Publ. Math. Debrecen 91/1-2 (2017), 81–93 DOI: 10.5486/PMD.2017.7655

Finite 2-groups of rank 2

By XIUYUN GUO (Shanghai) and JIAO WANG (Tianjin)

Abstract. Let G be a 2-group. In this paper, we investigate the 2-group G in which r(G) = 2 and G has more than three involutions. We prove that if $\Omega_1(G) \cong D_{2^n}$ or $D_{2^n} * C_4$ with $n \ge 3$, then G' is abelian and there exists a maximal subgroup M of G such that M is metacyclic. If $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$ with $n, m \ge 3$, then either $\Phi(G) \le \Omega_1(G)$ or $|\Phi(G)| = |\Omega_1(G)|$ and $G' \cap \Omega_1(G)$ is a maximal subgroup of $\Omega_1(G)$.

1. Introduction

All groups considered in this paper are finite.

Let G be a p-group. Then $r(G) = \max\{\log_p |E| | E \text{ is an elementary abelian subgroup in } G\}$ is called the rank of G. A well-known result is that G is cyclic or G is generalized quaternion if r(G) = 1. So it is natural to investigate p-groups with r(G) = 2. For the case p > 2, BLACKBURN in [3] has given the classification of p-groups with r(G) = 2. For the case p = 2, many authors have investigated 2-groups in which there are exactly three involutions. For example, USTJUŽANINOV [8] proves that if a 2-group G has exactly three involutions and Z(G) is non-cyclic, then G has a normal metacyclic subgroup M of index at most 4 and G/M is elementary abelian. KONVISSER [7] goes one step further and proves that if a 2-group G has exactly three involutions and Z(G) is cyclic, then G has exactly three involutions and Z(G) is cyclic, then G has a normal metacyclic subgroup M of index at most 4 and G/M is elementary abelian. KONVISSER [7] goes one step further and proves that if a 2-group G has exactly three involutions and Z(G) is cyclic, then G has a metacyclic subgroup M of index at most 4 and "M is normal in G in most of the cases". JANKO [5] clears up this remaining, very difficult situation

Key words and phrases: involution, rank, maximal subgroup.

Mathematics Subject Classification: 20D15, 20D25, 20D30.

The research of the work was partially supported by the National Natural Science Foundation of China (11371237) and a grant of "The First-Class Discipline of Universities in Shanghai".

and determines completely the structure of G in terms of two generators and relations. Now, it is natural to ask the following question:

How about the structure of a 2-group G with r(G) = 2 in which there are more than three involutions?

For convenience, we call a 2-group G a $\mathcal{R}_2\mathcal{I}^{>3}$ -group if r(G) = 2 and there are more than three involutions in G. In this paper, we hope to investigate the structure of a 2-group G satisfying the condition $\mathcal{R}_2\mathcal{I}^{>3}$. According to a result of JOHNSEN [6], we see that a 2-group G is a $\mathcal{R}_2\mathcal{I}^{>3}$ -group if and only if $\Omega_1(G) \cong D_{2^n}$ or $D_{2^n} * C_4$ or $D_{2^n} * Q_{2^m}$ with $n, m \ge 3$. Hence, we investigate 2-groups satisfying the condition $\mathcal{R}_2\mathcal{I}^{>3}$ in terms of the structure of $\Omega_1(G)$.

2. Preliminaries

For convenience, we use D_{2^n} and Q_{2^n} to denote the dihedral group and the generalized quaternion group of order 2^n , respectively. We use C_{p^m} to denote a cyclic group of order p^m , $C_{p^m}^n$ the direct product of n cyclic groups of order p^m . If H and K are groups, then H * K means a central product of H and K. For other notation and terminology, the reader is referred to [4].

Now, we list some results which will be used later.

Lemma 2.1 ([6, Theorem 3.1]). Let G be a 2-group. Then r(G) = 2 if and only if $\Omega_1(G) \cong C_2 \times C_2$ or D_{2^n} , or $D_{2^n} * C_4$, or $D_{2^n} * Q_{2^m}$, with $n, m \ge 3$.

Lemma 2.2 ([5, Theorem 2.2]). Let G be a non-metacyclic 2-group with exactly three involutions. If W is a maximal normal abelian non-cyclic subgroup of exponent ≤ 4 in G, then $C_G(W)$ is metacyclic.

Lemma 2.3 ([1, Section 1, Lemma 1.1]). If a non-abelian *p*-group *G* has an abelian maximal subgroup, then |G| = p|G'||Z(G)|.

Lemma 2.4 ([2, Section 50, Lemma 50.3]). Let G be a 2-group which has no normal elementary abelian subgroups of order 8. Then every subgroup U of Gis generated by four elements.

Lemma 2.5 ([1, Section 41, Remark 2]). Let G be a p-group. Then G is metacyclic if and only if $\Omega_2(G)$ is metacyclic.

Lemma 2.6 ([1, Section 1, Exercise 85]). Let a non-cyclic *p*-group *G* be metacyclic. If *G* is not a 2-group of maximal class, then $\Omega_1(G) \cong C_p \times C_p$.

Lemma 2.7 ([1, Section 1, Proposition 1.13]). Let G be a p-group, and let $N \leq \Phi(G)$ be G-invariant. If Z(N) is cyclic, then N is also cyclic.

Theorem 2.8. If a 2-group G is a $\mathcal{R}_2\mathcal{I}^{>3}$ -group, then Z(G) is cyclic.

PROOF. If Z(G) is not cyclic, then r(Z(G))=2. It follows that $\Omega_1(G) \leq Z(G)$, which implies G has exactly three involutions, a contradiction.

Theorem 2.9. If G is a 2-group such that $\Omega_1(G) \cong D_{2^n}$ or $D_{2^n} * Q_{2^m}$ with $n, m \ge 3$, then $|Z(G)| = |Z(\Omega_1(G))| = 2$.

PROOF. It is clear that $|Z(\Omega_1(G))| = 2$, and that there exists an element $x \in \Omega_1(G)$ such that $Z(\Omega_1(G)) = \langle x^2 \rangle$. If $Z(G) > Z(\Omega_1(G))$, then there exists an element $g \in Z(G)$ such that $o(g) = 2^s \ge 4$ and $g^{2^{s-1}} \in Z(G) \cap \Omega_1(G) = \langle x^2 \rangle$. In this case, $o(xg^{2^{s-2}}) = 2$. Thus $xg^{2^{s-2}} \in \Omega_1(G)$, and so $g^{2^{s-2}} \in Z(\Omega_1(G))$, in contradiction to $|Z(\Omega_1(G))| = 2$. Hence, $|Z(G)| = |Z(\Omega_1(G))| = 2$.

Corollary 2.10. If G is a 2-group such that $\Omega_1(G) \cong D_{2^n}$ or $D_{2^n} * Q_{2^m}$ with $n, m \ge 3$, then $C_G(\Omega_1(G)) = Z(\Omega_1(G))$.

PROOF. If there exists an element $g \in C_G(\Omega_1(G))$ such that $g \notin Z(\Omega_1(G))$, then $H = \Omega_1(G)\langle g \rangle > \Omega_1(G)$ and $g \in Z(H)$. Noticing that $\Omega_1(H) = \Omega_1(G)$, we see that $Z(H) = Z(\Omega_1(H))$ by Theorem 2.9. Thus $g \in Z(\Omega_1(H)) = Z(\Omega_1(G))$, a contradiction. So $C_G(\Omega_1(G)) = Z(\Omega_1(G))$.

Lemma 2.11. Let a 2-group G be a $\mathcal{R}_2\mathcal{I}^{>3}$ -group, and let N be a normal subgroup of G with $N \leq \Phi(G)$. If N is not cyclic, then $\Omega_1(N) \cong C_2 \times C_2$.

PROOF. Lemma 2.7 implies that Z(N) is not cyclic. Thus r(N) = 2. It follows from Lemma 2.1 and Theorem 2.8 that $\Omega_1(N) \cong C_2 \times C_2$.

Lemma 2.12. Let a 2-group G be a $\mathcal{R}_2\mathcal{I}^{>3}$ -group. If $\Phi(G)$ is not cyclic, then G has the unique normal subgroup N such that $N \cong C_2 \times C_2$.

PROOF. By Lemma 2.11, $\Omega_1(\Phi(G)) \cong C_2 \times C_2$. If there exists $N \trianglelefteq G$ such that $N \cong C_2 \times C_2$ and $N \neq \Omega_1(\Phi(G))$, then $C_G(N)$ is a maximal subgroup in G by Theorem 2.8. It follows that $\Omega_1(\Phi(G)) \le \Omega_1(C_G(N)) = N$, a contradiction. \Box

Lemma 2.13. Let G be a group of order 2^n and $\Omega_1(G) \cong D_{2^m}$ with $m \ge 3$. If G has a maximal subgroup M such that $\Omega_1(G) \le M$ and M is of maximal class, then G is of maximal class.

PROOF. By the hypotheses of the lemma, we see that M is dihedral or semidihedral of order 2^{n-1} . Then, we may assume $M = \langle a, b \mid a^{2^{n-2}} = b^2 = 1, [a, b] =$

 $a^{i2^{n-3}-2}\rangle$, with $n \ge 4$ if i = 0, and $n \ge 5$ if i = 1. Thus $|M'| = 2^{n-3}$, and therefore $2^{n-3} \le |G'| \le 2^{n-2}$. If $|G'| = 2^{n-2}$, then G is of maximal class. Now, we assume $G' = M' = \langle a^2 \rangle$. Take $x \in G \setminus M$. It follows from $[a, x] \in \langle a^2 \rangle$ that $[a, x^2] \in \langle a^4 \rangle$, which implies $x^2 \in \langle a \rangle$. Assume $[b, x] = a^{2j}$. If $2 \mid j$ or i = 0, then $[b, xa^{-j}] = 1$. If $2 \nmid j$ and i = 1, then $[b, xa^{2^{n-4}-j}] = 1$. Thus, without loss of generality, we may assume [b, x] = 1. Then $x^2 \in Z(M) = \langle a^{2^{n-3}} \rangle$, and so $x^2 = a^{2^{n-3}}$. Clearly, $[a^{2^{n-4}}, x] = 1$ or $a^{2^{n-3}}$. Thus $o(a^{2^{n-4}}x) = 2$ if $[a^{2^{n-4}}, x] = 1$, and $o(a^{2^{n-4}}bx) = 2$ if $[a^{2^{n-4}}, x] = a^{2^{n-3}}$. It follows that $x \in M$ in both cases, a contradiction. \Box

Theorem 2.14. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n}$ with $n \ge 3$. Then $G = \Omega_1(G)$ is dihedral or G is semi-dihedral with $|G : \Omega_1(G)| = 2$.

PROOF. If $\Omega_1(G) = G$, then the result is clear. Now, we assume $\Omega_1(G) < G$ and H is a subgroup of G such that $\Omega_1(G)$ is a maximal subgroup of H. It follows from Lemma 2.13 that H is of maximal class. Thus H is dihedral or semi-dihedral. If H is dihedral, then $\Omega_1(G) < H = \Omega_1(H)$, a contradiction. So H is semidihedral. If H < G, then there exists $K \leq G$ such that H is a maximal subgroup in K. By Lemma 2.13 again, K is of maximal class. Then, for any L < K, we see that L is not a semi-dihedral group, a contradiction. So H = G and G is semi-dihedral. \Box

3. 2-groups with $\Omega_1(G) \cong D_{2^n} * C_4$

Lemma 3.1. If $\Omega_1(G) \cong D_{2^n} * C_4 = \langle a, b, c \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^2, [a, b] = a^{-2}, [c, a] = [c, b] = 1 \rangle$ with $n \ge 4$, then $[\Omega_1(G), G] \le \langle a \rangle$.

PROOF. It is clear that $Z(\Omega_1(G)) = \langle c \rangle$ and $\Omega_1(G)' = \langle a^2 \rangle$. Then $[\langle c \rangle, G] \leq \langle c^2 \rangle \leq \langle a \rangle$ and $\langle a^{2^{n-3}} \rangle \operatorname{char} \langle a^2 \rangle \leq G$. Thus $C_G(a^{2^{n-3}})$ is a maximal subgroup of G, and so $[\Omega_1(G), G] \leq \Omega_1(G) \cap C_G(a^{2^{n-3}}) = \langle a, c \rangle$. For any $g \in G$, it follows from $[b^2, g] = [(ab)^2, g] = 1$ that $[b, g] \in \langle a \rangle$ and $[ab, g] \in \langle a \rangle$, which implies $[a, g] \in \langle a \rangle$. Hence, $[\Omega_1(G), G] \leq \langle a \rangle$.

Lemma 3.2. If $\Omega_1(G) \cong D_8 * C_4 = \langle a, b \rangle * \langle c \rangle$, then there exists an involution $g \notin \langle c \rangle$ such that $[\Omega_1(G), G] \leq \langle cg \rangle$.

PROOF. It is easy to see that there exists $N \leq G$ such that $N \cong C_2 \times C_2$. Without loss of generality, we may assume o(a) = o(b) = 2 and $N = \langle b, c^2 \rangle$. Then $[\langle b \rangle, G], [\langle c \rangle, G] \leq \langle c^2 \rangle \leq \langle bc \rangle$, and so $\langle bc \rangle \leq G$. Thus $[\Omega_1(G), G] \leq \Omega_1(G) \cap C_G(bc) = \langle b, c \rangle$. For any $g \in G$, it follows from $[a^2, g] = 1$ that $[a, g] \in \langle bc \rangle$, which implies $[\Omega_1(G), G] \leq \langle bc \rangle$.

Theorem 3.3. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * C_4$ with $n \ge 3$. Then there exists a maximal subgroup M of G such that M is metacyclic and G' is abelian.

PROOF. We consider the following two cases: $n \ge 4$ and n = 3.

Case 1. $n \ge 4$.

We may assume $\Omega_1(G) = \langle a, b, c \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^2, [a, b] = a^{-2}, [c, a] = [c, b] = 1 \rangle$. Then $[\Omega_1(G), G] \leq \langle a \rangle$ and $\langle a^{2^{n-3}} \rangle \leq G$ by Lemma 3.1. Since $b \notin C_G(a^{2^{n-3}})$, we see that $C_G(a^{2^{n-3}})$ is a maximal subgroup of G. Let $M = C_G(a^{2^{n-3}})$. Then $\langle a^{2^{n-3}}c, a^{2^{n-2}} \rangle \leq \Omega_1(M) \leq \Omega_1(G) \cap M = \langle a, c \rangle$. Thus $\Omega_1(M) = \langle a^{2^{n-3}}c, a^{2^{n-2}} \rangle \cong C_2 \times C_2$. Let $K = \langle a^{2^{n-3}}, c \rangle$. Then K is a normal

Let $M = C_G(a^{2^{n-3}})$. Then $\langle a^{2^{n-3}}c, a^{2^{n-2}} \rangle \leq \Omega_1(M) \leq \Omega_1(G) \cap M = \langle a, c \rangle$. Thus $\Omega_1(M) = \langle a^{2^{n-3}}c, a^{2^{n-2}} \rangle \cong C_2 \times C_2$. Let $K = \langle a^{2^{n-3}}, c \rangle$. Then K is a normal abelian subgroup of G with $\exp(K) = 4$ and $K \leq \Omega_2(M)$. For any $g \in \Omega_2(M)$ and o(g) = 4, we see $g^2 \in \Omega_1(M)$. If $g^2 = a^{2^{n-2}}$, then $o(a^{2^{n-3}}g) = 2$, and so $g \in K$. If $g^2 = a^{\pm 2^{n-3}}c$, then $[a^{2^{n-3}}, g] = [c, g] = 1$. Hence, $K \leq Z(\Omega_2(M))$ in both cases.

We claim $\Omega_2(M)$ is metacyclic. Let L be a maximal normal abelian subgroup of M such that $\exp(L) = 4$ and $K \leq L$. If K = L, then $C_{\Omega_2(M)}(L) = \Omega_2(M)$ is metacyclic by Lemma 2.2. So, we may assume $K < L < \Omega_2(M)$. For any $h \in \Omega_2(M) \setminus K$ and o(h) = 4, we have $h^2 = a^{\pm 2^{n-3}}c$ by the above. Since $[a, h^2] = [a^{2^{n-3}}, h] = 1$, we see $[a^2, h] = 1$. It follows from $[b, h^2] = a^{2^{n-2}}$ that $[b, h] = a^{\pm 2^{n-3}}$. Take $x \in \Omega_2(M) \setminus L$ and $y \in L \setminus K$ such that o(x) = o(y) = 4. Then $[b, x] = a^{\pm 2^{n-3}}$ and $[b, y] = a^{\pm 2^{n-3}}$. Thus $[b, xy] \in \langle a^{2^{n-2}} \rangle$. Noticing that $o(xy) \leq 4$, we see $xy \in K$, and so $x \in \langle K, y \rangle \leq L$, a contradiction. Thus $\Omega_2(M)$ is metacyclic. By Lemma 2.5, M is metacyclic. Then M' is cyclic and $G' \leq C_G(M')$. Since $G = M\langle b \rangle$, we see $G' = \langle M', [b, M] \rangle \leq \langle M', a \rangle$, which implies G' is abelian.

Case 2. n = 3.

In this case, we may assume $\Omega_1(G) = \langle a, b, c \mid a^2 = b^2 = c^4 = 1, [b, a] = c^2, [b, c] = [a, c] = 1 \rangle$ and $[\Omega_1(G), G] \leq \langle bc \rangle$ by Lemma 3.2. Then $\langle bc \rangle \trianglelefteq G$ and $C_G(bc)$ is a maximal subgroup of G.

Let $M = C_G(bc)$. Then $\langle b, c^2 \rangle \leq \Omega_1(M) \leq \Omega_1(G) \cap M = \langle b, c \rangle$. Thus $\Omega_1(M) = \langle b, c^2 \rangle$. Let $K = \langle b, c \rangle$. Then K is a normal abelian subgroup of G and $\exp(K) = 4$. For any $g \in \Omega_2(M)$ and o(g) = 4, we see $g^2 \in \Omega_1(M)$. If $g^2 = c^2 = (bc)^2$, then o(bcg) = 2, and so $g \in K$. If $g^2 = bc^2$ or b, then [b,g] = [c,g] = 1. So $K \leq Z(\Omega_2(M))$.

We claim $\Omega_2(M)$ is metacyclic. Let L be a maximal normal abelian subgroup of M such that $\exp(L) = 4$ and $K \leq L$. If K = L, then $C_{\Omega_2(M)}(L) = \Omega_2(M)$ is metacyclic. We assume $K < L < \Omega_2(M)$. For any $h \in \Omega_2(M) \setminus K$ and o(h) = 4, we have $h^2 = bc^2$ or b, which implies $[a, h] = bc^{\pm 1}$. Take $x \in \Omega_2(M) \setminus L$ and

 $y \in L \setminus K$ such that o(x) = o(y) = 4. Then $[a, x] = bc^{\pm 1}$ and $[a, y] = bc^{\pm 1}$. Since $[a, xy] \in \langle c^2 \rangle$ and $o(xy) \leq 4$, we see $xy \in K$, and so $x \in \langle K, y \rangle \leq L$, a contradiction. Hence $\Omega_2(M)$ is metacyclic, and therefore M is metacyclic. Then $G' \leq C_G(M')$. It follows from $G = M \langle a \rangle$ that $G' = \langle M', [a, M] \rangle \leq \langle M', bc \rangle$. So G' is abelian.

Corollary 3.4. Let G be a $\mathcal{R}_2\mathcal{I}^{>3}$ -group. Then $d(\Omega_1(G)) \leq 3$ if and only if there exists a maximal subgroup M of G such that M is metacyclic.

PROOF. If $d(\Omega_1(G)) \leq 3$, then, by Theorems 2.14 and 3.3, there exists a maximal subgroup M of G such that M is metacyclic.

Conversely, if there exists a maximal subgroup M of G such that M is metacyclic, then $|\Omega_1(G) : M \cap \Omega_1(G)| \le 2$ and $d(M \cap \Omega_1(G)) \le 2$. It follows that $d(\Omega_1(G)) \le 3$.

Corollary 3.5. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * C_4$ with $n \ge 3$. If d(G) = 2, then $G' = [\Omega_1(G), G]$ is cyclic and $\Phi(G) \cap \Omega_1(G)$ is a maximal subgroup of $\Omega_1(G)$.

PROOF. By Theorem 3.3, there exists a maximal subgroup M of G such that M is metacyclic and $\Omega_1(G) \not\leq M$. Then $\Omega_1(G) \not\leq \Phi(G)$. We assume $Z(\Omega_1(G)) = \langle a \rangle$. Since G is not metacyclic and d(G) = 2, we see $a \in \Phi(G)$. It follows from Lemmas 3.1 and 3.2 that there exists an element $b \in \Omega_1(G)$ such that $[\Omega_1(G), G] \leq \langle b \rangle$, and $\langle a, b \rangle$ is a maximal subgroup of $\Omega_1(G)$. Then $\langle b \rangle \leq G$, and so $b \in \Phi(G)$. Thus $\Phi(G) \cap \Omega_1(G) = \langle a, b \rangle$. So there exist $c \in \Omega_1(G) \setminus \langle a, b \rangle$ and $g \in G$ such that $G = \langle c, g \rangle$, which implies $G' = [\Omega_1(G), G]$ is cyclic.

Corollary 3.6. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * C_4$ with $n \ge 3$. Then either G' is cyclic or $\Omega_1(G) \cap G'$ is a maximal subgroup of $\Omega_1(G)$.

PROOF. We may assume G' is not cyclic. Then Corollary 3.5 implies d(G) = 3 and $\Omega_1(G) < G$. By Theorem 3.3, there exists a maximal subgroup M of G such that M is metacyclic. Then $G = \Omega_1(G)M$. It follows from G' being not cyclic that M is not of maximal class. Then $\Omega_1(M) \cong C_2 \times C_2$ by Lemma 2.6. If $\Omega_1(G) \cap M \leq \Phi(M)$, then, by Lemmas 3.1 and 3.2, we see $G' = [\Omega_1(G), G]$ is cyclic. Thus $\Omega_1(G) \cap M \leq \Phi(M)$. We may assume $M = \langle x, y \rangle, \langle x \rangle \leq M$ and $\Omega_1(G) = \langle a, b, c \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^2, [a, b] = a^{-2}, [c, a] = [c, b] = 1 \rangle$. Now, we consider the following two cases: $n \geq 4$ and n = 3.

Case 1. $n \ge 4$.

Since $a^2 \in M$ and $\Omega_1(M) \cong C_2 \times C_2$, we see $\Omega_1(G) \cap M = \Omega_1(G) \cap \Phi(G) = \langle a, c \rangle$. Then $\Omega_1(M) = \langle a^{2^{n-2}}, a^{2^{n-3}}c \rangle$. By Lemma 3.1, $[\Omega_1(G), G] \leq \langle a \rangle$. If $a \notin G'$,

then, for any $g \in G$, we see $[b,g] \in \langle a^2 \rangle$. Since $\Phi(G) = \Phi(M) = \langle x^2, y^2 \rangle$, $[\langle b \rangle, \Phi(G)] \leq \langle a^4 \rangle$, which implies $[b,a] \in \langle a^4 \rangle$, a contradiction. So $a \in G'$. It follows from G' being not cyclic that $\Omega_1(M) \leq G'$. Thus, $\Omega_1(G) \cap G' = \Omega_1(G) \cap M$ is a maximal subgroup of $\Omega_1(G)$.

Case 2. n = 3.

In this case, $|\Omega_1(G)| = 16$. If $b \in M$, then, since $\Omega_1(M) \cong C_2 \times C_2$, we see $ab \notin M$. Without loss of generality, we may assume $b \notin M$. Since $|\Omega_1(G) \cap M| = 8$, we see $\Omega_1(G) \cap M$ is abelian. If $\Omega_1(G) \cap G' < \Omega_1(G) \cap M$, then $\Omega_1(G) \cap G' \cong C_2 \times C_2$. It follows from Lemma 3.2 that $[\Omega_1(G), G] \cong C_2$, which implies $[\Omega_1(G), \Phi(G)] = 1$. Thus $\langle b, \Omega_1(G) \cap M \rangle$ is abelian, and so r(G) = 3, in contradiction to the hypothesis. So $\Omega_1(G) \cap G' = \Omega_1(G) \cap M$ is a maximal subgroup of $\Omega_1(G)$.

4. 2-groups with $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$

Lemma 4.1. Let G be a $\mathcal{R}_2\mathcal{I}^{>3}$ -group of order 2^n . If G' is cyclic, then $d(\Omega_1(G)) \leq 3$ or $G = \Omega_1(G) \cong D_{2^{n-2}} * Q_8$ with $n \geq 5$.

PROOF. If $d(\Omega_1(G)) > 3$, then $\Omega_1(G) \cong D_{2^m} * Q_8 \cong D_8 * Q_{2^m}$ with $m \ge 3$ by Lemma 2.1. If $\Omega_1(G) < G$, then, without loss of generality, we may assume $\Omega_1(G)$ is a maximal subgroup of G. Thus, we may assume $\Omega_1(G) \cong D_{2^{n-3}} * Q_8 = \langle a, b, c, d \mid a^{2^{n-4}} = b^2 = 1, c^2 = d^2 = a^{2^{n-5}}, [a, b] = a^{-2}, [c, d] = c^2, [a, c] = [a, d] = [b, c] = [b, d] = 1$. Now, we consider the following two cases: $n \ge 7$ and n = 6.

Case 1. $n \geq 7$.

In this case, $\langle a^{2^{n-6}} \rangle \operatorname{char} \langle a^2 \rangle \leq G$. Then $C_G(a^{2^{n-6}})$ is a maximal subgroup of G and $[\Omega_1(G), G] \leq C_{\Omega_1(G)}(a^{2^{n-6}}) = \langle a, c, d \rangle$. By calculation, we see $[\langle a \rangle, G], [\langle b \rangle, G] \leq \langle a \rangle$ and $[\langle c \rangle, G], [\langle d \rangle, G] \leq \langle c^2 \rangle$. Noticing that $[c, d] = c^2$, we may take a suitable element $x \in G \setminus \Omega_1(G)$ such that [c, x] = [d, x] = 1. Then $x^2 \in C_G(a^{2^{n-6}}) \cap C_G(\langle c, d \rangle) \cap \Omega_1(G) = \langle a \rangle$. If $x^2 = a^{2i}$, then $[a^i, x] = 1$ or $a^{2^{n-5}}$. Thus $o(a^{-i}x) = 2$ if $[a^i, x] = 1$, and $o(a^{-i}cx) = 2$ if $[a^i, x] = a^{2^{n-5}}$, which implies $x \in \Omega_1(G)$, a contradiction. So we may assume $x^2 = a$. It follows from $[b, x^2] = a^2$ that $[b, x] = x^2$ or $x^{2+2^{n-4}}$. Then o(bx) = 2 if $[b, x] = x^2$, and o(bcx) = 2 if $[b, x] = x^{2+2^{n-4}}$, another contradiction.

Case 2. n = 6.

If |G'| = 2, then $\Phi(G) = \mathcal{O}_1(G) \leq Z(G)$. Thus $\Phi(G) = Z(G) \cap \Omega_1(G) = Z(\Omega_1(G)) = \langle a^2 \rangle$, which implies d(G) = 5, in contradiction to Lemma 2.4. Thus

|G'| = 4. Assume $G' = \langle x \rangle$. Then $C_G(x)$ is a maximal subgroup of G by Theorem 2.9. It follows that $\Omega_1(G) \cap C_G(x) \cong D_8 * C_4$. We may assume $N = \Omega_1(G) \cap C_G(x) = \langle y, z \rangle * \langle x \rangle$, $w \in \Omega_1(G) \setminus C_G(x)$ and $g \in C_G(x) \setminus \Omega_1(G)$ with o(y) = o(z) = o(w) = 2. Then $G = \langle N, g \rangle \langle w \rangle$. Noticing that $[N, G] \leq \langle x^2 \rangle$ and $[y, z] = x^2$, we may assume $[N, \langle g \rangle] = 1$. Thus $[w, g] = x^{\pm 1}$, and $g^2 \in Z(N) = \langle x \rangle$. Since $[w, g^2] \neq 1$, we may assume $g^2 = x$. If [w, g] = x, then o(wg) = 2, which implies $g \in \Omega_1(G)$, a contradiction. So $[w, g] = x^{-1}$. Then o(wyg) = 2 if $[w, y] = x^2$, o(wzg) = 2 if $[w, z] = x^2$, and o(wyzg) = 2 if [w, y] = [w, z] = 1, another contradiction. \Box

Theorem 4.2. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$ with $n, m \ge 3$. Then one of the following holds:

- (1) If G has more than one normal subgroup of order 4, then there exists a maximal subgroup M of G such that $d(\Omega_1(M)) = 3$.
- (2) If G has the unique normal subgroup of order 4, then for any maximal subgroup M of G, $d(\Omega_1(M)) \neq 3$ and n = m.

PROOF. By Lemma 4.1, we may assume G' is not cyclic. Then $\Omega_1(G') \cong C_2 \times C_2$ by Lemma 2.11. We assume $\Omega_1(G) = \langle a, b, c, d \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^{2^{m-2}} = d^2, [a, b] = a^{-2}, [c, d] = c^{-2}, [a, c] = [a, d] = [b, c] = [b, d] = 1 \rangle.$

If there exists $N \leq G$ such that $N \neq \Omega_1(G')$ and |N| = 4, then, by Lemma 2.12, $N \cong C_4$. Thus $C_G(N)$ is a maximal subgroup of G by Theorem 2.9. If $d(\Omega_1(C_G(N))) \neq 3$, then $\Omega_1(C_G(N)) \cong C_2 \times C_2$ by Lemma 2.1 and Theorem 2.9. Assume $N = \langle x \rangle$. Then $\langle x^2 \rangle \leq Z(G) \cap \Omega_1(G)$ and $x^2 = a^{2^{n-2}} = c^{2^{m-2}} = d^2$. Thus there exists an element $g \in \langle c^{2^{m-3}}, d \rangle \setminus \langle d^2 \rangle$ such that [x, g] = 1. Without loss of generality, we may assume $[c^{2^{m-3}}, x] = 1$, which implies $o(c^{2^{m-3}}x) = 2$. Since $\Omega_1(C_G(N)) \cong C_2 \times C_2$ and $\Omega_1(\langle a, b \rangle) = \langle a, b \rangle \leq C_G(\langle c, d \rangle)$, we see $x \notin \langle c, d \rangle$. Then $\Omega_1(C_G(N)) = \langle x^2, c^{2^{m-3}}x \rangle$. It follows that $[d, x] = x^2$. If $[a^{2^{n-3}}, x] = x^2$, then $a^{2^{n-3}}d \in \Omega_1(C_G(N))$, a contradiction. If $[a^{2^{n-3}}, x] = 1$, then $a^{2^{n-3}}x \in \Omega_1(C_G(N))$, and so $\langle x \rangle = \langle a^{2^{n-3}} \rangle$, in a contradiction to $[d, x] = x^2$. Thus $d(\Omega_1(C_G(N))) = 3$.

If G has the unique normal subgroup N such that |N| = 4, then $N = \Omega_1(G') \cong C_2 \times C_2$. If there exists a maximal subgroup M of G such that $d(\Omega_1(M)) = 3$, then, by Lemma 2.1, we see $Z(\Omega_1(M)) \cong C_4$ and $Z(\Omega_1(M)) \trianglelefteq G$, a contradiction. If $n \neq m$, then we may assume n > m, and so $\mathcal{O}_{n-3}(\Omega_1(G)) \cong C_4$, a contradiction. Hence, for any maximal subgroup M of G, $d(\Omega_1(M)) \neq 3$ and n = m.

Theorem 4.3. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$ with $n, m \ge 3$.

If G has more than one normal subgroup of order 4, then G' is abelian and $\Phi(G) < \Omega_1(G)$.

PROOF. If G' is cyclic, then the result is clear by Lemma 4.1. We assume G' is not cyclic, and so $\Omega_1(\Phi(G)) \cong C_2 \times C_2$ by Lemma 2.11. It follows from Lemma 2.12 that there exists $N \trianglelefteq G$ such that $N \cong C_4$. Then $C_G(N)$ is a maximal subgroup of G by Theorem 2.9 and $\Omega_1(\Phi(G))N \cong C_4 \times C_2$. By Theorem 4.2, there exists a maximal subgroup M of G such that $d(\Omega_1(M)) = 3$. Then $G = M\Omega_1(G)$ and $G' = \langle M', [G, \Omega_1(G)] \rangle$. Now, we may assume $N = \langle x \rangle$ and $\Omega_1(G) = \langle a, b, c, d \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^{2^{m-2}} = d^2, [a, b] = a^{-2}, [c, d] = c^{-2}, [a, c] = [b, c] = [a, d] = [b, d] = 1 \rangle$. We consider the two cases: $n \ge 4$ and n = 3.

Case 1. $n \geq 4$.

If $m \ge 4$, then $\Omega_1(\Phi(G)) = \langle a^{2^{n-2}}, a^{2^{n-3}}c^{2^{m-3}} \rangle$. Since $x^2 = a^{2^{n-2}}$ and $a^{2^{n-3}} \in C_G(x)$, we see $o(a^{2^{n-3}}x) = 2$, and so $x \in \Omega_1(G)$. Thus $\langle x \rangle = \langle a^{2^{n-3}} \rangle$ or $\langle c^{2^{m-3}} \rangle$. It follows that $\langle c^{2^{m-3}} \rangle \trianglelefteq G$ and $\langle a^{2^{n-3}} \rangle \trianglelefteq G$. Then $C_G(a^{2^{n-3}})$ and $C_G(c^{2^{m-3}})$ are maximal subgroups of G.

If m = 3, then $\langle a^{2^{n-3}} \rangle \operatorname{char} \langle a^2 \rangle \leq G$. Thus $C_G(a^{2^{n-3}})$ is a maximal subgroup of G. Without loss of generality, we may assume $\Omega_1(\Phi(G)) = \langle a^{2^{n-2}}, a^{2^{n-3}}c \rangle$. It follows that $\langle c \rangle \leq G$ and $C_G(c)$ is a maximal subgroup of G.

In either case, we see $C_G(a^{2^{n-3}})$ and $C_G(c^{2^{m-3}})$ are maximal subgroups of G. Then $[\Omega_1(G), G] \leq \langle a, c \rangle$. Thus $G' = \langle M', [G, \Omega_1(G)] \rangle \leq \langle M', a, c \rangle$. By calculation, we see $[\langle a \rangle, G], [\langle b \rangle, G] \leq \langle a \rangle$ and $[\langle c \rangle, G], [\langle d \rangle, G] \leq \langle c \rangle$. So $\langle a \rangle \leq G$ and $\langle c \rangle \leq G$, which implies $G' \leq C_G(a) \cap C_G(c)$. Noticing that $d(\Omega_1(M)) = 3$, we see r(M) = 2, and therefore there is a positive integer t with $t \geq 3$ such that $\Omega_1(M) \cong D_{2^t} * C_4$ by Lemma 2.1. Now using Theorem 3.3, we see M' is abelian, and so G' is abelian.

If there exists an element $g \in \Phi(G) \setminus \Omega_1(G)$, then $[b,g] \in \langle a^2 \rangle$. Assume $[b,g] = a^{2i}$. Then $[b,ga^{-i}] = 1$ and $ga^{-i} \in \Phi(G) \setminus \Omega_1(G)$. So we may assume [b,g] = 1. Similarly, we may assume [d,g] = 1. Then $g \in C_G(\langle a^{2^{n-3}}, c^{2^{m-3}} \rangle) \cap C_G(\langle b, d \rangle) \leq C_G(\Omega_1(G))$. By Corollary 2.10, $g \in Z(\Omega_1(G))$, a contradiction. So $\Phi(G) \leq \Omega_1(G)$. It follows from $\Omega_1(G) \nleq M$ that $\Phi(G) < \Omega_1(G)$.

Case 2. n = 3.

Since $D_{2^m} * Q_8 \cong D_8 * Q_{2^m}$, we assume m = 3, and so $x^2 = c^2 = d^2$. Then there exists an element $y \in \langle c, d \rangle \setminus \langle c^2 \rangle$ such that $x^2 = y^2$ and [x, y] = 1. Thus o(xy) = 2, and so $x \in \Omega_1(G)$. By Lemma 2.3, we see $\Omega_1(G)$ has no abelian maximal subgroup. Then $C_{\Omega_1(G)}(\Omega_1(\Phi(G))N) = \Omega_1(\Phi(G))N \cong C_4 \times C_2$.

It follows from $G' \leq C_G(N) \cap C_G(\Omega_1(\Phi(G)))$ that $[\Omega_1(G), G] \leq \Omega_1(\Phi(G))N$. Thus $G' = \langle M', [G, \Omega_1(G)] \rangle \leq \langle M', \Omega_1(\Phi(G)), N \rangle$, and therefore G' is abelian.

It follows from $[\Omega_1(G), G] \leq \Omega_1(\Phi(G))N \cong C_4 \times C_2$ and $[\Omega_1(\Phi(G))N, G] \leq$ $\langle x^2 \rangle$ that $[\Omega_1(G), \Phi(G)] \leq \langle x^2 \rangle$. If there exists an element $g \in \Phi(G) \setminus \Omega_1(G)$, then $g^2 \in C_G(\Omega_1(G)) = Z(\Omega_1(G))$ and $g^2 = c^2 = d^2$. Thus there exists an element $h \in \langle c, d \rangle \setminus \langle c^2 \rangle$ such that [g, h] = 1 and $g^2 = h^2$. Then o(gh) = 2 and $g \in \Omega_1(G)$, a contradiction. So $\Phi(G) < \Omega_1(G)$. \Box

Theorem 4.4. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$ with $n, m \ge 3$. If G has more than one normal subgroup of order 4, then $|G: \Omega_1(G)| \leq 4$.

PROOF. If G' is cyclic, then the conclusion holds by Lemma 4.1. Thus we may assume G' is not cyclic. By Theorem 4.2, there exists a maximal subgroup Mof G such that $d(\Omega_1(M)) = 3$. Then $\Omega_1(M) \leq \Omega_1(G) \cap M < \Omega_1(G)$. It follows from Theorem 2.8 that $Z(\Omega_1(G) \cap M)$ is cyclic. So $\Phi(G) < \Omega_1(G) \cap M < \Omega_1(G)$ by Lemma 2.7 and Theorem 4.3. Hence $|G: \Omega_1(G)| \leq 4$ by Lemma 2.4.

Theorem 4.5. Let G be a 2-group and $\Omega_1(G) \cong D_{2^n} * Q_{2^m}$ with $n, m \ge 3$. If G has the unique normal subgroup of order 4, then

- (1) G' is not abelian;
- (2) $|G: \Omega_1(G)| \le 8;$
- (3) either $\Phi(G) \leq \Omega_1(G)$ or $|\Omega_1(G)| = |\Phi(G)|$ and $\Omega_1(G) \cap G'$ is a maximal subgroup of $\Omega_1(G)$.

PROOF. By Lemma 4.1 and Lemma 2.11, G' is not cyclic and $\Omega_1(\Phi(G)) \cong$ $C_2 \times C_2$. Then $C_G(\Omega_1(\Phi(G)))$ is a maximal subgroup of G by Theorem 2.8 and $[\Omega_1(G), G] \leq C_{\Omega_1(G)}(\Omega_1(\Phi(G))).$ By Theorem 4.2, we may assume $\Omega_1(G) = \langle a, b, c, d \mid a^{2^{n-1}} = b^2 = 1, a^{2^{n-2}} = c^{2^{n-2}} = d^2, [a, b] = a^{-2}, [c, d] = c^{-2}, [a, c] = c^{-2}, [a, c]$ [b,c] = [a,d] = [b,d] = 1. We consider the two cases: $n \ge 4$ and n = 3.

Case 1. n > 4.

In this case, $\Omega_1(\Phi(G)) = \langle a^{2^{n-2}}, a^{2^{n-3}}c^{2^{n-3}} \rangle$ and $[\Omega_1(G), G] \leq \langle a, c, bd \rangle$. By the hypotheses of the theorem, $\langle a^{2^{n-3}} \rangle \not \triangleq G$ and $\langle c^{2^{n-3}} \rangle \not \triangleq G$. For any $x \in G \setminus N_G(a^{2^{n-3}})$, by calculation, we see $[a^{2^{n-3}}, x] = a^{\pm 2^{n-3}}c^{2^{n-3}}$, $[c^{2^{n-3}}, x] = a^{\pm 2^{n-3}}c^{2^{n-3}}$, $[b, x] = a^{\pm 2^{n-3}}c^ibd$ and $[d, x] = c^{\pm 2^{n-3}}a^jbd$. It follows that $ac \in G'$, which implies G' is not abelian. For any $y \in N_G(a^{2^{n-3}})$, by calculation, we see $[b, y] \in \langle a \rangle$ and $[c, y] \in \langle c \rangle$.

Clearly, $\Phi(G) \leq N_G(a^{2^{n-3}}) \cap N_G(c^{2^{n-3}})$. It follows that $[\langle b \rangle, \Phi(G)], [\langle ab \rangle, \Phi(G)]$

 $\Phi(G)] \leq \langle a \rangle \text{ and } [\langle d \rangle, \Phi(G)], [\langle cd \rangle, \Phi(G)] \leq \langle c \rangle. \text{ Then } \Phi(G) \leq N_G(a) \cap N_G(c).$ Take $g \in G \setminus N_G(a^{2^{n-3}})$. Then $[a^{2^{n-3}}, g] = a^{\pm 2^{n-3}}c^{2^{n-3}}$. If there exists an element $z \in G \setminus N_G(a^{2^{n-3}})\langle g \rangle$, then $[a^{2^{n-3}}, gz] \in \langle a^{2^{n-2}} \rangle$, and so $gz \in N_G(a^{2^{n-3}})$,

a contradiction. Thus $G = N_G(a^{2^{n-3}})\langle g \rangle$. It follows from $g^2 \in N_G(a^{2^{n-3}})$ that $N_G(a^{2^{n-3}})$ is a maximal subgroup of G. Since $\Omega_1(G) \leq N_G(a^{2^{n-3}})$, we see $|N_G(a^{2^{n-3}}) : \Omega_1(N_G(a^{2^{n-3}}))| = |N_G(a^{2^{n-3}}) : \Omega_1(G)| \leq 4$ by Theorem 4.4, which implies $|G : \Omega_1(G)| \leq 8$.

If $\Phi(G) \nleq \Omega_1(G)$, then there exists an element $w \in \Phi(G)$ such that $w \notin \Omega_1(G)$. If $[a^{2^{n-3}}, w] = a^{2^{n-2}}$, then $[a^{2^{n-3}}, a^j b dw] = 1$. Since $a^j b dw \in \Phi(G) \setminus \Omega_1(G)$, we may assume $[a^{2^{n-3}}, w] = 1$. Since $w \in C_G(\Omega_1(\Phi(G))), [c^{2^{n-3}}, w] = 1$. It follows that $\langle a, c \rangle \cap \langle w \rangle \neq 1$. Now, we may assume $\langle a, c \rangle \cap \langle w \rangle = w^{2^s}$.

If [b, w] = 1, then $w^{2^s} \in \langle c \rangle$. If $w^{2^s} = c^{2k}$, then $[c^k, w] = 1$ or $c^{2^{n-2}}$. Thus $o(c^{-k}w^{2^{s-1}}) = 2$ or $o(c^{2^{n-3}-k}w^{2^{s-1}}) = 2$, which implies $w^{2^{s-1}} \in C_{\Omega_1(G)}(\langle a^{2^{n-3}}, c^{2^{n-3}} \rangle) = \langle a, c \rangle$, a contradiction. So we assume $w^2 = c$. It follows from $[d, w^2] = c^2$ that [d, w] = c or $c^{1+2^{n-2}}$. Then o(dw) = 2 or $o(da^{2^{n-3}}w) = 2$, another contradiction. So $[b, w] \neq 1$. Similarly, $[d, w] \neq 1$. If $[b, w] = a^{2l}$, then $[b, w(ac)^{-l}] = 1$, a contradiction. So $[b, w] = a^t$ with $2 \nmid t$ and $[d, w] = c^r$ with $2 \nmid r$. It follows that $\langle a, c, bd \rangle \leq G'$ and $w^2 = a^u c^v$, where $2 \nmid u$ and $2 \nmid v$. If there exists an element $w_1 \in \Phi(G) \setminus \langle w, c, bd \rangle$, then $[b, w_1] = a^{t_1}$ with $2 \nmid t_1$ and $[b, ww_1] \in \langle a^2 \rangle$. By the above, we see that $ww_1 \in \Phi(G) \cap \Omega_1(G) = \langle a, c, d \rangle$, a contradiction. Thus $\Phi(G) = \langle w, c, bd \rangle$. So $|\Omega_1(G)| = |\Phi(G)|$, and $\langle a, c, bd \rangle = \Omega_1(G) \cap \Phi(G) = \Omega_1(G) \cap G'$ is a maximal subgroup of $\Omega_1(G)$.

Case 2. n = 3.

Let $H = [\Omega_1(G), G]$ and $N = \Omega_1(G) \cap C_G(\Omega_1(\Phi(G)))$. Then N is a maximal subgroup of $\Omega_1(G)$. Without loss of generality, we may assume $\Omega_1(\Phi(G)) = \langle a^2, ac \rangle$ or $\langle a^2, b \rangle$.

Subcase 1. $\Omega_1(\Phi(G)) = \langle a^2, ac \rangle.$

In this case, $N = \langle a, c, bd \rangle$. If H < N, then H is abelian by Lemma 2.7. Thus $H \leq \langle a, c \rangle$ or $\langle ac, bd \rangle$. If $H \leq \langle a, c \rangle$, then $[\langle b \rangle, G] \leq \langle a \rangle$ and $[\langle ab \rangle, G] \leq \langle a \rangle$, which implies $\langle a \rangle \leq G$, a contradiction. If $H \leq \langle ac, bd \rangle$, then $[\langle b \rangle, G], [\langle d \rangle, G] \leq \langle acbd \rangle$. Since $(bd)^2 \in Z(G)$, we see $[\langle bd \rangle, G] \leq \langle d^2 \rangle$, and so $\langle bd \rangle \leq G$, another contradiction. So H = N, which implies $\Omega_1(G) \cap G'$ is a maximal subgroup of $\Omega_1(G)$, and G' is not abelian.

It is easy to see that $[\Omega_1(G), \Phi(G)] \leq [\Omega_1(G), G, G] < H$. Thus $[\Omega_1(G), G, G]$ is abelian by Lemma 2.7, and so $[\Omega_1(G), G, G] \leq \langle a, c \rangle$ or $\langle ac, bd \rangle$.

If $[\Omega_1(G), G, G] \leq \langle a, c \rangle$, then $\Phi(G) \leq N_G(a) \cap N_G(c) \cap C_G(ac), [\langle b \rangle, \Phi(G)] \leq \langle a \rangle$, and $[\langle d \rangle, \Phi(G)] \leq \langle c \rangle$. Since $a \in H$, we see $[\langle a \rangle, G] \leq \langle a, c \rangle$, and so $[\langle a \rangle, G] \leq \langle a^2, ac \rangle$. It follows that $N_G(a)$ is a maximal subgroup of G. Thus $|G : \Omega_1(G)| \leq 8$ by Theorem 4.4. If there exists an element $x \in \Phi(G)$ such that $x \notin \Omega_1(G)$, then we may assume [a, x] = [c, x] = 1, [b, x] = 1 or a, and [d, x] = 1 or c. Thus $x^4 \in C_G(\Omega_1(G))$. By Corollary 2.10, $x^4 = a^2$. It follows that $x^2 \in \Omega_1(G) \cap \Phi(G) \setminus \langle a^2 \rangle$.

If [b, x] = 1, then $x^2 = c^{\pm 1}$ and [d, x] = c. Thus o(dax) = 2 if $x^2 = c$, and o(dx) = 2 if $x^2 = c^{-1}$, a contradiction. So [b, x] = a. If there exists an element $y \in \Phi(G) \setminus \langle x, H \rangle$, then we may assume [b, y] = a, and so $[b, xy] \in \langle a^2 \rangle$, which implies $xy \in H$, a contradiction. So $\Phi(G) = \langle x, H \rangle$ and $|\Omega_1(G)| = |\Phi(G)|$.

If $[\Omega_1(G), G, G] \leq \langle ac, bd \rangle$, then $[\langle b \rangle, \Phi(G)] \leq \langle acbd \rangle$ and $[N, G] \leq \langle ac, bd \rangle$. Thus $[\langle bd \rangle, G] \leq \langle a^2, ac \rangle$, and so $N_G(bd)$ is a maximal subgroup of G. Then $|G: \Omega_1(G)| \leq 8$ by Theorem 4.4. If there exists an element $x \in \Phi(G) \setminus \Omega_1(G)$, then, since $N \leq \Phi(G)$, we assume [bd, x] = 1. It is easy to see that $\mathcal{O}_2(\Phi(G)) \leq C_G(\Omega_1(G))$. Then $x^4 \in \mathcal{O}_2(\Phi(G)) \leq \langle (bd)^2 \rangle$ by Corollary 2.10. It follows that $x^2 \in N \setminus Z(\Omega_1(G))$. If [b, x] = 1, then [d, x] = 1 and $x^2 = bd^{\pm 1}$. It follows from $[(ab)^2, x] = 1$ that $[a, x] = bd^{\pm 1}$, and we may assume [a, x] = bd. Then o(abx) = 2if $x^2 = bd$, and o(ax) = 2 if $x^2 = bd^{-1}$, a contradiction. It follows that $[b, x] = abcd^{\pm 1}$. If there exists an element $y \in \Phi(G) \setminus \langle x, N \rangle$, then $[b, y] = abcd^{\pm 1}$. Since $[b, xy] \in \langle a^2 \rangle$, we see $xy \in \Phi(G) \cap \Omega_1(G) = N$, a contradiction. So $\Phi(G) = \langle x, N \rangle$. It follows from $x^2 \in N$ that $|\Omega_1(G)| = |\Phi(G)|$.

Subcase 2. $\Omega_1(\Phi(G)) = \langle a^2, b \rangle.$

In this case, $N = \langle b, c, d \rangle$ and $\Phi(G) \leq C_G(b)$. If H < N, then H is abelian, and we may assume $H \leq \langle b, c \rangle$. By calculation, we see $[\langle a \rangle, G] \leq \langle bc \rangle$ and $[\langle c \rangle, G] \leq \langle b, c^2 \rangle$. Since $(ac)^2 \in Z(G)$, we see $[\langle c \rangle, G] \leq \langle c^2 \rangle$, which implies $\langle c \rangle \leq G$, a contradiction. So $H = N = \Omega_1(G) \cap G'$, and G' is not abelian.

Since $[\Omega_1(G), \Phi(G)] \leq [\Omega_1(G), G, G] < H$, we see $[\Omega_1(G), G, G]$ is abelian, and we may assume $[\Omega_1(G), G, G] \leq \langle b, c \rangle$. Then $[\langle a \rangle, \Phi(G)] \leq \langle bc \rangle$ and $[N, G] \leq \langle b, c \rangle$. Thus $[\langle b \rangle, G] \leq \langle c^2 \rangle, [\langle c \rangle, G] \leq \langle b, c^2 \rangle$, and so $N_G(c)$ is a maximal subgroup of G. Then $|G : \Omega_1(G)| \leq 8$ by Theorem 4.4. It is easy to see that $[\langle d \rangle, \Phi(G)] \leq \langle b, c^2 \rangle$. Then $\mathcal{V}_2(\Phi(G)) \leq C_G(\Omega_1(G)) = Z(\Omega_1(G))$ and $\mathcal{V}_1(\Phi(G)) \leq C_G(\langle b, c, d \rangle)$. If there exists an element $x \in \Phi(G) \setminus \Omega_1(G)$, then we may assume [c, x] = 1. Since $x^4 \in Z(\Omega_1(G)) = \langle c^2 \rangle$, we see $x^2 \in N \setminus Z(\Omega_1(G))$, which implies $[a, x^2] \neq 1$, and so $[a, x] = bc^{\pm 1}$. It follows that $\Phi(G) = \langle x, N \rangle$ and $|\Omega_1(G)| = |\Phi(G)|$.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for his/her valuable suggestions and comments that contributed to the final version of this paper.

References

- [1] Y. BERKOVICH, Groups of Prime Power Order, Vol. I, Walter de Gruyter, Berlin, 2008.
- [2] Y. BERKOVICH and Z. JANKO, Groups of Prime Power Order, Vol. II, Walter de Gruyter, Berlin, 2011.

- [3] N. BLACKBURN, Generalizations of certain elementary theorems on p-groups, Proc. London. Math. Soc. (3) 11 (1961), 1–22.
- [4] B. HUPPERT, Endliche Gruppen. I, Springer-Verlag, Berlin New York, 1967.
- [5] Z. JANKO, A classification of finite 2-groups with exactly three involutions, J. Algebra 291 (2005), 505–533.
- [6] K. JOHNSEN, "Uber 2-Gruppen, in denen jede abelsche Untergruppe von höchstens 2 Elementen erzeugt wird, J. Algebra 30 (1974), 31–36.
- [7] M. W. KONVISSER, 2-groups which contain exactly three involutions, Math. Z. 130 (1973), 19–30.
- [8] A. D. USTJUŽANINOV, Finite 2-groups with three involutions, Sibirsk. Mat. Ž. 13 (182–197) (in Russian).

XIUYUN GUO DEPARTMENT OF MATHEMATICS SHANGHAI UNIVERSITY SHANGHAI 200444 P. R. CHINA *E-mail:* xyguo@staff.shu.edu.cn

JIAO WANG BASIC COURSE DEPARTMENT TIANJIN SINO-GERMAN UNIVERSITY OF APPLIED SCIENCE 2 YASEN ROAD TIANJIN 300350 P. R. CHINA

E-mail: wangjiaotiedan@163.com

(Received March 25, 2016; revised September 30, 2016)