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Finite 2-groups of rank 2

By XIUYUN GUO (Shanghai) and JIAO WANG (Tianjin)

Abstract. Let G be a 2-group. In this paper, we investigate the 2-group G in

which r(G) = 2 and G has more than three involutions. We prove that if Ω1(G) ∼= D2n

or D2n ∗ C4 with n ≥ 3, then G′ is abelian and there exists a maximal subgroup M

of G such that M is metacyclic. If Ω1(G) ∼= D2n ∗ Q2m with n,m ≥ 3, then either

Φ(G) ≤ Ω1(G) or |Φ(G)| = |Ω1(G)| and G′ ∩ Ω1(G) is a maximal subgroup of Ω1(G).

1. Introduction

All groups considered in this paper are finite.

Let G be a p-group. Then r(G) = max{logp |E|
∣∣ E is an elementary abelian

subgroup in G} is called the rank of G. A well-known result is that G is cyclic

or G is generalized quaternion if r(G) = 1. So it is natural to investigate p-

groups with r(G) = 2. For the case p > 2, Blackburn in [3] has given the

classification of p-groups with r(G) = 2. For the case p = 2, many authors have

investigated 2-groups in which there are exactly three involutions. For example,

Ustjužaninov [8] proves that if a 2-group G has exactly three involutions and

Z(G) is non-cyclic, then G has a normal metacyclic subgroup M of index at

most 4 and G/M is elementary abelian. Konvisser [7] goes one step further and

proves that if a 2-group G has exactly three involutions and Z(G) is cyclic, then

G has a metacyclic subgroup M of index at most 4 and “M is normal in G in

most of the cases”. Janko [5] clears up this remaining, very difficult situation
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and determines completely the structure of G in terms of two generators and

relations. Now, it is natural to ask the following question:

How about the structure of a 2-group G with r(G) = 2 in which there are more

than three involutions?

For convenience, we call a 2-group G a R2I>3-group if r(G) = 2 and there

are more than three involutions in G. In this paper, we hope to investigate the

structure of a 2-group G satisfying the condition R2I>3. According to a result of

Johnsen [6], we see that a 2-group G is aR2I>3-group if and only if Ω1(G) ∼= D2n

or D2n ∗C4 or D2n ∗Q2m with n,m ≥ 3. Hence, we investigate 2-groups satisfying

the condition R2I>3 in terms of the structure of Ω1(G).

2. Preliminaries

For convenience, we use D2n and Q2n to denote the dihedral group and the

generalized quaternion group of order 2n, respectively. We use Cpm to denote

a cyclic group of order pm, Cn
pm the direct product of n cyclic groups of order pm.

If H and K are groups, then H ∗K means a central product of H and K. For

other notation and terminology, the reader is referred to [4].

Now, we list some results which will be used later.

Lemma 2.1 ([6, Theorem 3.1]). Let G be a 2-group. Then r(G) = 2 if and

only if Ω1(G) ∼= C2 × C2 or D2n , or D2n ∗ C4, or D2n ∗Q2m , with n,m ≥ 3.

Lemma 2.2 ([5, Theorem 2.2]). Let G be a non-metacyclic 2-group with

exactly three involutions. If W is a maximal normal abelian non-cyclic subgroup

of exponent ≤ 4 in G, then CG(W ) is metacyclic.

Lemma 2.3 ([1, Section 1, Lemma 1.1]). If a non-abelian p-group G has an

abelian maximal subgroup, then |G| = p|G′||Z(G)|.

Lemma 2.4 ([2, Section 50, Lemma 50.3]). Let G be a 2-group which has

no normal elementary abelian subgroups of order 8. Then every subgroup U of G

is generated by four elements.

Lemma 2.5 ([1, Section 41, Remark 2]). Let G be a p-group. Then G is

metacyclic if and only if Ω2(G) is metacyclic.

Lemma 2.6 ([1, Section 1, Exercise 85]). Let a non-cyclic p-group G be

metacyclic. If G is not a 2-group of maximal class, then Ω1(G) ∼= Cp × Cp.
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Lemma 2.7 ([1, Section 1, Proposition 1.13]). Let G be a p-group, and let

N ≤ Φ(G) be G-invariant. If Z(N) is cyclic, then N is also cyclic.

Theorem 2.8. If a 2-group G is a R2I>3-group, then Z(G) is cyclic.

Proof. If Z(G) is not cyclic, then r(Z(G))=2. It follows that Ω1(G)≤Z(G),

which implies G has exactly three involutions, a contradiction. �

Theorem 2.9. If G is a 2-group such that Ω1(G) ∼= D2n or D2n ∗Q2m with

n,m ≥ 3, then |Z(G)| = |Z(Ω1(G))| = 2.

Proof. It is clear that |Z(Ω1(G))| = 2, and that there exists an element

x ∈ Ω1(G) such that Z(Ω1(G)) = 〈x2〉. If Z(G) > Z(Ω1(G)), then there exists

an element g ∈ Z(G) such that o(g) = 2s ≥ 4 and g2s−1 ∈ Z(G) ∩ Ω1(G) = 〈x2〉.
In this case, o(xg2s−2

) = 2. Thus xg2s−2 ∈ Ω1(G), and so g2s−2 ∈ Z(Ω1(G)), in

contradiction to |Z(Ω1(G))| = 2. Hence, |Z(G)| = |Z(Ω1(G))| = 2. �

Corollary 2.10. If G is a 2-group such that Ω1(G) ∼= D2n or D2n ∗ Q2m

with n,m ≥ 3, then CG(Ω1(G)) = Z(Ω1(G)).

Proof. If there exists an element g ∈ CG(Ω1(G)) such that g /∈ Z(Ω1(G)),

then H = Ω1(G)〈g〉 > Ω1(G) and g ∈ Z(H). Noticing that Ω1(H) = Ω1(G), we

see that Z(H) = Z(Ω1(H)) by Theorem 2.9. Thus g ∈ Z(Ω1(H)) = Z(Ω1(G)),

a contradiction. So CG(Ω1(G)) = Z(Ω1(G)). �

Lemma 2.11. Let a 2-group G be a R2I>3-group, and let N be a normal

subgroup of G with N ≤ Φ(G). If N is not cyclic, then Ω1(N) ∼= C2 × C2.

Proof. Lemma 2.7 implies that Z(N) is not cyclic. Thus r(N) = 2. It fol-

lows from Lemma 2.1 and Theorem 2.8 that Ω1(N) ∼= C2 × C2. �

Lemma 2.12. Let a 2-group G be a R2I>3-group. If Φ(G) is not cyclic,

then G has the unique normal subgroup N such that N ∼= C2 × C2.

Proof. By Lemma 2.11, Ω1(Φ(G)) ∼= C2 × C2. If there exists N E G such

that N ∼= C2 × C2 and N 6= Ω1(Φ(G)), then CG(N) is a maximal subgroup in G

by Theorem 2.8. It follows that Ω1(Φ(G))≤Ω1(CG(N))=N , a contradiction. �

Lemma 2.13. Let G be a group of order 2n and Ω1(G) ∼= D2m with m ≥ 3.

If G has a maximal subgroup M such that Ω1(G) ≤ M and M is of maximal

class, then G is of maximal class.

Proof. By the hypotheses of the lemma, we see that M is dihedral or semi-

dihedral of order 2n−1. Then, we may assume M = 〈a, b
∣∣ a2n−2

= b2 = 1, [a, b] =
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ai2
n−3−2〉, with n ≥ 4 if i = 0, and n ≥ 5 if i = 1. Thus |M ′| = 2n−3, and

therefore 2n−3 ≤ |G′| ≤ 2n−2. If |G′| = 2n−2, then G is of maximal class. Now,

we assume G′ = M ′ = 〈a2〉. Take x ∈ G \M . It follows from [a, x] ∈ 〈a2〉 that

[a, x2] ∈ 〈a4〉, which implies x2 ∈ 〈a〉. Assume [b, x] = a2j . If 2 | j or i = 0,

then [b, xa−j ] = 1. If 2 - j and i = 1, then [b, xa2n−4−j ] = 1. Thus, without

loss of generality, we may assume [b, x] = 1. Then x2 ∈ Z(M) = 〈a2n−3〉, and so

x2 = a2n−3

. Clearly, [a2n−4

, x] = 1 or a2n−3

. Thus o(a2n−4

x) = 2 if [a2n−4

, x] = 1,

and o(a2n−4

bx) = 2 if [a2n−4

, x] = a2n−3

. It follows that x ∈ M in both cases, a

contradiction. �

Theorem 2.14. Let G be a 2-group and Ω1(G) ∼= D2n with n ≥ 3. Then

G = Ω1(G) is dihedral or G is semi-dihedral with |G : Ω1(G)| = 2.

Proof. If Ω1(G) = G, then the result is clear. Now, we assume Ω1(G) < G

and H is a subgroup of G such that Ω1(G) is a maximal subgroup of H. It follows

from Lemma 2.13 that H is of maximal class. Thus H is dihedral or semi-dihedral.

If H is dihedral, then Ω1(G) < H = Ω1(H), a contradiction. So H is semi-

dihedral. If H < G, then there exists K ≤ G such that H is a maximal subgroup

in K. By Lemma 2.13 again, K is of maximal class. Then, for any L < K, we

see that L is not a semi-dihedral group, a contradiction. So H = G and G is

semi-dihedral. �

3. 2-groups with Ω1(G) ∼= D2n ∗ C4

Lemma 3.1. If Ω1(G) ∼= D2n ∗ C4 = 〈a, b, c
∣∣ a2n−1

= b2 = 1, a2n−2

=

c2, [a, b] = a−2, [c, a] = [c, b] = 1〉 with n ≥ 4, then [Ω1(G), G] ≤ 〈a〉.

Proof. It is clear that Z(Ω1(G)) = 〈c〉 and Ω1(G)′ = 〈a2〉. Then [〈c〉, G] ≤
〈c2〉 ≤ 〈a〉 and 〈a2n−3〉 char〈a2〉 E G. Thus CG(a2n−3

) is a maximal subgroup

of G, and so [Ω1(G), G] ≤ Ω1(G) ∩ CG(a2n−3

) = 〈a, c〉. For any g ∈ G, it follows

from [b2, g] = [(ab)2, g] = 1 that [b, g] ∈ 〈a〉 and [ab, g] ∈ 〈a〉, which implies

[a, g] ∈ 〈a〉. Hence, [Ω1(G), G] ≤ 〈a〉. �

Lemma 3.2. If Ω1(G) ∼= D8∗C4 = 〈a, b〉∗〈c〉, then there exists an involution

g /∈ 〈c〉 such that [Ω1(G), G] ≤ 〈cg〉.

Proof. It is easy to see that there exists N E G such that N ∼= C2 × C2.

Without loss of generality, we may assume o(a) = o(b) = 2 and N = 〈b, c2〉.
Then [〈b〉, G], [〈c〉, G] ≤ 〈c2〉 ≤ 〈bc〉, and so 〈bc〉 E G. Thus [Ω1(G), G] ≤ Ω1(G) ∩
CG(bc) = 〈b, c〉. For any g ∈ G, it follows from [a2, g] = 1 that [a, g] ∈ 〈bc〉, which

implies [Ω1(G), G] ≤ 〈bc〉. �
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Theorem 3.3. Let G be a 2-group and Ω1(G) ∼= D2n ∗C4 with n ≥ 3. Then

there exists a maximal subgroup M of G such that M is metacyclic and G′ is

abelian.

Proof. We consider the following two cases: n ≥ 4 and n = 3.

Case 1. n ≥ 4.

We may assume Ω1(G) = 〈a, b, c
∣∣ a2n−1

= b2 = 1, a2n−2

= c2, [a, b] =

a−2, [c, a] = [c, b] = 1〉. Then [Ω1(G), G] ≤ 〈a〉 and 〈a2n−3〉 E G by Lemma 3.1.

Since b /∈ CG(a2n−3

), we see that CG(a2n−3

) is a maximal subgroup of G.

Let M = CG(a2n−3

). Then 〈a2n−3

c, a2n−2〉 ≤ Ω1(M) ≤ Ω1(G) ∩M = 〈a, c〉.
Thus Ω1(M) = 〈a2n−3

c, a2n−2〉 ∼= C2×C2. Let K = 〈a2n−3

, c〉. Then K is a normal

abelian subgroup of G with exp(K) = 4 and K ≤ Ω2(M). For any g ∈ Ω2(M)

and o(g) = 4, we see g2 ∈ Ω1(M). If g2 = a2n−2

, then o(a2n−3

g) = 2, and so

g ∈ K. If g2 = a±2n−3

c, then [a2n−3

, g] = [c, g] = 1. Hence, K ≤ Z(Ω2(M)) in

both cases.

We claim Ω2(M) is metacyclic. Let L be a maximal normal abelian subgroup

of M such that exp(L) = 4 and K ≤ L. If K = L, then CΩ2(M)(L) = Ω2(M)

is metacyclic by Lemma 2.2. So, we may assume K < L < Ω2(M). For any

h ∈ Ω2(M) \ K and o(h) = 4, we have h2 = a±2n−3

c by the above. Since

[a, h2] = [a2n−3

, h] = 1, we see [a2, h] = 1. It follows from [b, h2] = a2n−2

that

[b, h] = a±2n−3

. Take x ∈ Ω2(M) \ L and y ∈ L \K such that o(x) = o(y) = 4.

Then [b, x] = a±2n−3

and [b, y] = a±2n−3

. Thus [b, xy] ∈ 〈a2n−2〉. Noticing that

o(xy) ≤ 4, we see xy ∈ K, and so x ∈ 〈K, y〉 ≤ L, a contradiction. Thus Ω2(M) is

metacyclic. By Lemma 2.5, M is metacyclic. Then M ′ is cyclic and G′ ≤ CG(M ′).

Since G = M〈b〉, we see G′ = 〈M ′, [b,M ]〉 ≤ 〈M ′, a〉, which implies G′ is abelian.

Case 2. n = 3.

In this case, we may assume Ω1(G) = 〈a, b, c
∣∣ a2 = b2 = c4 = 1, [b, a] =

c2, [b, c] = [a, c] = 1〉 and [Ω1(G), G] ≤ 〈bc〉 by Lemma 3.2. Then 〈bc〉 E G and

CG(bc) is a maximal subgroup of G.

Let M = CG(bc). Then 〈b, c2〉 ≤ Ω1(M) ≤ Ω1(G) ∩ M = 〈b, c〉. Thus

Ω1(M) = 〈b, c2〉. Let K = 〈b, c〉. Then K is a normal abelian subgroup of G

and exp(K) = 4. For any g ∈ Ω2(M) and o(g) = 4, we see g2 ∈ Ω1(M).

If g2 = c2 = (bc)2, then o(bcg) = 2, and so g ∈ K. If g2 = bc2 or b, then

[b, g] = [c, g] = 1. So K ≤ Z(Ω2(M)).

We claim Ω2(M) is metacyclic. Let L be a maximal normal abelian subgroup

of M such that exp(L) = 4 and K ≤ L. If K = L, then CΩ2(M)(L) = Ω2(M) is

metacyclic. We assume K < L < Ω2(M). For any h ∈ Ω2(M) \K and o(h) = 4,

we have h2 = bc2 or b, which implies [a, h] = bc±1. Take x ∈ Ω2(M) \ L and
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y ∈ L \ K such that o(x) = o(y) = 4. Then [a, x] = bc±1 and [a, y] = bc±1.

Since [a, xy] ∈ 〈c2〉 and o(xy) ≤ 4, we see xy ∈ K, and so x ∈ 〈K, y〉 ≤ L,

a contradiction. Hence Ω2(M) is metacyclic, and therefore M is metacyclic.

Then G′ ≤ CG(M ′). It follows from G = M〈a〉 that G′ = 〈M ′, [a,M ]〉 ≤ 〈M ′, bc〉.
So G′ is abelian. �

Corollary 3.4. Let G be a R2I>3-group. Then d(Ω1(G)) ≤ 3 if and only if

there exists a maximal subgroup M of G such that M is metacyclic.

Proof. If d(Ω1(G)) ≤ 3, then, by Theorems 2.14 and 3.3, there exists a

maximal subgroup M of G such that M is metacyclic.

Conversely, if there exists a maximal subgroup M of G such that M is meta-

cyclic, then |Ω1(G) : M ∩ Ω1(G)| ≤ 2 and d(M ∩ Ω1(G)) ≤ 2. It follows that

d(Ω1(G)) ≤ 3. �

Corollary 3.5. Let G be a 2-group and Ω1(G) ∼= D2n ∗ C4 with n ≥ 3.

If d(G) = 2, then G′ = [Ω1(G), G] is cyclic and Φ(G) ∩ Ω1(G) is a maximal

subgroup of Ω1(G).

Proof. By Theorem 3.3, there exists a maximal subgroup M of G such that

M is metacyclic and Ω1(G) �M . Then Ω1(G) � Φ(G). We assume Z(Ω1(G)) =

〈a〉. Since G is not metacyclic and d(G) = 2, we see a ∈ Φ(G). It follows from

Lemmas 3.1 and 3.2 that there exists an element b ∈ Ω1(G) such that [Ω1(G), G] ≤
〈b〉, and 〈a, b〉 is a maximal subgroup of Ω1(G). Then 〈b〉 E G, and so b ∈ Φ(G).

Thus Φ(G) ∩ Ω1(G) = 〈a, b〉. So there exist c ∈ Ω1(G) \ 〈a, b〉 and g ∈ G such

that G = 〈c, g〉, which implies G′ = [Ω1(G), G] is cyclic. �

Corollary 3.6. Let G be a 2-group and Ω1(G) ∼= D2n ∗C4 with n ≥ 3. Then

either G′ is cyclic or Ω1(G) ∩G′ is a maximal subgroup of Ω1(G).

Proof. We may assume G′ is not cyclic. Then Corollary 3.5 implies d(G) =

3 and Ω1(G) < G. By Theorem 3.3, there exists a maximal subgroup M of G

such that M is metacyclic. Then G = Ω1(G)M . It follows from G′ being not

cyclic that M is not of maximal class. Then Ω1(M) ∼= C2 × C2 by Lemma 2.6.

If Ω1(G) ∩M � Φ(M), then, by Lemmas 3.1 and 3.2, we see G′ = [Ω1(G), G] is

cyclic. Thus Ω1(G) ∩M ≤ Φ(M). We may assume M = 〈x, y〉, 〈x〉 E M and

Ω1(G) = 〈a, b, c
∣∣ a2n−1

= b2 = 1, a2n−2

= c2, [a, b] = a−2, [c, a] = [c, b] = 1〉. Now,

we consider the following two cases: n ≥ 4 and n = 3.

Case 1. n ≥ 4.

Since a2 ∈M and Ω1(M) ∼= C2 × C2, we see Ω1(G) ∩M = Ω1(G) ∩ Φ(G) =

〈a, c〉. Then Ω1(M)= 〈a2n−2

, a2n−3

c〉. By Lemma 3.1, [Ω1(G), G]≤〈a〉. If a /∈G′,
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then, for any g ∈ G, we see [b, g] ∈ 〈a2〉. Since Φ(G) = Φ(M) = 〈x2, y2〉,
[〈b〉,Φ(G)] ≤ 〈a4〉, which implies [b, a] ∈ 〈a4〉, a contradiction. So a ∈ G′. It fol-

lows from G′ being not cyclic that Ω1(M) ≤ G′. Thus, Ω1(G)∩G′ = Ω1(G)∩M
is a maximal subgroup of Ω1(G).

Case 2. n = 3.

In this case, |Ω1(G)| = 16. If b ∈ M , then, since Ω1(M) ∼= C2 × C2, we

see ab /∈ M . Without loss of generality, we may assume b /∈ M . Since |Ω1(G) ∩
M | = 8, we see Ω1(G) ∩ M is abelian. If Ω1(G) ∩ G′ < Ω1(G) ∩ M , then

Ω1(G) ∩ G′ ∼= C2 × C2. It follows from Lemma 3.2 that [Ω1(G), G] ∼= C2, which

implies [Ω1(G),Φ(G)] = 1. Thus 〈b,Ω1(G) ∩M〉 is abelian, and so r(G) = 3,

in contradiction to the hypothesis. So Ω1(G) ∩ G′ = Ω1(G) ∩M is a maximal

subgroup of Ω1(G). �

4. 2-groups with Ω1(G) ∼= D2n ∗ Q2m

Lemma 4.1. Let G be a R2I>3-group of order 2n. If G′ is cyclic, then

d(Ω1(G)) ≤ 3 or G = Ω1(G) ∼= D2n−2 ∗Q8 with n ≥ 5.

Proof. If d(Ω1(G)) > 3, then Ω1(G) ∼= D2m ∗ Q8
∼= D8 ∗ Q2m with m ≥ 3

by Lemma 2.1. If Ω1(G) < G, then, without loss of generality, we may assume

Ω1(G) is a maximal subgroup of G. Thus, we may assume Ω1(G) ∼= D2n−3 ∗Q8 =

〈a, b, c, d
∣∣ a2n−4

= b2 = 1, c2 = d2 = a2n−5

, [a, b] = a−2, [c, d] = c2, [a, c] = [a, d] =

[b, c] = [b, d] = 1〉. Now, we consider the following two cases: n ≥ 7 and n = 6.

Case 1. n ≥ 7.

In this case, 〈a2n−6〉 char〈a2〉 E G. Then CG(a2n−6

) is a maximal sub-

group of G and [Ω1(G), G] ≤ CΩ1(G)(a
2n−6

) = 〈a, c, d〉. By calculation, we see

[〈a〉, G], [〈b〉, G] ≤ 〈a〉 and [〈c〉, G], [〈d〉, G] ≤ 〈c2〉. Noticing that [c, d] = c2, we

may take a suitable element x ∈ G \ Ω1(G) such that [c, x] = [d, x] = 1. Then

x2 ∈ CG(a2n−6

) ∩ CG(〈c, d〉) ∩ Ω1(G) = 〈a〉. If x2 = a2i, then [ai, x] = 1 or

a2n−5

. Thus o(a−ix) = 2 if [ai, x] = 1, and o(a−icx) = 2 if [ai, x] = a2n−5

,

which implies x ∈ Ω1(G), a contradiction. So we may assume x2 = a. It follows

from [b, x2] = a2 that [b, x] = x2 or x2+2n−4

. Then o(bx) = 2 if [b, x] = x2, and

o(bcx) = 2 if [b, x] = x2+2n−4

, another contradiction.

Case 2. n = 6.

If |G′| = 2, then Φ(G) = f1(G) ≤ Z(G). Thus Φ(G) = Z(G) ∩ Ω1(G) =

Z(Ω1(G)) = 〈a2〉, which implies d(G) = 5, in contradiction to Lemma 2.4. Thus
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|G′| = 4. Assume G′ = 〈x〉. Then CG(x) is a maximal subgroup of G by

Theorem 2.9. It follows that Ω1(G) ∩ CG(x) ∼= D8 ∗ C4. We may assume N =

Ω1(G) ∩ CG(x) = 〈y, z〉 ∗ 〈x〉, w ∈ Ω1(G) \ CG(x) and g ∈ CG(x) \ Ω1(G) with

o(y) = o(z) = o(w) = 2. Then G = 〈N, g〉〈w〉. Noticing that [N,G] ≤ 〈x2〉 and

[y, z] = x2, we may assume [N, 〈g〉] = 1. Thus [w, g] = x±1, and g2 ∈ Z(N) = 〈x〉.
Since [w, g2] 6= 1, we may assume g2 = x. If [w, g] = x, then o(wg) = 2, which

implies g ∈ Ω1(G), a contradiction. So [w, g] = x−1. Then o(wyg) = 2 if

[w, y] = x2, o(wzg) = 2 if [w, z] = x2, and o(wyzg) = 2 if [w, y] = [w, z] = 1,

another contradiction. �

Theorem 4.2. Let G be a 2-group and Ω1(G) ∼= D2n ∗Q2m with n,m ≥ 3.

Then one of the following holds:

(1) If G has more than one normal subgroup of order 4, then there exists a max-

imal subgroup M of G such that d(Ω1(M)) = 3.

(2) If G has the unique normal subgroup of order 4, then for any maximal sub-

group M of G, d(Ω1(M)) 6= 3 and n = m.

Proof. By Lemma 4.1, we may assume G′ is not cyclic. Then Ω1(G′) ∼=
C2 ×C2 by Lemma 2.11. We assume Ω1(G) = 〈a, b, c, d

∣∣ a2n−1

= b2 = 1, a2n−2

=

c2m−2

= d2, [a, b] = a−2, [c, d] = c−2, [a, c] = [a, d] = [b, c] = [b, d] = 1〉.
If there exists N E G such that N 6= Ω1(G′) and |N | = 4, then, by

Lemma 2.12, N ∼= C4. Thus CG(N) is a maximal subgroup of G by Theo-

rem 2.9. If d(Ω1(CG(N))) 6= 3, then Ω1(CG(N)) ∼= C2 × C2 by Lemma 2.1 and

Theorem 2.9. Assume N = 〈x〉. Then 〈x2〉 ≤ Z(G) ∩ Ω1(G) and x2 = a2n−2

=

c2m−2

= d2. Thus there exists an element g∈〈c2m−3

, d〉\ 〈d2〉 such that [x, g]=1.

Without loss of generality, we may assume [c2m−3

, x] = 1, which implies

o(c2m−3

x) = 2. Since Ω1(CG(N)) ∼= C2 × C2 and Ω1(〈a, b〉) = 〈a, b〉 ≤ CG(〈c, d〉),
we see x /∈ 〈c, d〉. Then Ω1(CG(N)) = 〈x2, c2m−3

x〉. It follows that [d, x] = x2.

If [a2n−3

, x] = x2, then a2n−3

d ∈ Ω1(CG(N)), a contradiction. If [a2n−3

, x] = 1,

then a2n−3

x ∈ Ω1(CG(N)), and so 〈x〉 = 〈a2n−3〉, in a contradiction to [d, x] = x2.

Thus d(Ω1(CG(N))) = 3.

If G has the unique normal subgroup N such that |N | = 4, then N =

Ω1(G′) ∼= C2 × C2. If there exists a maximal subgroup M of G such that

d(Ω1(M)) = 3, then, by Lemma 2.1, we see Z(Ω1(M)) ∼= C4 and Z(Ω1(M)) E G,

a contradiction. If n 6= m, then we may assume n > m, and so fn−3(Ω1(G)) ∼= C4,

a contradiction. Hence, for any maximal subgroup M of G, d(Ω1(M)) 6= 3 and

n = m. �

Theorem 4.3. Let G be a 2-group and Ω1(G) ∼= D2n ∗Q2m with n,m ≥ 3.
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If G has more than one normal subgroup of order 4, then G′ is abelian and

Φ(G) < Ω1(G).

Proof. If G′ is cyclic, then the result is clear by Lemma 4.1. We assume

G′ is not cyclic, and so Ω1(Φ(G)) ∼= C2 × C2 by Lemma 2.11. It follows from

Lemma 2.12 that there exists N E G such that N ∼= C4. Then CG(N) is a max-

imal subgroup of G by Theorem 2.9 and Ω1(Φ(G))N ∼= C4 × C2. By Theo-

rem 4.2, there exists a maximal subgroup M of G such that d(Ω1(M)) = 3. Then

G = MΩ1(G) and G′ = 〈M ′, [G,Ω1(G)]〉. Now, we may assume N = 〈x〉 and

Ω1(G) = 〈a, b, c, d
∣∣ a2n−1

= b2 = 1, a2n−2

= c2m−2

= d2, [a, b] = a−2, [c, d] =

c−2, [a, c] = [b, c] = [a, d] = [b, d] = 1〉. We consider the two cases: n ≥ 4 and

n = 3.

Case 1. n ≥ 4.

If m ≥ 4, then Ω1(Φ(G)) = 〈a2n−2

, a2n−3

c2m−3〉. Since x2 = a2n−2

and

a2n−3 ∈ CG(x), we see o(a2n−3

x) = 2, and so x ∈ Ω1(G). Thus 〈x〉 = 〈a2n−3〉
or 〈c2m−3〉. It follows that 〈c2m−3〉 E G and 〈a2n−3〉 E G. Then CG(a2n−3

) and

CG(c2m−3

) are maximal subgroups of G.

If m = 3, then 〈a2n−3〉 char〈a2〉 E G. Thus CG(a2n−3

) is a maximal subgroup

of G. Without loss of generality, we may assume Ω1(Φ(G)) = 〈a2n−2

, a2n−3

c〉.
It follows that 〈c〉 E G and CG(c) is a maximal subgroup of G.

In either case, we see CG(a2n−3

) and CG(c2m−3

) are maximal subgroups of G.

Then [Ω1(G), G] ≤ 〈a, c〉. Thus G′ = 〈M ′, [G,Ω1(G)]〉 ≤ 〈M ′, a, c〉. By calcula-

tion, we see [〈a〉, G], [〈b〉, G] ≤ 〈a〉 and [〈c〉, G], [〈d〉, G] ≤ 〈c〉. So 〈a〉 E G and

〈c〉 E G, which implies G′ ≤ CG(a) ∩ CG(c). Noticing that d(Ω1(M)) = 3, we

see r(M) = 2, and therefore there is a positive integer t with t ≥ 3 such that

Ω1(M) ∼= D2t ∗C4 by Lemma 2.1. Now using Theorem 3.3, we see M ′ is abelian,

and so G′ is abelian.

If there exists an element g ∈ Φ(G) \ Ω1(G), then [b, g] ∈ 〈a2〉. Assume

[b, g] = a2i. Then [b, ga−i] = 1 and ga−i ∈ Φ(G) \ Ω1(G). So we may assume

[b, g] = 1. Similarly, we may assume [d, g] = 1. Then g ∈ CG(〈a2n−3

, c2m−3〉) ∩
CG(〈b, d〉) ≤ CG(Ω1(G)). By Corollary 2.10, g ∈ Z(Ω1(G)), a contradiction.

So Φ(G) ≤ Ω1(G). It follows from Ω1(G) �M that Φ(G) < Ω1(G).

Case 2. n = 3.

Since D2m ∗ Q8
∼= D8 ∗ Q2m , we assume m = 3, and so x2 = c2 = d2.

Then there exists an element y ∈ 〈c, d〉 \ 〈c2〉 such that x2 = y2 and [x, y] = 1.

Thus o(xy) = 2, and so x ∈ Ω1(G). By Lemma 2.3, we see Ω1(G) has no

abelian maximal subgroup. Then CΩ1(G)(Ω1(Φ(G))N) = Ω1(Φ(G))N ∼= C4×C2.
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It follows from G′ ≤ CG(N) ∩ CG(Ω1(Φ(G))) that [Ω1(G), G] ≤ Ω1(Φ(G))N .

Thus G′ = 〈M ′, [G,Ω1(G)]〉 ≤ 〈M ′,Ω1(Φ(G)), N〉, and therefore G′ is abelian.

It follows from [Ω1(G), G] ≤ Ω1(Φ(G))N ∼= C4 × C2 and [Ω1(Φ(G))N,G] ≤
〈x2〉 that [Ω1(G),Φ(G)] ≤ 〈x2〉. If there exists an element g ∈ Φ(G)\Ω1(G), then

g2 ∈ CG(Ω1(G)) = Z(Ω1(G)) and g2 = c2 = d2. Thus there exists an element

h ∈ 〈c, d〉 \ 〈c2〉 such that [g, h] = 1 and g2 = h2. Then o(gh) = 2 and g ∈ Ω1(G),

a contradiction. So Φ(G) < Ω1(G). �

Theorem 4.4. Let G be a 2-group and Ω1(G) ∼= D2n ∗Q2m with n,m ≥ 3.

If G has more than one normal subgroup of order 4, then |G : Ω1(G)| ≤ 4.

Proof. If G′ is cyclic, then the conclusion holds by Lemma 4.1. Thus we

may assume G′ is not cyclic. By Theorem 4.2, there exists a maximal subgroup M

of G such that d(Ω1(M)) = 3. Then Ω1(M) ≤ Ω1(G) ∩M < Ω1(G). It follows

from Theorem 2.8 that Z(Ω1(G) ∩M) is cyclic. So Φ(G) < Ω1(G) ∩M < Ω1(G)

by Lemma 2.7 and Theorem 4.3. Hence |G : Ω1(G)| ≤ 4 by Lemma 2.4. �

Theorem 4.5. Let G be a 2-group and Ω1(G) ∼= D2n ∗Q2m with n,m ≥ 3.

If G has the unique normal subgroup of order 4, then

(1) G′ is not abelian;

(2) |G : Ω1(G)| ≤ 8;

(3) either Φ(G) ≤ Ω1(G) or |Ω1(G)| = |Φ(G)| and Ω1(G) ∩ G′ is a maximal

subgroup of Ω1(G).

Proof. By Lemma 4.1 and Lemma 2.11, G′ is not cyclic and Ω1(Φ(G)) ∼=
C2 × C2. Then CG(Ω1(Φ(G))) is a maximal subgroup of G by Theorem 2.8 and

[Ω1(G), G] ≤ CΩ1(G)(Ω1(Φ(G))). By Theorem 4.2, we may assume Ω1(G) =

〈a, b, c, d
∣∣ a2n−1

= b2 = 1, a2n−2

= c2n−2

= d2, [a, b] = a−2, [c, d] = c−2, [a, c] =

[b, c] = [a, d] = [b, d] = 1〉. We consider the two cases: n ≥ 4 and n = 3.

Case 1. n ≥ 4.

In this case, Ω1(Φ(G)) = 〈a2n−2

, a2n−3

c2n−3〉 and [Ω1(G), G] ≤ 〈a, c, bd〉.
By the hypotheses of the theorem, 〈a2n−3〉 5 G and 〈c2n−3〉 5 G. For any

x ∈ G \ NG(a2n−3

), by calculation, we see [a2n−3

, x] = a±2n−3

c2n−3

, [c2n−3

, x] =

a±2n−3

c2n−3

, [b, x] = a±2n−3

cibd and [d, x] = c±2n−3

ajbd. It follows that ac ∈ G′,

which implies G′ is not abelian. For any y ∈ NG(a2n−3

), by calculation, we see

[b, y] ∈ 〈a〉 and [c, y] ∈ 〈c〉.
Clearly, Φ(G) ≤ NG(a2n−3

) ∩ NG(c2n−3

). It follows that [〈b〉,Φ(G)], [〈ab〉,
Φ(G)] ≤ 〈a〉 and [〈d〉,Φ(G)], [〈cd〉,Φ(G)] ≤ 〈c〉. Then Φ(G) ≤ NG(a) ∩NG(c).

Take g ∈ G \ NG(a2n−3

). Then [a2n−3

, g] = a±2n−3

c2n−3

. If there exists an

element z ∈ G\NG(a2n−3

)〈g〉, then [a2n−3

, gz] ∈ 〈a2n−2〉, and so gz ∈ NG(a2n−3

),



Finite 2-groups of rank 2 91

a contradiction. Thus G = NG(a2n−3

)〈g〉. It follows from g2 ∈ NG(a2n−3

)

that NG(a2n−3

) is a maximal subgroup of G. Since Ω1(G) ≤ NG(a2n−3

), we

see |NG(a2n−3

) : Ω1(NG(a2n−3

))| = |NG(a2n−3

) : Ω1(G)| ≤ 4 by Theorem 4.4,

which implies |G : Ω1(G)| ≤ 8.

If Φ(G) � Ω1(G), then there exists an element w ∈ Φ(G) such that w /∈
Ω1(G). If [a2n−3

, w] = a2n−2

, then [a2n−3

, ajbdw] = 1. Since ajbdw ∈ Φ(G) \
Ω1(G), we may assume [a2n−3

, w] = 1. Since w ∈ CG(Ω1(Φ(G))), [c2n−3

, w] = 1.

It follows that 〈a, c〉 ∩ 〈w〉 6= 1. Now, we may assume 〈a, c〉 ∩ 〈w〉 = w2s

.

If [b, w] = 1, then w2s ∈ 〈c〉. If w2s

= c2k, then [ck, w] = 1 or c2n−2

. Thus

o(c−kw2s−1

) = 2 or o(c2n−3−kw2s−1

) = 2, which implies w2s−1 ∈ CΩ1(G)(〈a2n−3

,

c2n−3〉) = 〈a, c〉, a contradiction. So we assume w2 = c. It follows from [d,w2] = c2

that [d,w] = c or c1+2n−2

. Then o(dw) = 2 or o(da2n−3

w) = 2, another contra-

diction. So [b, w] 6= 1. Similarly, [d,w] 6= 1. If [b, w] = a2l, then [b, w(ac)−l] = 1,

a contradiction. So [b, w] = at with 2 - t and [d,w] = cr with 2 - r. It follows that

〈a, c, bd〉 ≤ G′ and w2 = aucv, where 2 - u and 2 - v. If there exists an element

w1 ∈ Φ(G) \ 〈w, c, bd〉, then [b, w1] = at1 with 2 - t1 and [b, ww1] ∈ 〈a2〉. By the

above, we see that ww1 ∈ Φ(G)∩Ω1(G) = 〈a, c, d〉, a contradiction. Thus Φ(G) =

〈w, c, bd〉. So |Ω1(G)| = |Φ(G)|, and 〈a, c, bd〉 = Ω1(G) ∩ Φ(G) = Ω1(G) ∩ G′ is

a maximal subgroup of Ω1(G).

Case 2. n = 3.

Let H = [Ω1(G), G] and N = Ω1(G)∩CG(Ω1(Φ(G))). Then N is a maximal

subgroup of Ω1(G). Without loss of generality, we may assume Ω1(Φ(G)) =

〈a2, ac〉 or 〈a2, b〉.
Subcase 1. Ω1(Φ(G)) = 〈a2, ac〉.
In this case, N = 〈a, c, bd〉. If H < N , then H is abelian by Lemma 2.7.

Thus H ≤ 〈a, c〉 or 〈ac, bd〉. If H ≤ 〈a, c〉, then [〈b〉, G] ≤ 〈a〉 and [〈ab〉, G] ≤ 〈a〉,
which implies 〈a〉 E G, a contradiction. If H ≤ 〈ac, bd〉, then [〈b〉, G], [〈d〉, G] ≤
〈acbd〉. Since (bd)2 ∈ Z(G), we see [〈bd〉, G] ≤ 〈d2〉, and so 〈bd〉 E G, another

contradiction. So H = N , which implies Ω1(G) ∩ G′ is a maximal subgroup of

Ω1(G), and G′ is not abelian.

It is easy to see that [Ω1(G),Φ(G)] ≤ [Ω1(G), G,G] < H. Thus [Ω1(G), G,G]

is abelian by Lemma 2.7, and so [Ω1(G), G,G] ≤ 〈a, c〉 or 〈ac, bd〉.
If [Ω1(G), G,G] ≤ 〈a, c〉, then Φ(G) ≤ NG(a)∩NG(c)∩CG(ac), [〈b〉,Φ(G)] ≤

〈a〉, and [〈d〉,Φ(G)] ≤ 〈c〉. Since a ∈ H, we see [〈a〉, G] ≤ 〈a, c〉, and so [〈a〉, G] ≤
〈a2, ac〉. It follows that NG(a) is a maximal subgroup of G. Thus |G : Ω1(G)| ≤ 8

by Theorem 4.4. If there exists an element x ∈ Φ(G) such that x /∈ Ω1(G), then

we may assume [a, x] = [c, x] = 1, [b, x] = 1 or a, and [d, x] = 1 or c. Thus x4 ∈
CG(Ω1(G)). By Corollary 2.10, x4 = a2. It follows that x2 ∈ Ω1(G)∩Φ(G)\〈a2〉.



92 Xiuyun Guo and Jiao Wang

If [b, x] = 1, then x2 = c±1 and [d, x] = c. Thus o(dax) = 2 if x2 = c, and

o(dx) = 2 if x2 = c−1, a contradiction. So [b, x] = a. If there exists an element

y ∈ Φ(G) \ 〈x,H〉, then we may assume [b, y] = a, and so [b, xy] ∈ 〈a2〉, which

implies xy ∈ H, a contradiction. So Φ(G) = 〈x,H〉 and |Ω1(G)| = |Φ(G)|.
If [Ω1(G), G,G] ≤ 〈ac, bd〉, then [〈b〉,Φ(G)] ≤ 〈acbd〉 and [N,G] ≤ 〈ac, bd〉.

Thus [〈bd〉, G] ≤ 〈a2, ac〉, and so NG(bd) is a maximal subgroup of G. Then

|G : Ω1(G)| ≤ 8 by Theorem 4.4. If there exists an element x ∈ Φ(G) \ Ω1(G),

then, since N ≤ Φ(G), we assume [bd, x] = 1. It is easy to see that f2(Φ(G)) ≤
CG(Ω1(G)). Then x4 ∈ f2(Φ(G)) ≤ 〈(bd)2〉 by Corollary 2.10. It follows that

x2 ∈ N \ Z(Ω1(G)). If [b, x] = 1, then [d, x] = 1 and x2 = bd±1. It follows from

[(ab)2, x] = 1 that [a, x] = bd±1, and we may assume [a, x] = bd. Then o(abx) = 2

if x2 = bd, and o(ax) = 2 if x2 = bd−1, a contradiction. It follows that [b, x] =

abcd±1. If there exists an element y ∈ Φ(G) \ 〈x,N〉, then [b, y] = abcd±1. Since

[b, xy] ∈ 〈a2〉, we see xy ∈ Φ(G)∩Ω1(G) = N , a contradiction. So Φ(G) = 〈x,N〉.
It follows from x2 ∈ N that |Ω1(G)| = |Φ(G)|.

Subcase 2. Ω1(Φ(G)) = 〈a2, b〉.
In this case, N = 〈b, c, d〉 and Φ(G) ≤ CG(b). If H < N , then H is abelian,

and we may assume H ≤ 〈b, c〉. By calculation, we see [〈a〉, G] ≤ 〈bc〉 and

[〈c〉, G] ≤ 〈b, c2〉. Since (ac)2 ∈ Z(G), we see [〈c〉, G] ≤ 〈c2〉, which implies

〈c〉 E G, a contradiction. So H = N = Ω1(G) ∩G′, and G′ is not abelian.

Since [Ω1(G),Φ(G)] ≤ [Ω1(G), G,G] < H, we see [Ω1(G), G,G] is abelian,

and we may assume [Ω1(G), G,G] ≤ 〈b, c〉. Then [〈a〉,Φ(G)] ≤ 〈bc〉 and [N,G] ≤
〈b, c〉. Thus [〈b〉, G] ≤ 〈c2〉, [〈c〉, G] ≤ 〈b, c2〉, and so NG(c) is a maximal subgroup

of G. Then |G : Ω1(G)| ≤ 8 by Theorem 4.4. It is easy to see that [〈d〉,Φ(G)] ≤
〈b, c2〉. Then f2(Φ(G)) ≤ CG(Ω1(G)) = Z(Ω1(G)) and f1(Φ(G)) ≤ CG(〈b, c, d〉).
If there exists an element x ∈ Φ(G)\Ω1(G), then we may assume [c, x] = 1. Since

x4 ∈ Z(Ω1(G)) = 〈c2〉, we see x2 ∈ N \ Z(Ω1(G)), which implies [a, x2] 6= 1, and

so [a, x] = bc±1. It follows that Φ(G) = 〈x,N〉 and |Ω1(G)| = |Φ(G)|. �
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