2)D(b1) + θ(b1)D(b2),

for all b1, b2 ∈ B. So, condition (2) of Theorem 3.2 implies that T is inner, as

required.

Now, let n = 0 and 1 be the unit of A. If T : B → B is a continuous derivation,

then D : B → A, defined by D(b) = −T (b)(θ)1, satisfies condition (2) of Theorem

3.2, and so T is inner. Therefore, B is (0)-weakly amenable. �

Proposition 3.5. Condition (3) of Theorem 3.2 holds if and only if
〈
AA(2n−1)

∪A(2n−1)A
〉
is dense in A(2n−1), or every continuous point derivation at θ is zero.

Proof. It is clear that condition (3) of Theorem 3.2 holds if
〈
AA(2n−1)

∪A(2n−1)A
〉

is dense in A(2n−1). So, assume that every continuous point deriva-

tion at θ is zero, and D : B → A(2n) is a bounded linear map satisfies condition (3)

of Theorem 3.2. If f ∈ A(2n+1), then f ◦D is a continuous point derivation at θ,

so it is zero. This implies that D = 0.

For the converse, take a non-zero f ∈ A(2n) with af = fa = 0 for all a ∈ A,

and let d : B → C be a continuous point derivation at θ. Then D : B → A(2n)

defined by D(b) = d(b)f satisfies condition (3) of Theorem 3.2, so it is zero. Thus

d = 0, as required. �

Using Theorem 3.2, with B = C and θ = ι, we get the next result which

extends [13, Proposition 3.13].

Corollary 3.6. A] is (2n)-weakly amenable if and only if

(1) A is (2n)-weakly amenable.

(2) Every f ∈ A∗, with the conditions that f |A2 = 0, and for which there is

a bounded linear operator T : A → A(2n) such that T (a1a2) = a1T (a2) +

T (a1)a2 + f(a1)a2 + f(a2)a1 for all a1, a2 ∈ A, is zero.
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We recall from [6] that B is called left (resp. right) θ-amenable if every

continuous derivation from B into X∗ is inner, for every Banach B-bimodule X

with b ·x = θ(b)x (resp. x · b = θ(b)x); (b ∈ B, x ∈ X). This notion of amenability

is a generalization of the left amenability of a class of Banach algebras studied

by Lau in [8], known as Lau algebras. Example of left (resp. right) θ-amenable

Banach algebras include amenable Banach algebras and the Fourier algebra A(G)

for a locally compact group G.

In the next proposition, which extends the related results on (2n)-weak

amenability of A] [13, Proposition 3.13 and Corollary 3.14], we give an ana-

logue to [12, Proposition 2.4] for the even case. This answers a question raised

by Ebrahimi Vishki and Khoddami in [12].

Proposition 3.7. Let A and B be (2n)-weakly amenable, and let 〈A2〉
be dense in A. Then A ×θ B is (2n)-weakly amenable if one of the following

statements holds:

(i) There is no non-zero continuous point derivation at θ.

(ii)
〈
AA(2n−1) ∪A(2n−1)A

〉
is dense in A(2n−1).

(iii) B is weakly amenable.

(iv) B is left (resp. right) θ-amenable.

Proof. This follows from Theorem 3.2, Proposition 3.5 and the fact that ifB

is either weakly amenable or left (resp. right) θ-amenable, then there is no non-

zero continuous point derivation at θ [3, Proposition 1.3] and [6, Remark 2.4]. �

For the converse of Proposition 3.7, we have the following.

Proposition 3.8. Suppose that A×θB is (2n)-weakly amenable and n ≥ 1.

Then A and B are (2n)-weakly amenable if one of the following statements holds:

(i) A has a bounded approximate identity.

(ii) B is (2)-weakly amenable.

Proof. (i) It follows from Theorem 3.2 and Proposition 3.4. (ii) In view

of Theorem 3.2, we have to show that B is (2n)-weakly amenable. To do this,

let T : B → B(2n) be a continuous derivation, and let P : B(2n) → B∗∗ be the

projection with the kernel B∗⊥. Then P ◦ T : B → B∗∗ is an inner derivation.

On the other hand, the continuous derivation (I − P ) ◦ T : B → B∗⊥ ⊆ B(2n)

satisfies condition (2) of Theorem 3.2, with D = 0. So, (I − P ) ◦ T is also inner.

This shows that T is inner. So, B is (2n)-weakly amenable. �

From Propositions 3.7 and 3.8, we obtain also the following result which

extends [12, Theorem 3.1].
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Theorem 3.9. Suppose that A has a bounded approximate identity, B is

either weakly amenable or left (right) θ-amenable and n ≥ 1. Then A ×θ B is

(2n)-weakly amenable if and only if both A and B are (2n)-weakly amenable.

It was shown in [12, Theorem 3.1] that if A is unital, then the n-weak

amenability of A×θ B is equivalent to the n-weak amenablility of both A and B.

It was left as an open question for the case when A has a bounded approximate

identity; see [12, Remark 3.1]. If we combine Theorems 2.9 and 3.9, we have the

following theorem which partially answers this question.

Theorem 3.10. Suppose that A has a bounded approximate identity and

B is either weakly amenable or left (right) θ-amenable. Then A×θ B is n-weakly

amenable, for n ≥ 1, if and only if both A and B are n-weakly amenable. If A is

unital, then the equivalence is also true for n = 0.

As a consequence of the above theorem, with A = C and θ ∈ σ(B), we have

the next result.

Corollary 3.11. The θ-Lau product C ×θ B is n-weakly amenable if and

only if B is n-weakly amenable.
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