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On generalized normal homogeneous Randers spaces

By LEI ZHANG (Tianjin) and SHAOQIANG DENG (Tianjin)

Abstract. In this paper, we use the navigation method to study the geomet-

ric properties of generalized normal homogeneous Randers spaces. We first establish a

relationship between generalized normal Randers spaces and generalized normal homo-

geneous Riemannian manifolds, which provides many non-Riemannian examples. We

then give a complete classification of generalized normal Randers spaces with positive

flag curvature.

1. Introduction

The purpose of this paper is to study the geometric properties of generalized

normal homogeneous (or δ-homogeneous) Randers spaces. The concept of gen-

eralized normal homogeneous (or δ-homogeneous) spaces is first introduced by

V. N. Berestovskii and C. P. Plaut in [5]. After that, generalized normal

homogeneous Riemannian manifolds have been studied extensively in [7], [8], [9],

and [10]. Recall that a metric space (M,ρ) is called generalized normal homoge-

neous (respectively, Clifford–Wolf homogeneous) if for any points x, y ∈M , there

exists an isometry f , called δ(x)-translation (resp., Clifford–Wolf translation), of

the space (M,ρ) onto itself, such that f(x) = y and f has maximal displacement

at the point x (respectively, equal displacements at all points), i.e., for every

point z ∈ M , ρ(z, f(z)) ≤ ρ(x, f(x)) = ρ(x, y) (resp. ρ(z, f(z)) = ρ(x, f(x))).

From this definition it is clear that any Clifford–Wolf homogeneous metric space
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is generalized normal homogeneous, and any generalized normal homogeneous

metric space is homogeneous. A complete classification of connected simply con-

nected indecomposable generalized normal homogeneous Riemannian manifolds

with positive Euler characteristic is obtained in [10]. Moreover, a classification

of generalized normal homogeneous Riemannian metrics on spheres is established

in [7].

On the other hand, generalized normal homogeneous Finsler spaces are stud-

ied in [9]. Since for a coset space G/H there may exist many G-invariant Finsler

metrics, it is natural to ask if (G/H, h) is a generalized normal homogeneous Rie-

mannian space, whether there exists a G-invariant non-Riemannian Finsler metric

on G/H which makes (G/H,F ) a generalized normal homogeneous Finsler space.

Conversely, if (G/H,F ) is a generalized normal homogeneous Finsler space, one

may also ask whether there is a G-invariant Riemannian metric h on G/H such

that (G/H, h) is a generalized normal homogeneous Riemannian space.

Our first goal in this paper is to give an affirmative answer to the above prob-

lems in the Randers case, using the navigation method (see Theorem 3.8 below).

The navigation method is a powerful tool in the study of Randers spaces. Bao and

Robles [4] presented a very convenient way to describe Einstein–Randers met-

rics, as well as Randers spaces of constant curvature. More recently, Zhiguang Hu

and the second author apply the navigation method to give a complete classifica-

tion of homogeneous Randers spaces with isotropic S-curvature and positive flag

curvature. Combining their results with the classification of generalized normal

homogeneous Riemannian metrics on spheres [7], we can give a complete classifi-

cation of positively curved generalized normal homogeneous Randers spaces (up

to isometries).

Here is a brief description of the individual sections. In Section 2, we present

some preliminaries on Randers spaces. In Section 3, we study the general geo-

metric properties of generalized normal homogeneous Randers spaces. We prove

that a connected homogeneous Randers space (G/H,F ) with navigation data

(h,w) is generalized normal homogeneous if and only if (G/H, h) is a general-

ized normal homogeneous Riemannian manifold, and w is a Killing vector field of

constant length with h(w,w) < 1. This establishes a relationship between gener-

alized normal homogeneous Randers spaces and generalized normal homogeneous

Riemannian manifolds. Finally, in Section 4, we give a complete classification of

positive curved generalized normal homogeneous Randers spaces. The list consists

of S2n+1, S4n+3 and N(1,1), with suitable metrics.
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2. Preliminaries

A Randers metric is built from a Riemannian metric and a 1-form: F = α+β,

where α is a Riemannian metric and β is a 1-form whose length with respect to α

is everywhere less than 1. There is another presentation of such metrics, by the

so-called navigation data (see [3]):

F (x, y) =

√
h(y, w)2 + λh(y, y)

λ
− h(y, w)

λ
, (1)

where h is a Riemannian metric, w is a vector field on M with h(w,w) < 1 and

λ = 1 − h(w,w). The pair (h,w) is called the navigation data of the Randers

metric F . This version of Randers metric is convenient when handling some

problems concerning flag curvature and Ricci scalar (see, for example, [4]).

In a local coordinate system, the transformation law between the defining

form and the navigation data can be described as the following (see [4]). If

F = α+ β =
√
aijyiyj + biy

i, (2)

then the navigation data has the form

hij = (1− ‖β‖2)(aij − bibj), wi = − aijbj
1− ‖β‖2α

. (3)

Conversely, the defining form can also be expressed by the navigation data

by the formula:

aij =
hij
λ

+
wi
λ

wj
λ
, bi =

−wi
λ

, (4)

here wi = hijw
j and λ = 1− wiwi = 1− h(w,w).

A connected Randers space (M,F ) is called homogeneous if its full group of

isometries acts transitively on M . In this case, the manifold M can be written as

G/H, where G is the unity component of the full group of isometries, and H is

the isotropy subgroup of G at a fixed point. Since H is compact, the coset space

G/H is reductive in the sense of [18], namely, there is a decomposition of the Lie

algebra

g = h + m, (direct sum of subspaces) (5)

where g = Lie(G), h = Lie(H), and m is a linear subspace of g satisfying

Ad(h)(m) ⊂ m, ∀h ∈ H. In this case, it is easily seen that both the underly-

ing Riemannian metric α and the 1-form β are invariant under G. Further, in

the navigation data (h,w), both h and w are also G-invariant. This reduces the
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study of homogeneous Randers spaces to the study of invariant Randers metrics

on reductive homogeneous manifolds.

Invariant Randers metrics on reductive homogeneous manifolds have been

studied by Deng and Hou (see [12] and [11]). Let G/H be a reductive ho-

mogeneous space with decomposition (5). Then one can identify m with the

tangent space To(G/H) of G/H at the origin o through the mapping X →
d
dt |t=0(exp(tX)H). Under this identification, the G-invariant Riemannian metric

on G/H is in one-to-one correspondence with the H-invariant inner product on

m. Fix a G-invariant Riemannian metric α on G/H, and let 〈, 〉 be the corre-

sponding inner product on m. Then there is a one-to-one correspondence between

the G-invariant 1-form on G/H and the H-invariant vector in m. In fact, each

G-invariant 1-form β corresponds to an H-invariant vector u through

β(x) = 〈u, x〉, x ∈ m.

Furthermore, the length of the form β is equal to the length of the vector u.

3. General properties of generalized normal homogeneous

Finsler spaces

In this section, we give the definition of generalized normal homogeneous

Finsler spaces and study the fundamental properties of them.

Definition 3.1. Let (M,F ) be a connected Finsler space, and x ∈ M . An

isometry f : M → M is called a δ(x)-translation at x (resp., a Clifford–Wolf

translation) if x is a point of maximal displacement of f , i.e., if for every y ∈M
we have d(y, f(y)) ≤ d(x, f(x)) (resp., for any y ∈ M , we have d(x, f(x)) =

d(y, f(y))), where d is the distance function of (M,F ).

Definition 3.2. A Finsler space (M,F ) is called generalized normal homo-

geneous (resp. CW-homogeneous) if for every x, y ∈ M , there exists a δ(x)-

translation (resp. Clifford–Wolf translation) of (M,F ) sending x to y.

Remark 3.3. Clearly, any Clifford–Wolf translation is a δ(x)-translation for all

x ∈M , hence any CW-homogeneous Finsler space is generalized normal homoge-

neous. Moreover, since a generalized normal homogeneous or CW-homogeneous

space must be homogeneous in the usual sense, we can write such a space as

M = G/H, where G = I0(M,F ). Sometimes, we will also call a generalized nor-

mal homogeneous Finsler space (G/H,F ) as a (G)-δ-homogeneous Finsler space

or a G-generalized normal homogeneous Finsler space.
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The following theorem gives a characterization of generalized normal homo-

geneous Finsler spaces in terms of Killing vector fields.

Theorem 3.4. A connected homogeneous Finsler space (M = G/H,F ) is

generalized normal homogeneous if and only if, for any point x ∈ M and any

nonzero tangent vector y ∈ TxM , there is a nonzero vector of g = Lie(G) which

defines a Killing vector field Y of (M,F ) such that Y (x) = y, where the function

F (Y (·)) reaches a maximal value.

The proof is similar to the Riemannian case, using the following result on

Killing vector fields. We will omit the details.

Lemma 3.5 ([14]). Let X be a Killing vector field on a Finsler space (M,F ),

and U ⊂ M an open subset such that X is nowhere zero on U . Then on U we

have ∇XXX = − 1
2∇̃

X |X|2, where ∇̃(X)f = gij(X)fxj
∂
∂xi is the gradient field of f

for the Riemannian metric gX = gij(X) on V .

Definition 3.6. Let (G/H,F ) be a generalized normal homogeneous Finsler

space. A vector X ∈ g is called δ-vector if F (X|m) ≥ F ((Ad(a)X)|m), for any

a ∈ G.

Using the above definition, we can give another characterization of general-

ized normal homogeneous Finsler spaces.

Proposition 3.7. A homogeneous Finsler space (G/H,F ) with connected

Lie group G is generalized normal homogeneous if and only if for any X ∈ m,

there exists Y ∈ h such that X + Y is a δ-vector.

Proof. Identify TH(G/H) with m. Given X ∈ m, denote by X̃ the Killing

vector field generated by X such that X̃H = X|m = X. Then by Theorem 3.4,

there exists X ∈ g = Lie(G), and F (X̃(·)) reaches its maximum at H. For

convenience, we still denote by F the Ad(H)-invariant norm on m induced by the

G-invariant Randers metric F . Then we have

F (X) = F (Xm) = F (X̃H) ≥ F (X̃aH) = F ((La−1)∗X̃aH) = F (Ad(a−1)X|m),

for any a ∈ G. Thus X is a δ vector, and Y = X −X ∈ h.

Conversely, sinceG/H is homogeneous, for any U ∈ TgHG/H, (Lg−1)∗U ∈ m,

denoting X = (Lg−1)∗U ∈ m, there exists Y ∈ h such that X + Y is a δ vector,

that is,

F (X) ≥ F (Ad(a)(X + Y )|m).
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Let X = X + Y , and Ũ be the Killing vector generated by Ad(g)X. Then we

have

ŨgH =
d

dt
|t=0(exp(Ad(g)X)gH) =

d

dt
|t=0(g · g−1 exp(tAd(g)X)gH)

= (Lg)∗(Ad(g−1)Ad(g)X)|m = (Lg)∗(X)|m = (Lg)∗X = U,

and

F (ŨgH) = F (X) ≥ F (Ad(a−1)Ad(g)X|m)

= F ((La)∗(Ad(a−1)Ad(g)X)|m) = F (ŨaH).

By Theorem 3.4, (G/H,F ) is generalized normal homogeneous. �

Now, let (M = G/H,F ) be a homogeneous Randers space with navigation

data (h,w), and suppose the Lie group G has a smooth effective action on M .

Then it is easily seen that F is invariant under the action of G if and only if both

h and w are invariant under the action of G. Using the navigation method, we

can give a nice relationship between (G/H,F ) and (G/H, h).

Theorem 3.8. A connected homogeneous Randers space (M = G/H,F )

with navigation data (h,w) is generalized normal homogeneous if and only if

(M = G/H, h) is a generalized normal homogeneous Riemannian manifold, and

w is a Killing vector field of constant length with h(w,w) < 1.

Proof. We fist prove the “only if” part. Let (h,w) be the navigation data

of F , and ϕt;w the flow generated by the vector field w. By Theorem 3.4, for any

y ∈ TxM , there is a Killing vector field X, such that Xx = y and F (X(·)) reaches

its maximum at x. Note that the Killing vector field of (G/H,F ) is also a Killing

vector field of (G/H, h), and we have LXw = [X,w] = 0. Since (M = G/H,F ) is

generalized normal homogeneous, both F and w are G-invariant. Let ψs;X denote

the flow generated by X. Then we have

ϕt;w ◦ ψs;X = ψs;X ◦ ϕt;w. (6)

Let t ≥ 0, and suppose ϕt;w(x) = x′. Then we have X(ϕt;w(x)) = (ϕt;w)∗Xx.

Denoting y′ = (ϕt;w)∗y, we get

F (y) = F (Xx) ≥ F ((ϕt;w)∗y) = F (y′). (7)

Similarly, for x′ and y′, there is a Killing vector field X ′ such that X ′x′ = y′,

and F (X ′(·)) reaches its maximum at x′. Since ϕt;w is a diffeomorphism of M ,
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it induces a linear isomorphism (ϕt;w)∗ : TxM → Tx′M , with ϕ−t;w(y′) = y. Let

ψ′s;X′ be the flow generated by X ′. Then we have LX′w = [X ′, w] = 0 and

ϕt;w ◦ ψ′s;X′ = ψ′s;X′ ◦ ϕt;w. (8)

Therefore, we have

F (y′) = F (X ′x′) ≥ F (X ′(ϕ−t;w(x′))) = F ((ϕ−t;w)∗X
′
x′) = F (y). (9)

Thus F (y) = F ((ϕt;w)∗)y = F (y). From this we conclude that w is a Killing

vector field. Since w is G-invariant, w is a Killing vector of constant length with

respect to F , as well as to h.

Now, we prove that (M = G/H, h) is a generalized normal homogeneous

Riemannian manifold. Given any x ∈M and y ∈ TxM , we need to find a Killing

vector field X, such that Xx = y, and h(X,X) reaches its maximum at x. Since

(M = G/H,F ) is generalized normal homogeneous, there exists a Killing vector

field X ′ of F such that F (X ′(·)) reaches its maximum 1 at x. Obviously, X ′ −w
is also a Killing vector field of (M = G/H,F ), as well as of (M = G/H, h). By

the navigation method, h(X ′−w,X ′−w) reaches its maximum 1 at x due to the

fact that

F (X) > 1⇔ h(X − w,X − w) > 1. (10)

Now let y′ = y−w. Then there exists a Killing vector field X ′ such that X ′x = y′,

and F (X ′(·)) reaches its maximum 1 at x. Consequently, X = X ′+w is a Killing

vector field which meets all the requirements.

Next, we proof the “if” part. Let (M = G/H, h) be a generalized normal

homogeneous Riemannian space. Since G/H is a reductive homogeneous space

with a reductive decomposition g = h + m, H is the isotropy subgroup fixing one

point. If (h,w) is the navigation data of (M = G/H,F ), then w and F are both

G-invariant. Identify the tangent space TeHG/H of G/H at the origin eH with m.

For convenience, we use the same symbol w to denote the Ad(H)-invariant vector

in m, and let 〈, 〉h be the Ad(H)-invariant inner product induced by h. Then

(G/H, h) is generalized normal homogeneous if and only if for any X ∈ m, there

is Y ∈ h such that for any a ∈ G,

〈X,X〉h ≥ 〈(Ad(a)(X + Y ))m, (Ad(a)(X + Y ))m〉h (11)

Assume 〈X,X〉h = 1. Then by the navigation principle, we have

〈X,X〉h = 1⇔ F (X + w|m) = 1. (12)
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Hence,

〈(Ad(a)(X+Y ))m, (Ad(a)(X+Y ))m〉h ≤ 1⇔ F (Ad(a)(X+Y +w)m) ≤ 1. (13)

Here we still denote by F the Ad(H)-invariant Minkowski norm induced by F .

Suppose X = X + w. Then for any X ∈ m, there is Y ∈ h such that for any

a ∈ G, we have

F (X) ≥ F (Ad(a)(X + Y )m). (14)

Then X + Y is a δ vector. By Proposition 3.7, (M = G/H,F ) is generalized

normal homogeneous. �

This result generalizes [15, Theorem 1.1].

Remark 3.9. By [15, Theorem 1.1], a homogeneous Randers space (G/H,F =

α+β) with navigation data (h,w) is CW-homogeneous if and only if (G/H, h) is

CW-homogeneous, and w is a Killing vector field of constant length with respect

to h. Here we point out that (G/H,α) can be non-CW-homogeneous. In fact,

consider a three-dimensional compact simple Lie group SU(2). Let X1, X2, X3

be an orthonormal basis of su(2), with respect to the inner product defined

by the negative of its Killing form. Then for any X,Y ∈ su(2), we can write

X = x1X1 + x2X2 + x3X3, and Y = y1X1 + y2X2 + y3X3. Now, let h be the

canonical bi-invariant inner product. Then we have h(X,Y ) = x1y1+x2y2+x3y3,

and w = sX1 (s < 1). Thus the Randers metric defined by (h,w) is CW-

homogeneous. While by the expression of Randers metric 1 and 2, we can see

that the left-invariant metric α may not be bi-invariant, since any two bi-invariant

inner products on a compact simple Lie group can only differ by a constant mul-

tiplication. Thus (SU(2), α) is not CW-homogeneous. Moreover, by [7, Proposi-

tion 7], (SU(2), α) is not SU(2)-generalized normal homogeneous, since every left-

invariant generalized normal homogeneous metric on SU(2) must be bi-invariant.

Corollary 3.10. A generalized normal homogeneous Randers space

(G/H,F ) is either compact or isometric to the direct product of a Euclidean

space and a compact generalized normal homogeneous Randers space.

Proof. Let (M = G/H,F ) be a generalized normal homogeneous Randers

space with navigation data (h,w). Then by Theorem 3.8, (G/H, h) is a generalized

normal homogeneous Riemannian manifold, and w is a Killing vector field of

constant length. According to [8, Theorem 4], (G/H, h) is either compact or

isometric to the direct product of a Euclidean space and a compact generalized

normal homogeneous Riemannian manifold. If (G/H, h) is compact, we are done.
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Assume that G/H = E1 × G2/H2, where E1 is a Euclidean space, and G2/H2

is a compact generalized normal homogeneous Riemannian manifold. Let h =

h1 + h2, and wi be the Killing vector field of constant length of hi (i = 1, 2),

respectively. Then the Randers metric on E1 with the navigation data (h1, w1),

and the one on the coset space G2/H2 with the navigation data (h2, w2) are both

generalized normal homogeneous Randers spaces. This completes the proof of the

corollary. �

Corollary 3.11. Let (G/H,F ) be a generalized normal homogeneous Ran-

ders space. Then (G/H,F ) is a g. o. Randers space. In particular, it has vanishing

S-curvature.

Proof. We fix o = eH as the basic point. Since the Randers space is

homogeneous, it suffices to prove that all the geodesics through o are of the form

γ(t) = exp(tX)o, where X ∈ g. By Theorem 3.4, for any y ∈ ToG/H, there exists

a Killing vector field X such that Xo = y, and F (X(·)) reaches its maximum.

Moreover, from the proof of Theorem 3.4, one can see that γ(t) = exp(tX)o is a

geodesic.

On the other hand, the above two assertions are also true with respect to

the navigation data (h,w). By Theorem 3.8, (G/H, h) is a generalized normal

homogeneous Riemannian manifold, hence (G/H, h) is a Riemannian g. o. space.

Now by [23, Theorem 6.7], (G/H,F ) is also a g. o. Randers space. �

For the study of Flag curvature of generalized normal homogeneous Randers

spaces, we need a result of Huang–Mo. In [16], Huang-Mo studied the property

of the change of flag curvature of a Finsler metric under the influence of a vec-

tor field. They found that the flag curvature will decrease under a navigation.

In particular, they proved the following:

Proposition 3.12 ([16]). Let (M,F ) be a Finsler manifold, and let ũ be a

homothetic vector field with dilation σ, and F (x, ũ) < 1. Let F̃ be the Finsler

metric produced by navigation problem by F and ũ, then the flag curvature of

F̃ (resp. F ), denoted by K̃(y, v) (resp. K(y, v)) satisfies

K̃(y, v) = K(ỹ, v)− σ2,

where ỹ = y − F (x, y)ũ.

A special case is when the homothetic vector field is a Killing vector field.

In this case, if F has positive flag curvature, then F̃ also has positive flag curva-

ture. Now, we prove
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Proposition 3.13. Every generalized normal homogeneous Randers space

has nonnegative flag curvature.

Proof. Every generalized normal homogeneous Randers space can be ex-

pressed as (G/H,F ) with navigation data (h,w). By Theorem 3.8, (G/H, h) is a

generalized normal homogeneous Riemannian manifold, and w is a Killing vector

field of constant length with respect to α. It is proved in [5] that (G/H, h) has

nonnegative sectional curvature. Then by Proposition 3.12, (G/H,F ) also has

nonnegative flag curvature. �

4. Generalized normal homogeneous Randers spaces

with positive flag curvature

In this section, we give a complete classification of positively curved gener-

alized normal homogeneous Randers spaces. Let G be a compact Lie group, H a

closed subgroup, and Lie(G) = g, Lie(H) = h. Fix a bi-invariant inner product

〈·, ·〉 on g, and an orthogonal decomposition g = h + m with respect to 〈·, ·〉.
Then the restriction of 〈·, ·〉 to m induces a normal homogeneous Riemannian

metric on G/H. It follows from [7, Theorem 2] that any normal homogeneous

Riemannian manifold is also generalized normal homogeneous. If there exists a

one dimensional subspace m0 in m such that the action of Ad(H) on m0 is trivial,

then G/H admits non-negative flag curvature generalized normal homogeneous

Randers metrics.

Homogeneous Randers spaces with positively flag curvature and vanishing

S-curvature have been classified by Deng and Hu in [17] (see Table 1). Since

every generalized normal homogeneous Randers space has vanishing S-curvature,

all possible positively curved generalized normal homogeneous Randers spaces

must be one of the spaces in their list. Hence, we just need to find out which

positively curved Randers spaces with vanishing S-curvature are generalized nor-

mal homogeneous. By the navigation method, this is equivalent to finding all

compact generalized homogeneous Riemannian manifolds with positive curvature

and nonzero Ad(H)-invariant vectors.

Homogeneous Randers spaces with positive flag curvature and vanishing S-

curvature are listed as follows:

(I). SU(n+ 1)/SU(n), (II). Sp(n+ 1)/Sp(n),

(III). N1,1, (IV). Nk,l, gcd(k, l) = 1, kl(k + l) 6= 0.
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We first consider the cases (III) and (IV). These are the Aloff–Wallach spaces,

which are defined as Nk,l = SU(3)/S1
k,l, where the embedding of U(1) into SU(3)

is as the following:

S1
k,l : e2π

√
−1θ → diag(e2kπ

√
−1θ, e2lπ

√
−1θ, e2mπ

√
−1θ),

here k, l,m are integers with greatest common divisor 1, and k + l +m = 0, k ≥
l ≥ 0.

If (k, l) 6= (1, 1) and k 6= l, then the isotropy representation has a decompo-

sition as

m = V0 ⊕ V2k+l ⊕ V2l+k ⊕ Vk−l,

where

V2k+l =


 0 0 z

0 0 0

−z 0 0

∣∣∣∣∣z ∈ C

 ,

V2l+k =


0 0 0

0 0 z

0 −z 0

∣∣∣∣∣z ∈ C

 ,

Vk−l =


 0 z 0

−z 0 0

0 0 0

∣∣∣∣∣z ∈ C

 ,

and

V0 =

√−1

a 0 0

0 b 0

0 0 −(a+ b)

∣∣∣∣∣ak + bl + (a+ b)(k + l) = 0, a, b ∈ R

 .

The Lie algebra of S1
k,l is Rhk,l, where hk,l =

√
−1diag{k, l,−(k + l)}. Set

V1 = V0 ⊕ Vk−l, V2 = V2k+l ⊕ V2l+k,

and define

q0(X,Y ) = −Re(tr(XY )), X, Y ∈ su(3).

Then q0 is an Ad(SU(3))-invariant inner product on su(3), hence it defines a

bi-invariant Riemannian metric on SU(3).

For X,Y ∈ m, set X = X1 +X2, Y = Y1 + Y2, Xi, Yi ∈ Vi, and define

qt(X,Y ) = (1 + t)q0(X1, Y1) + q0(X2, Y2) = q0(X,Y ) + tq0(X1, Y1). (15)

It is shown in [1] that if −1 < t < 0, then qt defines a SU(3)-invariant Riemannian

metric on SU(3)/S1
k,l with positive curvature. Now, we prove
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Proposition 4.1. The space Nk,l = SU(3)/S1
k,l, where kl(k + l) 6= 0,

gcd(k, l) = 1, and (k, l) 6= (1, 1), with the SU(3)-invariant metric qt is not a gen-

eralized normal homogeneous Riemannian space.

Proof. Up to conjugacy, every nontrivial circle in SU(3) is of the form

S1
k,l : e2π

√
−1θ → diag(e2kπ

√
−1θ, e2lπ

√
−1θ, e2mπ

√
−1θ),

where |k|+ |l| 6= 0, k, l ∈ Z. Let

K =

{(
g 0

0 det g−1

)∣∣∣∣∣g ∈ U(2)

}
.

Then we have S1
k,l ⊂ K. Let g1 be the Lie algebra of G1. Then a direct computa-

tion shows that V1 = h⊥k,l∩g1, and V2 = g⊥1 (here “⊥” is with respect to q0). Thus,

(SU(3),K) is a symmetric pair corresponding to CP 2. The Lie algebra of K is

k = hk,l ⊕ V1 and S1
k,l ⊂ K are both closed subgroups of SU(3). With respect to

the Ad(SU(3))-invariant inner product q0, we have an orthogonal decomposition

su(3) = k⊕ V2 = hk,l ⊕ V1 ⊕ V2.

Then qt=(1+t)q0|V1+q0|V2 is a SU(3)-invariant Riemannian metric on SU(3)/S1
k,l.

If SU(3)/S1
k,l is generalized normal homogeneous, then it must be a g. o. space

with respect to qt, that is, for any X1 +X2 ∈ V1 ⊕ V2, there exists Z ∈ hk,l such

that W = X1 +X2 + Z is a geodesic vector. By [8, Proposition 16], we have

[Z,X1] = 0, [X2, X1] =
1

t
[X2, Z].

However, a direct computation shows that [hk,l, Vk−l] = Vk−l 6= 0 for k 6= l, which

is a contradiction. �

Wilking proved in [21] that the homogeneous Riemannian manifold N1,1

is normal and can be written as SU(3) × SO(3)/U∗(2), hence N1,1 = SU(3) ×
SO(3)/U∗(2) is generalized normal homogeneous.

Let qt be as above. Then qt defines a SU(3)-invariant Riemannian metric on

N(1,1), and this metric has positive curvature if and only if −1 < t < 0. Thus,

for any X ∈ m0 = V0 ⊕ V ′′′, qt(X,X) < 1, we obtain a positively flag curvature

generalized normal homogeneous Randers space with navigation data (qt, X), and

it is non-Riemannian if and only if X 6= 0.
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Now, we consider Case (I). Let g = su(n+ 1), h = su(n), and define m to be

the direct sum as

m = m0 ⊕m1,

where

m0 = RX0, X0 =
√
−1

(
− 1
nE 0

0 1

)
, (16)

and

m1 =

{(
0 α

−α′ 0

)∣∣α′ = (x1, . . . , xn) ∈ Cn
}
.

Then we have a reductive decomposition g = h + m. Any SU(n + 1)-invariant

Riemannian metric on SU(n+ 1)/SU(n) can be induced by an inner product

(·, ·)t =
2nt

n+ 1
〈·, ·〉|m0

+ 〈·, ·〉|m1
(17)

on m, where t > 0, and 〈·, ·〉 is the Ad(SU(n+ 1))-invariant inner product defined

by

〈X,Y 〉 = −1

2
Retr(XY ), X, Y ∈ su(n+ 1).

It is shown in [20] that the homogeneous metric defined by (17) has positive

curvature if and only if 0 < 2n
n+1 t <

8n
3(n+1) . Hence, by Table 2, the SU(n + 1)-

invariant generalized normal homogeneous Riemannian metrics (·, ·)t must have

positive curvature. Thus, for any cX ∈ m0 with |c| < 1√
t
, n+1

2n ≤ t ≤ 1, we

obtain a positively curved generalized normal homogeneous Randers metrics on

SU(n+ 1)/SU(n), and it is non-Riemannian if and only if c 6= 0.

Finally, we consider case (II). We can take the subspace m of sp(n+ 1) to be

m = m0 ⊕m1,

where

m0 = RX1 ⊕ RX2 ⊕ RX3 (18)

is the subspace of H-fixed vectors in m, and Xi, i = 1, 2, 3 denote the elements

of H(n+1)×(n+1) with the only non-zero element at the (n+ 1, n+ 1)-entry which

is equal to
√

2I,
√

2J and
√

2K, respectively. Here I, J,K denote the standard

imaginary units in H, and

m1 =

{(
0 α

−α′ 0

)∣∣∣∣α′ = (x1, . . . , xn) ∈ Hn
}
.
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Then up to a positive multiple, any Sp(n + 1)-invariant Riemannian metric on

S(4n+3) = Sp(n+ 1)/Sp(n) can be written as

gt1,t2,t3(·, ·) = t1〈·, ·〉|RX1 + t2〈·, ·〉|RX2 + t3〈·, ·〉|RX3 + 〈·, ·〉|m1 . (19)

Now, we prove

Proposition 4.2. If the metrics gt,t,t is Sp(n + 1)-generalized normal ho-

mogeneous, then it has positive curvature. Moreover, if the metric gs,t,t is Sp(n+

1)×U(1)-generalized normal homogeneous, then it has positive curvature.

Proof. The condition for such a metric to have positive curvature can be

stated as follows. Let

Vi = (t2j + t2k − 3t2i + 2titj + 2titk − 2tjtk)/ti and Hi = 4− 3ti, (20)

with (i, j, k) a cyclic permutation of (1, 2, 3). Then it is shown in [20] that the

homogeneous metrics gt1,t2,t3 have positive sectional curvature if and only if

Vi > 0, Hi > 0 and 3|tjtk − tj − tk + ti| < tjtk +
√
HiVi, (21)

with (i, j, k) a cyclic permutation of (1, 2, 3). It is also pointed out in [20] that

the set (t1, t2, t3) satisfying the above condition forms a non-empty slice.

By Table 2, the metrics gt,t,t (i.e., t = t1 = t2 = t3) is Sp(n+ 1)-generalized

normal homogeneous if and only if t ∈ [ 12 , 1], and the metrics gs,t,t (i.e., t1 =

s, t2 = t3 = t) is Sp(n+ 1)×U(1)-generalized normal homogeneous if and only if

t ∈ [ 12 , 1] and s ∈ (0, t].

In the case t = t1 = t2 = t3, (21) is equivalent to
V1 = V2 = V3 = t > 0,

H1 = H2 = H3 = 4− 3t > 0,

3|t2 − t| < t2 +
√
t(4− 3t).

Solving the above inequalities system, we get 0 < t < 4
3 . This implies that if

(S(4n+3), gt,t,t) is Sp(n+ 1)-generalized normal homogeneous, then it has positive

curvature.

In the case s = t1 6= t2 = t3 = t, (21) is equivalent to

H1 = 4− 3s > 0,

H2 = H3 = 4− 3t > 0,

V1 = 4t− 3s > 0,

V2 = V3 = s2

t > 0,

3|t2 − 2t+ s| < t2 +
√

(4− 3s)(4t− 3s),

3|st− s| < st+
√

(4− 3t) s
2

t .

(22)
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Since s > 0, the last inequality is reduced to

3|t− 1| < t+

√
(4− 3t)

t
.

The solution to the above inequality is 0 < t < 4
3 . Now, we show that the set

P =

{
(s, t)|0 < s ≤ t, t ∈

[
1

2
, 1

]}
satisfies the inequality system (22). We just need to verify that the set P satisfies

the fifth inequality. Observe that if (s, t) ∈ P , then t2 − 2t + s < 0, and for
1
2 < t < 1, we always have

−(3t2 − 2t+ s) < t2 + (4t− 3s).

Since t ≤ 1, we have 4− 3s ≥ 4t− 3s. On the other hand, if 1
2 < t ≤ 1, 0 < s ≤ t,

then we have

3|t2 − 2t+ s| < t2 + (4t− 3s) < t2 +
√

(4− 3s)(4t− 3s).

If t = 1
2 , it is easily seen that any s ∈ [0, 12 ] satisfies the fifth inequality. From

this, we conclude that if (S(4n+3), gs,t,t) is Sp(n + 1) × U(1)-generalized normal

homogeneous, then it has positive curvature. �

Therefore, any Sp(n + 1)-generalized normal homogeneous Randers metric

on S4n+3 with positive flag curvature must be a Sp(n + 1)-generalized normal

homogeneous Riemannian metric gt,t,t in (19), under the influence of a Killing

vector field generated by X = x1X1 + x2X2 + x3X3 in m0, where x1, x2, x3
can be any real numbers satisfying |x1|2 + |x2|2 + |x3|2 < 1

t . Moreover, any

Sp(n+ 1)×U(1)-generalized normal homogeneous Randers metric on S4n+3 with

positive flag curvature must be a Sp(n+1)×U(1)-generalized normal homogeneous

Riemannian metric gs,t,t in (19), under the influence of a Killing vector generated

by X = x1X1, where x1 ∈ R ∈ m0 satisfies |x1|2 < 1
s . On the other hand, [17,

Theorem 5.1] implies that two connected simply connected generalized normal

Randers spaces (M,F1), (M,F2) with navigation data (h,w1),(h,w2) are isometry

if and only if w1 and w2 have the same length with respect to h. This gives a

complete classification of generalized normal homogeneous Randers spaces up to

isometry. The classification results are summarized in Table 3.
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coset spaces isotropy representations Ad(H)-fixed

vectors

(I) SU(n + 1)/SU(n) m = m0 + m1 m0

(II) Sp(n + 1)/Sp(n) m = m0 + m1 m0

(III) N1,1 = SU(3)× SO(3)/U∗(2) m = V0 ⊕ V ′ ⊕ V ′′ ⊕ V ′′′ V0 ⊕ V ′′′

(IV) Nk,l = SU(3)/S1
k,l, m = V0 ⊕ V2k+l ⊕ V2l+k ⊕ Vk−l V0

gcd(k, l) = 1, kl(k + l) 6= 0

Table 1. Homogeneous Randers spaces with S = 0 and K > 0.

G H (, )|m0 (, )|m1 (, )|m2

SU(n + 1) SU(n) trgcan,
n+1
2n
≤ t ≤ 1 rgcan

Sp(n + 1) Sp(n) trgcan,
1
2
≤ t ≤ 1 rgcan

Sp(n + 1)S1 Sp(n)S1 srgcan, s ≤ t rgcan trgcan,
1
2
≤ t ≤ 1

Table 2. Generalized normal homogeneous metrics on spheres.

coset spaces navigation data the conditions

(I) SU(n + 1)/SU(n) ((·, ·)t, X) X = cX0 ∈ m0,|c| < 1√
t
,

n+1
2n
≤ t ≤ 1

(II) Sp(n + 1)/Sp(n) (gt,t,t, X) X = x1X1 + x2X2 + x3X3,

|x1|2 + |x2|2 + |x3|2 < 1
t
, 1

2
≤

t ≤ 1

(III) Sp(n + 1)U(1)/Sp(n)U(1) (gs,t,t, X) X = x1X1, |x1|2 < 1
s

(IV) SU(3)× SO(3)/U∗(2) (qt, X) qt(X,X) < 1

Table 3. Generalized normal homogeneous Randers spaces with posi-

tive flag curvature.

References

[1] S. Aloff and N. Wallach, An infinite family of distinct 7-manifolds admitting positively
curved Riemannian structures, Bull Amer. Math. Soc. 81 (1975), 93–97.

[2] J. C. Alvarez Paive and C. E. Duran, Isometric submersion of Finsler manifolds, Proc.
Amer. Math. Soc. 129 (2001), 2409–2417.

[3] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differ-

ential Geom. 66 (2004), 377–435.

[4] D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, In: A Sample

of Riemannian–Finsler Geometry (D. Bao, R. Bryant, S. S. Chern and Z. Shen, eds.),
Cambridge University Press, Cambridge, 2004, 197–260.



Generalized normal spaces 523

[5] V. Berestovskii and C. Plaut, Homogeneous spaces of curvature bounded below, J.
Geom. Anal. 9 (1999), 203–219.

[6] V. Berestovskii and L. Guijarro, A metric characterization of Riemannian submersion,
Ann. Glob. Anal. Geom. 18 (2000), 577–588.

[7] V. Berestovskii and Y. Nikonorov, Generalized normal homogeneous Riemannian met-

rics on spheres and projective spaces, Ann. Glob. Anal. Geom. 45 (2014), 167–196.

[8] V. Berestovskii and Y. Nikonorov, On δ-homogeneous Riemannian manifolds, Differ-

ential Geom. Appl. 26 (2008), 514–535.

[9] V. Berestovskii and Y. Nikonorov, The Chebyshev norm on the Lie algebra of the

motion group of a compact homogeneous manifold, J. Math Sci. 1 (2009), 1–61.

[10] V. Berestovskii, E. V. Nikitenko and Y. Nikonorov, Classification of generalized

normal homogeneous Riemannian manifolds of positive Eular characteristic, Differential
Geom. Appl. 29 (2011), 533–546.

[11] S. Deng, The S-curvature of homogeneous Randers spaces, Differential Geom. Appl. 27

(2009), 75–84.

[12] S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifold,

J. Phys. A 37 (2004), 4353–4360.

[13] S. Deng and Z. Hou, The group of isometries of a Finsler space, Pac. J. Math. 207 (2002),

149–155.

[14] S. Deng and M. Xu, Clifford–Wolf translations of Finsler spaces, Forum Math. 26 (2012),
1413–1428.

[15] S. Deng and M. Xu, Clifford–Wolf homogeneous Randers spaces, J. Lie Theory 23 (2012),
1–18.

[16] L. Huang. and X. Mo, On curvature decreasing property of a class of navigation problem,

Publ. Math. Debrecen 71 (2007), 991–996.

[17] Z. Hu and S. Deng, Homogeneous Randers spaces with positively flag curvature and

isotropy S-curvature, Math. Z. 270 (2012), 989–1009.

[18] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1 and 2, Inter-

science Publishers, New York, 1963, 1969.

[19] V. S. Matveev and M. Troyanov, The Binet–Legendre metric in Finsler geometry, Geom.

Topol. 16 (2012), 2135–2170.

[20] L. Verdianni and W. Ziller, Positively curved homogeneous metrics on spheres, Math.
Z. 261 (2009), 2135–2170.

[21] B. Wilking, The normal homogeneous space SU(3) × SO(3)/U∗(2) has positive sectional
curvature, Proc. Amer. Math. Soc. 127 (1999), 1191–1194.

[22] M. Xu and S. Deng, Normal homogeneous Finsler spaces, Transform. Groups (to appear).

[23] Z. Yan and S. Deng, Finsler spaces whose geodesics are orbits, Differential Geom. Appl.
36 (2014), 1–23.

LEI ZHANG

SCHOOL OF MATHEMATICAL SCIENCES

AND LPMC

NANKAI UNIVERSITY

TIANJIN 300071

P. R. CHINA

E-mail: 546502871@qq.com

SHAOQIANG DENG

SCHOOL OF MATHEMATICAL SCIENCES

AND LPMC

NANKAI UNIVERSITY

TIANJIN 300071

P. R. CHINA

E-mail: dengsq@nankai.edu.cn

(Received May 16, 2016; revised August 7, 2016)


