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Contact structures on Lie algebroids

By CRISTIAN IDA (†) (Braşov) and PAUL POPESCU (Craiova)

Abstract. In this paper, we generalize the main notions from the geometry of

(almost) contact manifolds in the category of Lie algebroids. Also, using the framework

of generalized geometry, we obtain an (almost) contact Riemannian Lie algebroid struc-

ture on a vertical Liouville distribution over the big-tangent manifold of a Riemannian

manifold.

1. Introduction

The importance of contact and symplectic geometry is without question.

Contact manifolds can be viewed as an odd-dimensional counterpart of sym-

plectic manifolds. Both contact and symplectic geometry are motivated by the

mathematical formalism of classical mechanics, where one can consider either

the even-dimensional phase space of a mechanical system or the odd-dimensional

extended phase space that includes the time variable. For more about contact

geometry, the reader can consult the outstanding works [5], [6], [8].

On the other hand, in the last decades, the Lie algebroids have occupied

an important place in the context of some different categories in differential ge-

ometry and mathematical physics and represent an active domain of research.

The Lie algebroids ([29]) are generalizations of Lie algebras and integrable distri-

butions. In fact, a Lie algebroid is an anchored vector bundle with a Lie bracket

on module of sections and many geometrical notions which involve the tangent

bundle have been generalized to the context of Lie algebroids. In the category

of almost complex geometry, the notion of almost complex Lie algebroids over
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almost complex manifolds was introduced in [11] as a natural extension of the

notion of an almost complex manifold to that of an almost complex Lie algebroid.

More generally, in [2], [14], [24], [38], the notion of almost complex Lie algebroids

over a smooth manifold is considered, as well as some problems concerning the

geometry of almost complex Lie algebroids over smooth manifolds are studied in

relation with corresponding notions from the geometry of almost complex man-

ifolds. Taking into account the major role of (almost) complex geometry in the

study of (almost) contact geometry, a natural generalization of (almost) contact

geometry of manifolds to that of (almost) contact Lie algebroids can be of some

interest. We notice that for the particular class of Lie algebroids defined by the

tangent bundle along the leaves of a foliation of odd dimension, the contact struc-

tures are introduced and studied in some recent papers [12], [36], under the name

of foliated contact structures. In general, the notion of contact Lie algebroids

appears in some very recent talks (see [32], [33], [34]), where this notion is used

in order to obtain Jacobi manifolds on spheres of linear Poisson manifolds with a

bundle metric. Also, the Albert cosymplectic and contact reduction theorems are

extended in the Lie algebroid framework, and this reduction theory can represent

a rich source in obtaining some new examples of cosymplectic or contact Lie al-

gebroids (see [32]). The study of symplectic Lie algebroids and their reductions

can be found, for instance, in [25].

Our aim in this paper is to generalize some basic facts from the (almost)

contact geometry on odd-dimensional manifolds (see [5], [6], [8], [35]), in the

framework of Lie algebroids of odd rank, and to present new examples of contact

Lie algebroids. This generalization is possible mainly using the differential calcu-

lus on Lie algebroids: exterior derivative, interior product, Lie derivative (see, for

instance, [30]), but also using the connections theory on Lie algebroids (see [15]),

and the technique of Riemannian geometry on Lie algebroids (see [7]).

The paper is organized as follows. In the second section, we present the

almost contact and the almost contact Riemannian structures on Lie algebroids

of odd rank, and we give the main properties of these structures in relation with

similar properties from the case of almost contact manifolds. In the third section,

we present the normal almost contact structures on Lie algebroids, we study these

structures, and using the definition of the direct product of two Lie algebroids

(see [29]), we characterize the direct product of two Lie algebroids endowed with

some additional (almost Hermitian and almost contact Riemannian) structures.

In the fourth section, we give the basic definitions and results about contact struc-

tures on Lie algebroids in relation with similar notions from contact manifolds
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theory, we present some examples (see [33], [34]) and a bijective corespondence be-

tween contact Riemannian structures and almost contact Riemannian structures

on Lie algebroids, as well as give some characterizations of contact Riemannian

Lie algebroids. Also, the notions of K-contact, Sasakian and Kenmotsu Lie alge-

broids are introduced, and some of their properties are studied as in the manifolds

case. In the last section, using the framework of generalized geometry and start-

ing from the geometry of big-tangent manifold introduced and intensively studied

in [45], we obtain an (almost) contact Riemannian structure on the vertical Li-

ouville distribution over the big-tangent manifold of a paracompact manifold M

which admits a Riemannian metric g. More exactly, we construct a vertical framed

Riemannian f(3, 1)-structure on the vertical bundle over the big-tangent manifold

of a Riemannian manifold (M, g), and when we restrict this structure to a vertical

Liouville distribution which is integrable (so it is a Lie algebroid), we obtain an

(almost) contact Riemannian structure on this Lie algebroid.

Other problems and some future works can be addressed as, for instance:

the study of deformations of Sasakian structures on Lie algebroids, the study

of curvature problems on contact Riemannian Lie algebroids, K-contact, Sasaki

and Kenmotsu Lie algebroids, as well as the study of FE-sectional curvature

and a Schur type theorem on Sasakian Lie algebroids. Also, taking into account

the recent harmonic theory on Riemannian Lie algebroids (see [3]), a harmonic

and C-harmonic theory for differential forms on Sasakian Lie algebroids can be

investigated, since every almost contact Lie algebroid will be invariantly oriented

(see Corollary 2.1). Another important problem is that of the integrability of

Jacobi structures, being closely related to that of Poisson structures and giving

rise to contact groupoids. The progress in this direction is described at large in the

recent paper [13], but we do not consider here relations with contact groupoids,

which would involve some more problems, beyond the scope of our work.

The main notions introduced here are natural generalizations from the cate-

gory of manifolds to that of Lie algebroids, and most of the proofs are similar to

the ones given for the case of (almost) contact manifolds (see, for instance, [5],

[6], [35]). For this reason, they are omitted here.

2. Almost contact Lie algebroids

In this section, we define the almost contact and the almost contact Rie-

mannian structures on Lie algebroids, and some properties of these structures are

analyzed by analogy with the almost contact manifolds case (see [5], [6], [35]).
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Let p : E → M be a vector bundle of rank m over a smooth n-dimensional

manifold M , and Γ(E) the C∞(M)-module of sections of E. A Lie algebroid

structure on E is given by a triplet (E, ρE , [· , ·]E), where [· , ·]E is a Lie bracket

on Γ(E) and ρE : E → TM is called the anchor map, such that if we also denote

by ρE : Γ(E) → X (M) the homomorphism of C∞(M)-modules induced by the

anchor map, then we have

[s1, fs2]E = f [s1, s2]E + ρE(s1)(f)s2, ∀s1, s2 ∈ Γ(E), ∀f ∈ C∞(M). (2.1)

Remark 2.1. If (E, ρE , [· , ·]E) is a Lie algebroid over M , then the anchor map

ρE : Γ(E) → X (M) is a homomorphism between the Lie algebras (Γ(E), [· , ·]E)

and (X (M), [· , ·]).

The exterior derivative on Lie algebroids is defined by

(dEω)(s0, . . . , sp) =

p∑
i=0

(−1)iρE(si)(ω(s0, . . . , ŝi, . . . , sp))

+

p∑
i<j=1

(−1)i+jω([si, sj ]E , s0, . . . , ŝi, . . . , ŝj , . . . , sp), (2.2)

for ω ∈ Ωp(E) and s0, . . . , sp ∈ Γ(E), where Ωp(E) is the set of p-forms on E.

For more details about Lie algebroids and all calculus on Lie algebroids (interior

product, Lie derivative, etc.), we refer, for instance, to [15], [21], [27], [29], [30]

and [37].

Let (E, ρE , [· , ·]E) be a Lie algebroid of rankE = 2m + 1 over a smooth n-

dimensional manifold M . If there are a section ξ ∈ Γ(E), 1-form η ∈ Γ(E∗) and

a (1, 1)-tensor FE ∈ Γ(E ⊗ E∗) such that

F 2
E = −IE + η ⊗ ξ, η(ξ) = 1, (2.3)

where IE denotes the Kronecker tensor on E, then we say that (FE , ξ, η) is

an almost contact structure on the Lie algebroid (E, ρE , [· , ·]E), or (E, ρE , [· , ·]E ,
FE , ξ, η) is an almost contact Lie algebroid. The 1-section ξ is called Reeb section

or fundamental section. Obviously, the set Γξ(E) = {fξ|f ∈ F(M)} has a module

structure over F(M) and a Lie algebra structure, called the Lie algebra of Reeb

sections.

Let Dx = {sx ∈ Ex|ısxηx = 0} ⊆ Ex for x ∈ M . Then, the distribution

D = ∪x∈MDx is a vector subbundle of E of rank 2m called the contact subbundle

of (E, ρE , [· , ·]E , FE , ξ, η). We notice that D = ker η = imFE .
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Remark 2.2. The above definition of the almost contact structure from (2.3)

does not depend on the anchor ρE and the bracket [· , ·]E , hence it can be consid-

ered for a general vector bundle E →M of odd rank which will be referred to as

an almost contact bundle.

Now, let us briefly present some basic properties of almost contact structures

on Lie algebroids (or general vector bundles, when the notions do not depend on

the anchor or bracket).

Proposition 2.1. If (FE , ξ, η) is an almost contact structure on the vector

bundle E, then:

(i) FE(ξ) = 0; (ii) F 3
E = −FE ; (iii) η ◦ FE = 0; (iv) rankFE = 2m.

Proof. Follows in a similar manner as for almost contact manifolds (see [5]

and [6]). �

Also, the following theorem holds.

Theorem 2.1. Let E be a vector bundle with an almost contact structure

(FE , ξ, η). There exists on E a fiber-wise Riemannian metric (or simply Riemann-

ian metric) gE with the property

gE (FE(s1), FE(s2)) = gE(s1, s2)− η(s1)η(s2), (2.4)

for any s1, s2 ∈ Γ(E).

Proof. We recall that a Riemannian metric in the vector bundle p : E →M

is a mapping gE that assigns to every x ∈ M a scalar product gE(x) in the

local fiber Ex such that, for every local sections s1, s2 ∈ Γ(E), the function

x 7→ gE(x)(s1, s2) is smooth. Since E is paracompact, there exists a Riemannian

metric g∗∗E on E, and then, we define gE by

gE(s1, s2) =
1

2
[g∗E(FE(s1), FE(s2)) + g∗E(s1, s2) + η(s1)η(s2)] , (2.5)

where g∗E has the expression g∗E(s1, s2) = g∗∗E
(
F 2
E(s1), F 2

E(s2)
)
+η(s1)η(s2). Then,

it is easy to check that gE given by (2.5) is a Riemannian metric on E and satisfies

the condition (2.4). �

The vector bundle E with the almost contact structure (FE , ξ, η) and the

Riemannian metric gE satisfying the condition (2.4) is called an almost contact

Riemannian vector bundle or an almost contact Riemannian Lie algebroid (when

this is the case), and (FE , ξ, η, gE) is an almost contact Riemannian structure
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on E. Sometimes, we say that gE is a metric compatible with the almost contact

structure (FE , ξ, η).

In a similar manner as in the case of almost contact manifolds (see [5], [6]),

some elementary but useful properties of such metrics are specified in the follow-

ing:

Proposition 2.2. If gE is a metric compatible with the almost contact

structure (FE , ξ, η) on the vector bundle E of rank 2m+ 1, then:

(i) η(s) = gE(s, ξ) for all s ∈ Γ(E);

(ii) on the domain U of each local chart from M there exists an orthonormal

basis of local sections of E over U , {s1, . . . , sn, FE(s1), . . . , FE(sn), ξ};
(iii) FE + η ⊗ ξ and −FE + η ⊗ ξ are orthogonal transformations with respect to

metric gE ;

(iv) gE(FE(s1), s2) = −gE(s1, FE(s2)) for every s1, s2 ∈ Γ(E).

The local basis {s1, . . . , sm, s1∗ = FE(s1), . . . , sm∗ = FE(sm), ξ} of sections

of E, obtained above and denoted sometimes by {sa, sa∗ , ξ}, a = 1, . . . ,m, is called

a FE–basis for the almost contact Riemaniann vector bundle (E,FE , ξ, η, gE)

(or Lie algebroid, when this is the case). The existence of metrics compatible

with an almost contact structure (FE , ξ, η) on E allows us to state the following

characterization of almost contact bundles (or Lie algebroids) by means of the

structure group of the vector bundle E.

Theorem 2.2. The structure group of the almost contact vector bundle (or

Lie algebroid) E of rank 2m+ 1 reduces to U(m)×1. Conversely, if the structure

group of the vector bundle E reduces to U(m)× 1, then E has an almost contact

structure.

Proof. The proof follows in the same manner as for the almost contact

manifolds case (see, for instance, [5], [35]). However, we briefly present here its

generalization to the general vector bundles case. Let gE be a metric on E,

compatible with the almost contact structure (FE , ξ, η), and consider two open

neighborhoods U, V on M trivializing E with U ∩ V 6= ∅. Also, we denote by

BU = {sa, sa∗ , ξ} and BV = {s′a, s′a∗ , ξ} the corresponding FE-bases from Propo-

sition 2.2 (ii). The matrix (FE) of FE with respect to these bases is

(FE) =

 0 −Im 0

Im 0 0

0 0 0

 .
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For x ∈ U ∩ V and sx ∈ Ex, we denote by (sUx ), (sVx ) the column matrices of

components of the section sx with respect to BU and BV , respectively. Then

(sVx ) = P · (sUx ), where

P =

A B 0

C D 0

0 0 1

 ,

and A,B,C,D ∈ Mm×m(R). But P is orthogonal and commutes with the ma-

trix (FE) (see Proposition 2.2 (ii)), thus we have D = A, C = −B, and this proves

that P ∈ U(m)× 1.

Conversely, if the structure group of the vector bundle E reduces to U(m)×1,

then there exists a covering {Uα}α∈I of M , for which we can choose the or-

thonormal local bases of sections of E with the property that on the intersection

Uα∩Uβ 6= ∅ these are transformed by the action of the group U(m)×1. With re-

spect to such bases, we can define the endomorphism FE |α : Γ(E|Uα)→ Γ(E|Uα)

by the matrix (FE). But (FE) commutes with U(m)× 1, hence {FE |α}α∈I deter-

mine a global endomorphism FE : Γ(E) → Γ(E). In a similar way, the sections

ξ ∈ Γ(E) and η ∈ Ω1(E) are globally defined by the matrices of their components

with respect to each open set Uα, namely,

ξ : (0, . . . , 0, 1)t, η : (0, . . . , 0, 1).

Finally, the fact that (FE , ξ, η) is an almost contact structure on E is straightfor-

ward. �

Also, we notice that the determinants of the matrices from the proof of

Theorem 2.2 are positive, which yields

Corollary 2.1. Any almost contact bundle (or Lie algebroid) is orientable.

Let us define ΩE(s1, s2) = gE(s1, FE(s2)) for all s1, s2 ∈ Γ(E). Then, from

Proposition 2.2 (iv) it follows that ΩE is a 2-form on E. It is called the fun-

damental 2-form or the Sasaki 2-form of the almost contact Riemannian vector

bundle (or Lie algebroid) (E,FE , ξ, η, gE). Moreover, it is easy to see that ΩE
has the following obvious properties:

ΩE(s1, FE(s2))=−ΩE(FE(s1), s2) and ΩE(FE(s1), FE(s2))=ΩE(s1, s2). (2.6)

If {ea, ea∗ , η} is the dual basis of the FE-basis from Proposition 2.2, then the

fundamental 2-form ΩE is locally given by

ΩE = −2

m∑
a=1

ea ∧ ea
∗
.
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We remark that rank ΩE = 2m, and then η ∧ ΩmE (where ΩmE is the exterior

product of m copies of ΩE) vanish nowhere on M . The converse of this result is

also true, namely, we have

Theorem 2.3. Let E be a vector bundle over M of rankE = 2m + 1 and

η ∈ Ω1(E). If there exists ΩE ∈ Ω2(E) such that η ∧ΩmE 6= 0 at each point of M ,

then E has an almost contact structure.

Proof. Follows as in the case of almost contact manifolds (see [5], [35]). �

Moreover, in the case of Lie algebroids, we have

Theorem 2.4. Let (E, ρE , [· , ·]E) be a Lie algebroid of rankE = 2m+1 and

η ∈ Ω1(E). If η ∧ (dEη)m 6= 0 on M , then the Lie algebroid (E, ρE , [· , ·]E) has

an almost contact Riemannian structure (FE , ξ, η, gE) whose fundamental form is

dEη, and the Reeb section ξ is completely determined by the conditions η(ξ) = 1

and ıξ(dEη) = 0.

3. Normal almost contact structures on Lie algebroids

In this section, we define normal almost contact structures on Lie algebroids

and characterize these structures. Also, the direct product between an almost

Hermitian Lie algebroid and an almost contact Riemannian Lie algebroid or the

direct product of two almost contact Riemannian Lie algebroids are investigated.

We recall that for a general tensor A ∈ Γ(E ⊗ E∗) of type (1, 1) on E, the

Nijenhuis tensor of A is a tensor NA ∈ Γ(⊗2E∗ ⊗ E) given by

NA(s1, s2) = [A(s1), A(s2)]E −A([A(s1), s2]E)−A([s1, A(s2)]E) +A2([s1, s2]E).

As usual, we say that an almost contact structure (FE , ξ, η) on a Lie algebroid

(E, ρE , [· , ·]E) of rank 2m+ 1 is normal if

N
(1)
E ≡ NFE + 2dEη ⊗ ξ = 0. (3.1)

Other useful tensors on E are the following:

N
(2)
E (s1, s2) ≡

(
LFE(s1)η

)
(s2)−

(
LFE(s2)η

)
(s1),

N
(3)
E (s) ≡ 1

2
(LξFE) (s), N

(4)
E (s) ≡ (Lξη) (s). (3.2)
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Using the differential calculus on Lie algebroids (exterior differential and Lie

derivative), we can easily prove that if the almost contact structure (FE , ξ, η) is

normal, then N
(2)
E = N

(3)
E = N

(4)
E = 0.

Replacing in the definition of the Nijenhuis tensor NFE the brackets by their

expressions (since the Levi–Civita connection ∇ on Riemannian Lie algebroids

is torsionless, see [7]), similarly to the almost contact Riemannian manifolds

(see [39]), we obtain

Proposition 3.1. An almost contact Riemannian structure (FE , ξ, η, gE)

on a Lie algebroid (E, ρE , [· , ·]E) is normal if and only if one of the following

conditions is satisfied:

FE (∇s1FE) s2 −
(
∇FE(s1)FE

)
s2 − [(∇s1η) s2] ξ = 0, (3.3)

(∇s1FE) s2 −
(
∇FE(s1)FE

)
FE(s2) + η(s2)∇FE(s1)ξ = 0, (3.4)

for every s1, s2 ∈ Γ(E).

Since the eigenvalues of FE |D are i and −i, we deduce that the complexified

DC = D ⊗R C of D has the decomposition

DC = D1,0 ⊕D0,1, (3.5)

where D1,0 and D0,1 are the eigensubbundles corresponding to i and −i, respec-

tively. A simple argument shows that

D1,0 = {s− iFE(s)|s ∈ Γ(D)}, D0,1 = {s+ iFE(s)|s ∈ Γ(D)},

and extending to EC the metric gE by

gcE(s1 + is2, s) = gE(s1, s) + igE(s2, s), gcE(s, s1 + is2) = gE(s, s1)− igE(s, s2),

we obtain a Hermitian metric gcE on EC. From Proposition 2.2 (iv), we deduce

that with respect to this metric, the decomposition (3.5) is orthogonal, and,

consequently, the following orthogonal decomposition of the complexified vector

bundle EC is associated:

EC = DC ⊕ 〈ξ〉C = D1,0 ⊕D0,1 ⊕ 〈ξ〉C, (3.6)

where 〈ξ〉C = 〈ξ〉 ⊗R C.
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On the other hand, (EC, g
c
E) is a Hermitian vector bundle over M , and the

natural extension ∇c of the Levi–Civita connection ∇ from E is a Hermitian

connection in this bundle (see [24]). Moreover, (DC, g
c
E |DC) is a Hermitian sub-

bundle of (EC, g
c
E), with the Hermitian connection ∇DC induced by the following

decomposition

∇cs = ∇DCs+ADCs, (3.7)

where s ∈ Γ(DC), ∇DCs ∈ L(EC, DC) and ADCs ∈ L(EC, 〈ξ〉C). A simple calcula-

tion shows that

ADC
s s′ = −ΩE(s, s′)ξ, ∇DCFE |DC = 0,

hence ∇DC is an almost complex connection ([24]), in the complex bundle DC.

Let g1,0
E be the restriction of the metric gcE |DC to D1,0. Then, following the

same argument as above, we deduce that (D1,0, g1,0
E ) is a Hermitian subbundle

of (DC, g
c
E |DC), with Hermitian connection ∇1,0 induced by the following decom-

position

∇DCs = ∇1,0s+A1,0s, (3.8)

where s ∈ Γ(D1,0), ∇1,0s ∈ L(DC, D
1,0) and A1,0s ∈ L(DC, D

0,1).

The direct product of two given Lie algebroids (E1, ρE1
, [· , ·]E1

) over M1 and

(E2, ρE2
, [· , ·]E2

) over M2 is defined in [29, p. 155] as a Lie algebroid structure

on E1 × E2 → M1 × M2. The general sections of E1 × E2 are of the form

s =
∑

(fi⊗s1
i )⊕

∑
(gj⊗s2

j ), where fi, gj ∈ C∞(M1×M2), s1
i ∈ Γ(E1), s2

j ∈ Γ(E2),

the anchor map is defined by

ρE

(∑
(fi ⊗ s1

i )⊕
∑

(gj ⊗ s2
j )
)

=
∑

(fi ⊗ ρE1
(s1
i ))⊕

∑
(gj ⊗ ρE2

(s2
j )),

and the Lie bracket on E = E1 × E2 is:

[s, s′]E

=
(∑

fif
′
k ⊗ [s1

i , s
′1
k ]E1

+
∑

fiρE1
(s1
i )(f

′
k)⊗ s′1k −

∑
f ′kρE1

(s′1k )(fi)⊗ s1
i

)
⊕
(∑

gjg
′
l ⊗ [s2

j , s
′2
l ]E2 +

∑
gjρE2(s2

j )(g
′
l)⊗ s′2l −

∑
g′lρE2(s′2l )(gj)⊗, s2

j

)
,

for every s =
∑

(fi⊗s1
i )⊕

∑
(gj⊗s2

j ) and s′ =
∑

(f ′k⊗s′1k )⊕
∑

(g′l⊗s′2l ) in Γ(E).

Now, by direct verification and using a simple calculation, we can prove the

following two results concerning the direct product of Lie algebroids.

Proposition 3.2. Let us consider two Lie algebroids, (E1, ρE1 , [· , ·]E1) over

M1 of rank 2m1 equipped with an almost Hermitian structure (JE1 , gE1), [24],
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and (E2, ρE2 , [· , ·]E2) over M2 of rank 2m2 + 1 equipped with an almost contact

Riemannian structure (FE2 , ξ2, η2, gE2). Then, the tensors FE , ξ, η, gE , given by

FE

(∑
(fi ⊗ s1

i )⊕
∑

(gj ⊗ s2
j )
)

=
∑

(fi ⊗ JE1(s1
i ))⊕

∑
(gj ⊗ FE2(s2

j )),

η
(∑

(fi ⊗ s1
i )⊕

∑
(gj ⊗ s2

j )
)

=
∑

(gj ⊗ η2(s2
j )), ξ = 0⊕ ξ2,

and

gE

((∑
(fi ⊗ s1

i )⊕
∑

(gj ⊗ s2
j )
)
,
∑

(f ′k ⊗ s′1k )⊕
∑

(g′l ⊗ s′2l )
)

=
∑

fif
′
k ⊗ gE1

(s1
i , s
′1
k )⊕

∑
gjg
′
l ⊗ gE2

(s2
j , s
′2
l ),

define an almost contact Riemannian structure on the direct product Lie algebroid

E = E1 × E2.

Proposition 3.3. Let us consider two Lie algebroids, (E1, ρE1
, [· , ·]E1

) over

M1 of rank 2m1 + 1 equipped with an almost contact Riemannian structure

(FE1
, ξ1, η1, gE1

), and (E2, ρE2
, [· , ·]E2

) over M2 of rank 2m2 + 1 equipped with

an almost contact Riemannian structure (FE2
, ξ2, η2, gE2

). Then, the tensor FE
given by

FE

(∑
(fi ⊗ s1

i )⊕
∑

(gj ⊗ s2
j )
)

=
∑

(fi ⊗ FE1(s1
i )− gj ⊗ η2(s2

j )ξ1)⊕
∑

(gj ⊗ FE2(s2
j ) + fi ⊗ η1(s1

i )ξ2),

defines an almost Hermitian structure on the direct product Lie algebroid E =

E1 × E2, with the metric gE from Proposition 3.2. This structure is Hermitian

(that is NFE = 0) if and only if both almost contact Riemannian structures are

normal.

Remark 3.1. Let (E,FE , ξ, η) be an almost contact Lie algebroid of rank

2m + 1 over a smooth manifold M , and L be a line Lie algebroid over M such

that Γ(L) = span{sL}. Then, if we consider the Lie algebroid Ẽ given by direct

product Ẽ = E × L, we remark that the map

JẼ : Γ(Ẽ)→ Γ(Ẽ), JẼ(s⊕ fsL) = (FE(s)− fξ)⊕ η(s)sL

for every f ∈ C∞(M), s ∈ Γ(E) is linear, and J2
Ẽ

= −IẼ , that is (Ẽ, JẼ) is an

almost complex Lie algebroid of rank 2m + 2. Also, as usual, we can prove that

the almost contact structure (FE , ξ, η) on E is normal if JẼ is integrable.
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The following formula is useful for the calculation of the covariant derivative

of FE depending on the tensors N
(1)
E and N

(2)
E , in the case of arbitrary almost

contact Riemannian structures on Lie algebroids.

Proposition 3.4. Let (FE , ξ, η, gE) be an almost contact Riemannian struc-

ture on the Lie algebroid (E, ρE , [· , ·]E) of rank 2m+1 over a smooth manifold M .

If ∇ is the Levi–Civita connection of the metric gE , then

2gE ((∇s1FE)s2, s3) = 3dEΩE(s1, FE(s2), FE(s3))− 3dEΩE(s1, s2, s3)

+ gE(N
(1)
E (s2, s3), FE(s1)) +N

(2)
E (s2, s3)η(s1)

+ 2dEη(FE(s2), s1)η(s3)− 2dEη(FE(s3), s1)η(s2)

for every s1, s2, s3 ∈ Γ(E).

Proof. Follows by direct calculus. �

4. Contact structures on Lie algebroids

In this section, we give the basic definitions and results about contact struc-

tures on Lie algebroids in relation with similar notions from contact manifolds

theory, we present some examples from [33], [34] and a bijective corespondence be-

tween contact Riemannian structures and almost contact Riemannian structures

on Lie algebroids, as well as give some characterizations of contact Riemann-

ian Lie algebroids. Also, the notions of K-contact, Sasakian and Kenmotsu Lie

algebroids are introduced, and some of their properties are analyzed.

4.1. Contact Lie algebroids. Firstly, we recall that a contact structure on an

odd-dimensional manifold M2n+1 is defined by a maximally non-integrable dis-

tribution of rank 2n, D2n ⊂ TM , called contact distribution. Equivalently, we

have that the curvature form of the distribution D2n is non-degenerate. More-

over, if there exists a 1-form η ∈ Ω1(M) such that ker η = D2n, then the contact

structure is called cooriented. Also, we notice that the contact structure on fo-

liated manifolds was recently introduced (see, for instance, [12], [36]) as a triple

(M2n+1+m,F2n+1,D2n), where M is a smooth manifold of dimension 2n+1+m,

F is a foliation of codimension m (dimF = 2n + 1), and D ⊂ TF is a distribu-

tion of dimension 2n (of the tangent bundle along the leaves) that is contact on

each leaf of F . This generalizes the contact fiber bundles construction from [28].

A standard example of foliated contact structure is the space of foliated oriented
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contact elements on the cotangent spheric bundle S(T ∗F) of the leafwise cotan-

gent bundle of F (see [36]), which can be also obtained directly by pullback of the

natural foliated contact structure on the projectivised cotangent bundle P (T ∗F)

of F via the double-cover S(T ∗F)→ T ∗F → P (T ∗F) (see [12]).

These notions concerning foliated contact structures can serve as elementary

examples of our next general considerations, because it is well known that for

a given regular foliated manifold (M,F), the tangent bundle along the leaves

TF has a natural structure of a Lie algebroid, where the anchor is the inclusion

i : TF → TM and the bracket is the usual Lie bracket of vectors fields tangent

to the leaves. Hence, the study of contact structures in the context of general Lie

algebroids is natural and it can be of some interest.

Let us continue with some basic definitions and results about contact Lie al-

gebroids in relation with similar notions from contact manifolds/foliations theory.

Let (E, ρE , [· , ·]E) be a Lie algebroid of rank 2m + 1 over a smooth mani-

fold M . If a 1-form η on E, satisfying the condition from Theorem 2.4 is given,

namely, if η ∧ (dEη)m 6= 0 everywhere on M , then we say that η defines a con-

tact structure on E, or that (E, η) is a contact Lie algebroid, and η is called the

contact form of E. We remark that if f ∈ C∞(M) nowhere vanishes on M , then

fη also is a contact form on E. Moreover, η and fη determine the same contact

subbundle D, hence the authentic invariant of this change of contact forms is

the contact subbundle. For this reason, it is more natural to define a contact

structure by a subbundle D of rank 2m of E with the property that there exists

a 1-form η ∈ Ω1(E) so that D = ∪x∈MDx, where ker ηx = Dx and η ∧ (dEη)m

nowhere vanishes on M . Alternatively, a contact structure on E is given by a pair

(θE ,ΩE), where θE ∈ Ω1(E) is a 1-form on E and ΩE ∈ Ω2(E) is a 2-form on E

such that ΩE = dEθE and (θE ∧ ΩE ∧ · · · m · · · ∧ ΩE)(x) 6= 0, for every x ∈ M .

The Reeb section R ∈ Γ(E) is defined by ıRθE = 1 and ıRΩE = 0.

Example 4.1 ([33]). For a Lie algebroid (E, [· , ·]E , ρE) of rank m over M , we

can consider the prolongation of E over its dual bundle p∗ : E∗ → M (see [21],

[27]), which is a vector bundle (T EE∗, p∗1, E∗), where T EE∗ = ∪u∗∈E∗T Eu∗E∗ with

T Eu∗E∗ = {(ux, Vu∗) ∈ Ex × Tu∗E∗|ρE(ux) = (p∗)∗(Vu∗), p∗(u∗) = x ∈M} ,

and the projection p∗1 : T EE∗ → E∗ given by p∗1(ux, Vu∗) = u∗. A section s̃ ∈
Γ(T EE∗) is called projectable if and only if there exist s ∈ Γ(E) and V ∈ X (E∗)

such that (p∗)∗(V ) = ρE(s) and s̃ = ((s(p∗(u∗)), V (u∗)). We notice that T EE∗
has a Lie algebroid structure of rank 2m over E∗ with anchor ρT EE∗ : T EE∗ →
TE∗ given by ρT EE∗(u, V ) = V and the Lie bracket uniquely determined by

[(s1, V1), (s2, V2)]T EE∗ = ([s1, s2]E , [V1, V2]), s1, s2 ∈ Γ(E), V1, V2 ∈ X (E∗).
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The Liouville section λE ∈ Γ((T EE∗)∗) is given by λE(u∗)(u, V ) = u∗(u), u∗ ∈
E∗, (u, V ) ∈ T EE∗, and the canonical symplectic section ωE ∈ Ω2(T EE∗) is

given by ωE = −dT EE∗λE , thus (T EE∗, ωE) is a symplectic Lie algebroid.

Now, we suppose that we have a bundle metric gE on E and consider the

associated spherical bundle pS(E∗) : S(E∗) → M of rank m − 1, where S(E∗) =

{u∗ ∈ E∗|g∗E(u∗, u∗) = 1}.
Similarly as above, we can consider the prolongation T ES(E∗) of E over the

spherical bundle S(E∗), and for the following diagram

T ES(E∗)
TEi−−−−→ T EE∗

τTES(E∗)

y yτTEE∗=p∗1

S(E∗)
i−−−−→ E∗

we have dT ES(E∗)((TEi)∗ϕ) = (TEi)∗(dT EE∗ϕ), ϕ ∈ Ω(T EE∗), i.e. T ES(E∗) →
S(E∗) is a Lie subalgebroid of T EE∗ → E∗. Now, for ηE = −(TEi)∗(λE) ∈
Ω1(T ES(E∗)) we have ηE ∧ (dT ES(E∗)ηE)m−1 6= 0, that is, (T ES(E∗), ηE) is a

contact Lie algebroid.

Remark 4.1. More generally, if (E, [· , ·]E , ρE) is an exact symplectic Lie alge-

broid over M of rank 2m with exact symplectic section Ω = −dEλ and F → N is

a Lie subalgebroid of rank 2m−1 of E, then, according to [33], [34], (F, η = i∗F (λ))

is a contact Lie algebroid, where iF : F → E is the natural inclusion.

The above definition is that of the so-called cooriented contact stucture and

η such that ker η = D is called a coorientation of the contact structure (E,D).

However, as in the case of smooth manifolds (see, for instance, [13]), we can talk

about general contact structures on Lie algebroids (not necessarily cooriented)

and their brackets as follows.

Definition 4.1. A contact structure on a Lie algebroid (E, [· , ·]E , ρE) of rank

2m + 1 is a subbundle D of rank 2m of E which is maximally non-integrable,

that is, the curvature Curv(D) : D × D → L is non-degenerate, where L is the

quotient line bundle L := E/D and Curv(D) is given at the level of sections

by Curv(D)(s1, s2) = [s1, s2]E modD. The pair (E,D) is called a contact Lie

algebroid.

Definition 4.2. A Reeb section of the contact Lie algebroid (E,D) is every

section ξ ∈ Γ(E) such that [ξ,Γ(D)]E ⊂ Γ(D), and we denote by ΓReeb(E,D) the

set of Reeb sections.
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Proposition 4.1. The set of Reeb sections of a contact Lie algebroid (E,D)

is a Lie subalgebra of the Lie algebra Γ(E) of all sections of E and Γ(E) =

ΓReeb(E,D)⊕ Γ(D).

Proof. Follows as in the contact manifolds case (see [13]). �

Also, it is useful to consider the dual point of view on contact structures on

Lie algebroids, that is, to view D as the kernel of a 1-form on E with values in L

(θE ∈ Ω1(E,L) and viewed as the canonical projection from E to L). Now, the

curvature of D can be rewritten as Curv(D)(s1, s2) = θE ([s1, s2]E), and we say

that θE is of contact type. The case when L is the trivial line bundle gives rise to

the above cooriented case. The previous proposition yields

Corollary 4.1. The 1-form θE with values in L restricts to a vector space

isomorphism

θE |ΓReeb(E,D) : ΓReeb(E,D)
∼=→ Γ(L). (4.1)

Thus, the Lie algebra structure of ΓReeb(E,D) (from Proposition 4.1) can

be transferred to a Lie algebra structure on Γ(L) and denote the corresponding

bracket by {· , ·}L.

Definition 4.3. The bracket {· , ·}L on Γ(L) is called the Reeb bracket asso-

ciated to the contact Lie algebroid (E,D) (which is a Kirillov-type bracket [26]).

Also, we notice that similarly as in the contact manifolds case (see [13,

Lemma 2.5]), Proposition 4.1 can be reformulated in the form:

Proposition 4.2. The map Γ(E) ∼= Γ(L) ⊕ Γ(Hom(D,L)), given by s 7→
(θE(s), θE ([·, s]E)), is an isomorphism of vector spaces, and the induced C∞(M)-

module structure on the right hand side is given by f · (s, φ) = (fs, φ+ dEf ⊗ s),
for every s ∈ Γ(L) and φ ∈ Γ(Hom(D,L)).

The surjectivity of (4.1) implies that for every section s ∈ Γ(L), there exists

a unique section ξs ∈ Γ(E) such that θE(ξs) = s and θE ([ξs, t]) = 0 for every

section t ∈ Γ(D). In this case, ξs is called the Reeb section associated to s, and

the Reeb bracket {· , ·}L has the following characteristic property: [ξs1 , ξs2 ]E =

ξ{s1,s2}L , for every s1, s2 ∈ Γ(L). Moreover, applying θE , we get the explicit

formula for the Reeb bracket in terms of the 1-form θE , namely,

{s1, s2}L = θE ([ξs1 , ξs2 ]E) , s1, s2 ∈ Γ(L). (4.2)

Proposition 4.2 implies that, for f ∈ C∞(M) and s ∈ Γ(L), we have

ξfs = fξs + β(dEf ⊗ s), (4.3)
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where β : Hom(D,L)→ D is the isomorphism induced by Curv(D), that is

Hom(D,L) 3 Curv(D)(t, ·) 7→ t ∈ Γ(D).

Also, we notice that the inverse of the isomorphism defined in Proposition 4.2

sends (s, φ) to ξs − β(φ).

Example 4.2. When L is the trivial line bundle, the Reeb section associated

to the constant function 1 is the standard Reeb section ξ associated to the contact

form η, and it is uniquely determined by ıξη = 1 and ıξ(dEη) = 0. The other

Reeb section corresponding to an arbitrary smooth function f ∈ C∞(M) is ξf =

fξ + β(dEf). In this case, β : D∗ → D is the isomorphism induced by dEη.

Finally, we notice that the Reeb bracket becomes a Jacobi bracket on C∞(M) as

follows:

{f, g}L = Λ(dEf, dEg) + ρE(ξ)(f)g − fρE(ξ)(g), (4.4)

where the bisection Λ ∈ Γ(
∧2

E) is defined by using β, that is Λ(dEf, dEg) =

dEη(β(dEf), β(dEg)).

Remark 4.2. In some recent papers (see [10], [18]) are introduced contact

structures on principal R× := R − {0}-bundles (using a new language about

contact structures). More exactly, for a given R×-action h : R× × P → P on

a vector bundle P → M , a contact structure is referred to as a triple (P, h, ω),

where ω is a 1-homogeneous symplectic form on P , that is (ht)
∗ω = tω(t 6= 0).

Using a similar language, the construction from [33] (recalled in Example 4.1)

can be formulated in the non-coorientable case as follows. Let (E, [· , ·]E , ρE) be

a Lie algebroid of rank m over M , p∗ : E∗ →M the dual vector bundle of E, and

h : R× × E∗ → E∗ be the multiplicative R×-action on E∗ (then the projective

bundle of E∗ is P (E∗) := E∗/R× → M , rank P (E∗) = m − 1). As usual (for

tangent and cotangent lifts of a R×-action on manifolds or supermanifolds [18]),

there is a natural lift of h to a R×-action on T EE∗ denoted by T Eh : R× ×
T EE∗ → T EE∗ given by (T Eh)t = T E(ht), which is a compatible action, that

is, (T Eh)t are Lie algebroid automorphisms (see [31]). Then, there is a natural Lie

algebroid (over quotient spaces) P (T EE∗)→ P (E∗) which is isomorphic with the

prolongation T EP (E∗) of E over the projective bundle P (E∗)→M . Now, since

the canonical symplectic section ωE ∈ Ω2(T EE∗) is linear, thus homogeneous,

the triple (T EE∗, T Eh, ωE) is a contact structure. In a traditional language, it

corresponds to a contact structure on the Lie algebroid T EP (E∗)→ P (E∗), let us

say a maximally non-integrable subbundle DEP (E∗) ⊂ T EP (E∗) of rank 2m−2,

and then, the contact structure DEP (E∗) is pulled back to a contact structure

on the Lie algebroid T ES(E∗) through the double-cover S(E∗)→ E∗ → P (E∗).
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4.2. Contact Riemannian Lie algebroids. In what follows, we consider only

the coorientable case. When an almost contact Riemannian structure defined

in Theorem 2.4 is fixed on the contact Lie algebroid (E, η), then we say that

(E,FE , ξ, η, gE) is a contact Riemannian Lie algebroid.

Remark 4.3. From the definition of the fundamental form and from Theo-

rem 2.4, it results that for a given contact Riemannian structure, the endomor-

phism FE is uniquely determined by the 1-form η and by the metric gE .

For the contact Riemannian Lie algebroid (E,FE , ξ, η, gE), we consider the

contact subbundle D. Taking into account Theorem 2.4, the restriction to D of

the 2-form dEη is non-degenerate, and then we can state the following:

Proposition 4.3. The contact subbundle D of a contact Riemannian Lie

algebroid has a symplectic vector bundle structure with the symplectic 2-form

dEη|D.

Denote by J (D) the set of almost complex structures on D, compatible with

dEη, that is, the structures J : D → D with the properties

J 2 = −ID, dEη(J (s1),J (s2)) = dEη(s1, s2), dEη(J (s), s) ≥ 0 (4.5)

for every s, s1, s2 ∈ Γ(D). This means that we consider on D only almost complex

structures compatible with its symplectic bundle structure. We remark that if

(FE , ξ, η, gE) is the almost contact Riemannian structure associated to the contact

Riemannian structure defined in Theorem 2.4 on the Lie algebroid E, then FE |D ∈
J (D).

For each J ∈ J (D), the map gJ , defined by

gJ (s1, s2) = dEη(J (s1), s2), s1, s2 ∈ Γ(D), (4.6)

is a Hermitian metric on D, that is, it satisfies the condition

gJ (J (s1),J (s2)) = gJ (s1, s2), s1, s2 ∈ Γ(D). (4.7)

Moreover, if we denote by G(D) the set of all Riemannian metrics on D, satisfying

the equality (4.7), it is easy to see that the map J ∈ J (D) 7→ gJ ∈ G(D) is

bijective. Since η nowhere vanishes on M , we denote by ξ a section of E such that

η(ξ) = 1 and extend J to an endomorphism FE of Γ(E) by setting FE |D = J ,

FE(ξ) = 0. Consider the decompositions s1 = sD1 + aξ, s2 = sD2 + bξ, where

sD1 , s
D
2 are the D components of the sections s1 and s2, respectively. Similarly,

we extend gJ to a metric on E by

gE(s1, s2) = gJ (sD1 , s
D
2 ) + ab (4.8)
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for every s1, s2 ∈ Γ(E). Taking into account (4.6), we can prove that dEη(s1, s2) =

gE(s1, FE(s2)), hence the contact structure on E is a Riemannian one. Moreover,

(FE , ξ, η, gE) is an almost contact Riemannian structure on E, and then the set

of almost contact Riemannian structures on E is in bijective correspondence with

the set of almost complex structures of Hermitian type (J , gJ ) defined on the

contact subbundle D.

Using the notion of a Killing section on Riemannian Lie algebroids (intro-

duced recently in [9]) and the classical calculus on Lie algebroids, similar argu-

ments used in the study of contact Riemannian manifolds (see [5], [35]) yield

Proposition 4.4. Let E be a contact Riemannian Lie algebroid, and let

(FE , ξ, η, gE) be the associated almost contact Riemannian structure. Then

(i) N
(2)
E = 0, N

(4)
E = 0;

(ii) N
(3)
E = 0 if and only if ξ is a Killing section, i.e. LξgE = 0;

(iii) ∇ξFE = 0.

A more suitable form of the results from Proposition 4.4 is the following:

Proposition 4.5. Let E be a contact Riemannian Lie algebroid, and let

(FE , ξ, η, gE) be the associated almost contact Riemannian structure. Then,

Lξη = 0, Lξ(dEη) = 0,
(
LFE(s1)η

)
(s2) =

(
LFE(s2)η

)
(s1)

for every s1, s2 ∈ Γ(E).

Another useful result in relation with corresponding notions from contact

Riemannian manifolds is

Proposition 4.6. On a contact Riemannian Lie algebroid the following for-

mulas hold:

(i) gE(N
(3)
E (s1), s2) = gE(s1, N

(3)
E (s2));

(ii) ∇sξ = −FE(s)− FE(N
(3)
E (s));

(iii) FE ◦N (3)
E = −N (3)

E ◦ FE ;

(iv) traceN
(3)
E = 0, trace(N

(3)
E ◦ FE) = 0, N

(3)
E (ξ) = 0, η(N

(3)
E (s)) = 0;

(v) (∇s1FE)(s2) + (∇FE(s1)FE)FE(s2)

= 2gE(s1, s2)ξ − η(s2)
(
s1 +N

(3)
E (s1) + η(s1)ξ

)
.

Now, by putting into other words Theorem 2.4, we can assert that if η defines

a contact structure on the Lie algebroid E, then there exists an almost contact

Riemannian structure (FE , ξ, η, gE) with ΩE = dEη as fundamental form. Then,
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it is natural to ask what kind of relation can exist between the form η∧(dEη)m and

the volume form dVgE =
√

det gEe
1 ∧ · · · ∧ e2m+1 of the Riemannian metric gE

on E. More exactly, following step by step the proof from the case of contact

Riemannian manifolds (see [5], [6], [35]), we have the following:

Theorem 4.1. Let E be a contact Riemannian Lie algebroid of rank 2m+1

with contact 1-form η. The volume form with respect to the metric gE of E

is given by

dVgE =
1

2mm!
η ∧ (dEη)m. (4.9)

A morphism µ : (E1, η1)→ (E2, η2) between two contact Lie algebroids over

the same manifold M is called a contact morphism if there is f ∈ C∞(M) nowhere

zero on M and such that

µ∗η2 = fη1. (4.10)

If f ≡ 1, the morphism µ is called a strict contact morphism. Also, we easily

obtain

Proposition 4.7. The morphism µ : (E1, η1) → (E2, η2) between two con-

tact Lie algebroids over the same manifold M is a contact morphism if and only

if µ(D1) ⊆ D2.

4.3. K-contact, Sasakian and Kenmotsu Lie algebroids. A contact Rie-

mannian Lie algebroid with the property that its Reeb section ξ is a Killing section

is called a K-contact Lie algebroid. From Propositions 4.4 (ii) and 4.6 (ii) easily

follows

Proposition 4.8. A contact Riemannian Lie algebroid E is K-contact if

and only if

∇sξ = −FE(s) (4.11)

for every s ∈ Γ(E).

From the formula (4.11), it results the following

Proposition 4.9. On a K-contact Lie algebroid E the following equalities

hold:

(∇s1η)s2 = gE(∇s1ξ, s2) = ΩE(s1, s2), (∇sFE)ξ = −s+ η(s)ξ (4.12)

for every s, s1, s2 ∈ Γ(E).
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The contact Riemannian Lie algebroid E is called a Sasakian Lie algebroid

if the associated almost contact Riemannian structure (FE , ξ, η, gE) is normal.

Otherwise, the almost contact Riemannian structure (FE , ξ, η, gE) is a Sasakian

structure if dEη = ΩE and N
(1)
E = 0.

From (3.1) and Proposition 4.4 (ii) easily follows

Theorem 4.2. Every Sasakian Lie algebroid is K-contact.

A characterization of Sasakian Lie algebroids by the Levi–Civita connec-

tion ∇ of gE can be obtained as in the manifolds case (see [5], [35]), that is

Theorem 4.3. The almost contact Riemannian structure (FE , ξ, η, gE) on E

is Sasakian if and only if

(∇s1FE)s2 = gE(s1, s2)ξ − η(s2)s1 (4.13)

for every sections s1, s2 ∈ Γ(E).

Choosing an FE-basis {ea} = {sa, sa∗ , ξ} on Γ(E), from (4.11) it follows that

(∇eaη)eb = gE(∇eaξ, eb) = −gE(FE(ea), eb) = 0. (4.14)

Now, using the ?-Hodge operator on invariantly oriented Lie algebroids (see [3]),

the exterior coderivative on Lie algebroids can be expressed as

d∗Eϕ = −
2m+1∑
a=1

ıea(∇ebϕ), ϕ ∈ Ω•(E). (4.15)

Thus, from (4.14) and (4.15) we deduce d∗Eη = 0, hence we can state the following:

Proposition 4.10. The contact form of a K-contact Lie algebroid is co-

closed.

Remark 4.4. Assuming that the elements of the basis {ea} are eigensections

of the operator N
(3)
E , by a similar argument, it follows that Proposition 4.10 is

valid for every contact Riemannian Lie algebroid.

Proposition 4.11. Every K-contact Lie algebroid of rank 3 is Sasakian.

Proof. Denote by {e, FE(e), ξ} a FE-basis of Γ(E). Then we have

gE((∇sFE)e, e) = 0, gE((∇sFE)e, FE(e)) = 0, gE((∇sFE)e, ξ) = gE(s, e).

We deduce (∇sFE)e = gE(s, e)ξ for every s ∈ Γ(E), and then (4.13) is satisfied

for s2 = e. Similarly, one can verify (4.13) for s2 = FE(e) and s2 = ξ, hence, by

Theorem 4.3, the K-contact Lie algebroid of rank 3 is Sasakian. �
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A Lie algebroid (E, ρE , [· , ·]E) of rankE = 2m + 1 endowed with an almost

contact Riemannian structure (FE , ξ, η, gE) is called an almost Kenmotsu Lie

algebroid if the following conditions are satisfied:

dEη = 0, dEΩE = 2η ∧ ΩE . (4.16)

With the name Kenmotsu Lie algebroid we refer to every normal almost Kenmotsu

Lie algebroid.

Theorem 4.4. A Lie algebroid (E, ρE , [· , ·]E) of rankE = 2m+ 1 endowed

with an almost contact Riemannian structure (FE , ξ, η, gE) is a Kenmotsu Lie

algebroid if and only if

(∇s1FE)s2 = −η(s2)FE(s1)− gE(s1, FE(s2))ξ. (4.17)

Proof. Follows as in the case of Kenmotsu manifolds (see [35]). �

Also, by straightforward calculation it follows

Proposition 4.12. On a Kenmotsu Lie algebroid the following equalities

hold:

(∇s1η)(s2) = gE(s1, s2)− η(s1)η(s2),

LξgE = 2(gE − η ⊗ η), LξFE = 0, Lξη = 0.

From Proposition 4.12, it follows that the Reeb section ξ of a Kenmotsu Lie

algebroid cannot be Killing, hence such a Lie algebroid cannot be Sasakian, and,

more generally, it cannot be K-contact.

5. An almost contact Lie algebroid structure on the vertical

Liouville distribution on the big-tangent manifold

The following definition generalizes the notion of framed f(3, 1)-structure

from manifolds to Lie algebroids, and it will be important for our next consider-

ations.

Definition 5.1. A framed f(3, 1)-structure of corank s on a Lie algebroid

(E, ρE , [· , ·]E) of rank (2n + s) is a natural generalization of an almost contact

structure on E, and it is a triplet (f, (ξa), (ωa)), a = 1, . . . , s, where f ∈ Γ(E⊗E∗)
is a tensor of type (1, 1), (ξa) are sections of E, and (ωa) are 1-forms on E such

that

ωa(ξb) = δab , f(ξa) = 0, ωa ◦ f = 0, f2 = −IE +
∑
a

ωa ⊗ ξa. (5.1)
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The name of f(3, 1)-structure was suggested by the identity f3 + f = 0.

For an account of such kind of structures on manifolds, we refer, for instance,

to [17], [48].

In this section, we introduce a natural framed f(3, 1)-structure of corank 2

on the Lie algebroid defined by the vertical bundle over the big-tangent manifold

of a Riemannian manifold (M, g). When we restrict it to an integrable vertical

Liouville distribution over the big-tangent manifold, which has a natural structure

of Lie algebroid, we obtain an almost contact structure.

5.1. Vertical framed f-structures on the big-tangent manifold. The aim

of this subsection is to construct some framed f(3, 1)-structures on the vertical

bundle V = V1 ⊕ V2 over the big-tangent manifold TM when (M, g) is a Rie-

mannian manifold.

Let M be an n-dimensional smooth manifold, and let us consider π : TM →
M its tangent bundle, π∗ : T ∗M → M its cotangent bundle and τ ≡ π ⊕ π∗ :

TM ⊕ T ∗M → M its big-tangent bundle defined as the Whitney sum of the

tangent and the cotangent bundles of M . The total space of the big-tangent

bundle, called big-tangent manifold, is a 3n-dimensional smooth manifold denoted

here by TM . Let us briefly recall some elementary notions about the big-tangent

manifold TM . For a detalied discussion about its geometry, we refer to [45].

Let (U, (xi)) be a local chart on M . If { ∂
∂xi |x}, x ∈ U is a local frame

of sections of the tangent bundle over U and {dxi|x}, x ∈ U is a local frame

of sections of the cotangent bundle over U , then, by definition of the Whitney

sum, { ∂
∂xi |x, dx

i|x}, x ∈ U is a local frame of sections of the big-tangent bundle

TM ⊕ T ∗M over U . Every section (y, p) of τ over U takes the form (y, p) =

yi ∂
∂xi + pidx

i, and the local coordinates on τ−1(U) will be defined as the triples

(xi, yi, pi), where i = 1, . . . , n = dimM , (xi) are local coordinates on M , (yi) are

vector coordinates, and (pi) are covector coordinates. The local expressions of

a vector field X and of a 1-form ϕ on TM are

X = ξi
∂

∂xi
+ ηi

∂

∂yi
+ ζi

∂

∂pi
and ϕ = αidx

i + βidy
i + γidpi. (5.2)

For the big-tangent manifold TM we have the following projections:

τ : TM →M, τ1 : TM → TM, τ2 : TM → T ∗M

on M and on the total spaces of tangent and cotangent bundle, respectively. As

usual, we denote by V = V (TM) the vertical bundle of the big-tangent mani-

fold TM with respect to projection τ , and it has the decomposition

V = V1 ⊕ V2, (5.3)
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where V1 = τ−1
1 (V (TM)), V2 = τ−1

2 (V (T ∗M)), with the local frames
{

∂
∂yi

}
,{

∂
∂pi

}
, respectively. The subbundles V1, V2 are the vertical foliations of TM

by fibers of τ1, τ2, respectively, and TM has a multi-foliate structure [42]. The

Liouville vector fields are given by

E1 = yi
∂

∂yi
∈ Γ(V1), E2 = pi

∂

∂pi
∈ Γ(V2), E = E1 + E2 ∈ Γ(V ). (5.4)

In the following, we consider a Riemannian metric g = (gij(x))n×n on the

paracompact manifold M , and we put

yi = gijy
j , pi = gijpj , (5.5)

where (gij)n×n denotes the inverse matrix of (gij)n×n. It is well known that

gij determines in a natural way a Finsler metric on TM by putting F 2(x, y) =

gij(x)yiyj , and similarly, gij determines a Cartan metric on T ∗M by putting

K2(x, p) = gij(x)pipj . Then the relations (5.5) imply

yiy
i = F 2, pip

i = K2. (5.6)

Also, the Riemannian metric g on M determines a metric structure G on V by

setting

G(X,Y ) = gij(x)Xi
1(x, y, p)Y j1 (x, y, p) + gij(x)X2

i (x, y, p)Y 2
j (x, y, p), (5.7)

for every

X = Xi
1(x, y, p)

∂

∂yi
+X2

i (x, y, p)
∂

∂pi
,

and

Y = Y j1 (x, y, p)
∂

∂yj
+ Y 2

j (x, y, p)
∂

∂pj
∈ Γ(V ).

Let us define the linear operator φ : V → V given in the local vertical frames{
∂
∂yi ,

∂
∂pi

}
by

φ

(
∂

∂yi

)
= −gij

∂

∂pj
, φ

(
∂

∂pi

)
= gij

∂

∂yj
. (5.8)

It is easy to see that φ defines an almost complex structure on V and

G(φ(X), φ(Y )) = G(X,Y ), ∀X,Y ∈ Γ(V ). (5.9)
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As V is an integrable distribution on TM , it follows that (V, φ,G) is a Hermitian

Lie algebroid (foliation) over TM since Nφ = 0, where Nφ denotes the Nijenhuis

vertical tensor field associated to φ.

Let us put

ξ2 =
1√

F 2 +K2

(
yi

∂

∂yi
+ pi

∂

∂pi

)
and

ξ1 = φ(ξ2) =
1√

F 2 +K2

(
pi

∂

∂yi
− yi

∂

∂pi

)
, (5.10)

where as before, yi = gijy
j and pi = gijpj .

Also, we consider the corresponding dual vertical 1-forms of ξ1 and ξ2, re-

spectively, which are locally given by

ω1 =
1√

F 2 +K2
(piθ

i − yiki), ω2 =
1√

F 2 +K2
(piki + yiθ

i), (5.11)

where θi(∂/∂yj) = δij , θ
i(∂/∂pj) = 0, ki(∂/∂y

j) = 0 and ki(∂/∂pj) = δji .

By direct calculations, we have

Lemma 5.1. The following assertions hold:

(i) φ(ξ1) = −ξ2, φ(ξ2) = ξ1;

(ii) ω1 ◦ φ = ω2, ω2 ◦ φ = −ω1;

(iii) ωa(X) = G(X, ξa), a = 1, 2.

Now, we define a tensor field f of type (1, 1) on V by

f(X) = φ(X)− ω2(X)ξ1 + ω1(X)ξ2, ∀X ∈ Γ(V ). (5.12)

Theorem 5.1. The triplet (f, (ξa), (ωa)), a = 1, 2 provides a framed f(3, 1)-

structure on V , namely,

(i) ωa(ξb) = δab , f(ξa) = 0 , ωa ◦ f = 0;

(ii) f2(X) = −X + ω1(X)ξ1 + ω2(X)ξ2, for any X ∈ Γ(V );

(iii) f is of rank 2n− 2 and f3 + f = 0.

Proof. Using (5.12) and Lemma 5.1 (i) and (ii), by direct calculations we

get (i) and (ii). Applying f to the equality (ii) and taking into account the

equality (i), one obtains f3 + f = 0. Now, from the second equations in (i), we

see that span{ξ1, ξ2} ⊂ ker f . We prove now that ker f ⊂ span{ξ1, ξ2}. Indeed,

let be X ∈ ker f written locally in the form X = Xi ∂
∂yi + Yi

∂
∂pi

. By a direct

calculation, the condition f(X) = 0 gives

X =
piX

i − yiYi√
F 2 +K2

ξ1 +
yiX

i + piYi√
F 2 +K2

ξ2 ∈ span{ξ1, ξ2}

and rank f = 2n− 2. �



Contact structures on Lie algebroids 25

Theorem 5.2. The Riemannian metric G verifies

G(f(X), f(Y )) = G(X,Y )− ω1(X)ω1(Y )− ω2(X)ω2(Y ) (5.13)

for any X,Y ∈ Γ(V ).

Proof. Since G(ξ1, ξ2) = 0 and G(ξ1, ξ1) = G(ξ2, ξ2) = 1, by using (5.12)

and Lemma 5.1 (ii) and (iii), we get (5.13). �

Remark 5.1. The above theorem follows in a different way if we use the local

expression of the vertical tensor field f in the local vertical frame
{

∂
∂yi ,

∂
∂pi

}
.

Indeed, from (5.12) we have

f

(
∂

∂yi

)
=
piy

j − yipj

F 2 +K2

∂

∂yj
−
(
gij −

yiyj + pipj
F 2 +K2

)
∂

∂pj
, (5.14)

f

(
∂

∂pi

)
=

(
gij − pipj + yiyj

F 2 +K2

)
∂

∂yj
+
piyj − yipj
F 2 +K2

∂

∂pj
, (5.15)

and using (5.14) and (5.15) one finds

G

(
f

(
∂

∂yi

)
, f

(
∂

∂yj

))
= gij −

yiyj + pipj
F 2 +K2

,

G

(
f

(
∂

∂yi

)
, f

(
∂

∂pj

))
=
piy

j − yipj

F 2 +K2
,

G

(
f

(
∂

∂pi

)
, f

(
∂

∂pj

))
= gij − yiyj + pipj

F 2 +K2
. (5.16)

Now, from (5.16) easily follows (5.13).

Theorem 5.2 says that (f,G) is a Riemannian framed f(3, 1)-structure on V .

Let us put Φ(X,Y ) = G(f(X), Y ) for any X,Y ∈ Γ(V ). We have that Φ is

bilinear since G is so, and using Lemma 5.1 (iii) and Theorems 5.1 and 5.2, by

direct calculations we have Φ(Y,X) = −Φ(X,Y ), which says that Φ is a 2-form

on V .

The Theorem shows that the annihilator of Φ is span{ξ1, ξ2}. Also, a direct

calculation gives [ξ1, ξ2] = 1√
F 2+K2

ξ1, which says that the distribution {ξ1, ξ2} is

integrable even if Φ is not dV -closed, where dV is the (leafwise) vertical differential

on TM . We notice that the annihilator of a dV -closed vertical 2-form is always

integrable.

A direct calculus in local coordinates, using (5.14) and (5.15), leads to

Φ

(
∂

∂yi
,
∂

∂yj

)
=
piyj − yipj
F 2 +K2

,
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Φ

(
∂

∂yi
,
∂

∂pj

)
= −δji +

yiy
j + pip

j

F 2 +K2
,

Φ

(
∂

∂pi
,
∂

∂pj

)
=
piyj − yipj

F 2 +K2
. (5.17)

On the other hand, we have

dV ω
1

(
∂

∂yi
,
∂

∂yj

)
=

piyj − yipj
2(F 2 +K2)

√
F 2 +K2

,

dV ω
1

(
∂

∂pi
,
∂

∂pj

)
=

piyj − yipj

2(F 2 +K2)
√
F 2 +K2

,

dV ω
1

(
∂

∂yi
,
∂

∂pj

)
=

1

2
√
F 2 +K2

(
−2δji +

yiy
j + pip

j

F 2 +K2

)
, (5.18)

and comparing Φ with dV ω
1, it follows that

Φ = 2
√
F 2 +K2dV ω

1 + ϕ, (5.19)

where ϕ = δji θ
i ∧ kj . We have that Φ√

F 2+K2
is dV -closed if and only if ϕ√

F 2+K2

is dV -closed, and it defines an almost presymplectic structure on the vertical Lie

algebroid V .

5.2. An almost contact structure on the vertical Liouville distribution.

Let us begin by considering a vertical Liouville distribution on TM as the com-

plementary orthogonal distribution in V to the line distribution spanned by the

unitary Liouville vector field ξ2 = 1√
F 2+K2

E . In [23], this distribution is con-

sidered in a more general case, when the manifold M is endowed with a Finsler

structure, and for this reason, certain proofs are omitted here.

Let us denote by {ξ2} the line vector bundle over TM spanned by ξ2, and

define the vertical Liouville distribution as the complementary orthogonal distri-

bution Vξ2 to {ξ2} in V with respect to G, that is, V = Vξ2 ⊕ {ξ2}. Thus, Vξ2 is

defined by ω2, that is

Γ (Vξ2) =
{
X ∈ Γ(V ) : ω2(X) = 0

}
. (5.20)

We get that every vertical vector field X = Xi
1(x, y, p) ∂

∂yi +X2
i (x, y, p) ∂

∂pi
can be

expressed as

X = PX + ω2(X)ξ2, (5.21)

where P is the projection morphism of V on Vξ2 . Also, by direct calculus, we get

G(X,PY ) = G(PX,PY ) = G(X,Y )− ω2(X)ω2(Y ), ∀X,Y ∈ Γ(V ). (5.22)
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With respect to the basis
{
θj ⊗ ∂

∂yi , θ
j ⊗ ∂

∂pi
, kj ⊗ ∂

∂yi , kj ⊗
∂
∂pi

}
of Γ(V ⊗ V ∗),

the vertical tensor field P is locally given by

P =
1

P ij θ
j ⊗ ∂

∂yi
+

2

P ji kj ⊗
∂

∂pi
+

3

Pij θ
j ⊗ ∂

∂pi
+

4

P ij kj ⊗
∂

∂yi
, (5.23)

where the local components are expressed by

1

P ij = δij −
yjy

i

F 2 +K2
,

2

P ij= δij −
pipj

F 2 +K2
,

3

Pij = − yjpi
F 2 +K2

,
4

P ij= − pjyi

F 2 +K2
. (5.24)

Theorem 5.3. The vertical Liouville distribution VE is integrable, and it

defines a Lie algebroid structure on TM , called a vertical Liouville Lie algebroid,

over the big-tangent manifold TM .

Proof. Follows using an argument similar to that used in [4], [22]. It can

be found in [23] for a more general case when the manifold M is endowed with a

Finsler structure. �

Now, let us restrict to Vξ2 all the geometrical structures introduced in Sec-

tion 2 for V , and indicate this by overlines. Hence, we have

• ξ1 = ξ1 since ξ1 lies in Vξ2 ;

• ω2 = 0 since ω2(X) = G(X, ξ2) = 0 for every vertical vector field X ∈ Vξ2 ;

• G = G|Vξ2 ;

• f(X) = φ(X) + ω1(X)⊗ ξ2 is an endomorphism of Vξ2 since

G
(
f(X), ξ2

)
= G(φ(X), ξ2) + ω1(X)G(ξ2, ξ2) = ω2(φ(X)) + ω1(X) = 0.

We denote now ξ = ξ1 and η = ω1. By Theorem 5.1, we obtain

Theorem 5.4. The triple (f, ξ, η) provides an almost contact structure

on Vξ2 , that is

(i) f
3

+ f = 0, rank f = 2n− 2 = (2n− 1)− 1;

(ii) η(ξ) = 1, f(ξ) = 0, η ◦ f = 0;

(iii) f
2
(X) = −X + η(X)ξ, for X ∈ Vξ2 .

Also, by Theorem 5.2, we obtain
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Theorem 5.5. The Riemannian metric G verifies

G(f(X), f(Y )) = G(X,Y )− η(X)η(Y ), (5.25)

for every vertical vector fields X,Y ∈ Vξ2 .

Concluding, as Vξ2 is an integrable distribution, the ensemble (f, ξ, η,G) is

an almost contact Riemannian structure on the Lie algebroid Vξ2 .

Let us consider now Φ(X,Y ) = G(f(X), Y ), for X,Y ∈ Γ(Vξ2), the verti-

cal 2-form usually associated to the almost contact Riemannian structure from

Theorem 5.5.

The vertical Liouville distribution Vξ2 is spanned by
{
P ( ∂

∂yi ), P ( ∂
∂pi

)
}

, where

by using (5.23), we have

P

(
∂

∂yi

)
=

1

P li
∂

∂yl
+

3

Pli
∂

∂pl
, P

(
∂

∂pj

)
=

2

P jk
∂

∂pk
+

4

P kj
∂

∂yk
. (5.26)

Now, using the abbreviation dV = dV |Vξ2 , by direct calculations in the basis{
P
(

∂
∂yi

)
, P
(

∂
∂pi

)}
, we get

dV η =
Φ√

F 2 +K2
. (5.27)

Remark 5.2. The relation (5.27) can be obtained directly from (5.19), since

a straightforward computation shows that ϕ = ϕ|Vξ2 = 0.

Finally, η∧
(
dV η

)n−1
= η∧

(
Φ√

F 2+K2

)n−1

6= 0, which says that
(
η, Φ√

F 2+K2

)
is a contact structure on the vertical Liouville Lie algebroid Vξ2 .

Remark 5.3. If A is a Lie algebroid, then it is well known that A ⊕ A∗ has

a natural structure of a Courant algebroid, and contact structures on Courant

Lie algebroids are recently considered in [18]. On the other hand, if we con-

sider a Riemannian vector bundle (A, gA), and A is the total space of the vec-

tor bundle A ⊕ A∗ → M , then, similarly to our study, we can construct an

almost contact Riemannian structure on an integrable vertical Liouville distribu-

tion over A. However, the most techniques used in the study of the geometry

of the total space of a vector bundle A (or its dual A∗) have some analogies

(for the case of Lie algebroids) when investigating the geometry of the pro-

longations T AA and T AA∗, respectively, and then, we can formulate the fol-

lowing problem: T AA is a Lie algebroid over A, and T AA∗ is a Lie algebroid
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over A∗, and thus, in place of a direct sum, we can consider the direct product

T AA×T AA∗ → A×A∗ (viewed as the direct sum of pr−1
1 (T AA)→ A×A∗ and

of pr−1
2 (T AA∗)→ A×A∗, where pr1 : A×A∗ → A and pr2 : A×A∗ → A∗). In this

way, we can consider a vertical subbundle of T AA×T AA∗ as V
(
T AA× T AA∗

)
=

pr−1
1 (V AA) ⊕ pr−1

2 (V AA∗), where V AA is the vertical subbundle of T AA, and

V AA∗ is the vertical subbundle of T AA∗. Moreover, we can consider the Liou-

ville (Euler) section of V
(
T AA× T AA∗

)
as the direct sum of the canonical Li-

ouville sections of pr−1
1 (V AA) and pr−1

2 (V AA∗), and a Liouville-type subbundle

of V
(
T AA× T AA∗

)
defined as the orthogonal subbundle of V

(
T AA× T AA∗

)
to the line bundle generated by the Liouville section. Then, another problem

to solve is the construction of an almost contact Riemannian structure on the

vertical Liouville subbundle using the above procedure.
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