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On products of cyclic and elementary abelian p-groups

By BRENDAN MCCANN (Waterford)

Abstract. We investigate the structure of a finite p-group G = AB that is the

product of a cyclic subgroup A and an elementary abelian subgroup B. Examples of

factorised groups are presented and information on the derived subgroup and exponent

of such products is also provided.

1. Introduction

The study of groups that are the product of a cyclic subgroup and an abelian

subgroup has been largely confined to products of two cyclic subgroups. Work

in this area goes back to Rédei [17], who investigated the derived subgroup of

a group G = AB that is the product of two cyclic subgroups A and B, at least

one of which is infinite. Rédei showed, in particular, that where A is infinite and

B is finite, then G
′

can be generated by two elements. There followed Wielandt

[18], who showed that if p is the largest prime divisor of |G|, where G is a finite

group that is the product of two cyclic subgroups, then G has a normal factorised

Sylow p-subgroup, while Douglas [7]–[10] examined conjugacy in products of

two finite cyclic groups. Huppert [12] investigated products of pairwise per-

mutable cyclic subgroups and showed, in particular, that if p is an odd prime

and G is the product of two cyclic p-groups, then G is metacyclic. Huppert also

showed that the derived subgroup of a product of two cyclic 2-groups is not always

cyclic. Following Douglas, Yacoub [19] determined permutation representations

for products of two finite cyclic groups, while Itô [14] and Itô and Ôhara [15]–

[16] examined the structure of G
′

and G/G
′
, where G is the product of two cyclic
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2-groups. Blackburn [4] built on this to determine the structure of G
′

in the

case where G
′

is non-cyclic and G is the product of two cyclic 2-groups. Rédei’s

result was extended by Cohn [5] to products of two infinite cyclic subgroups, and

Heineken and Lennox [11] later showed that if G is the product of the infinite

cyclic subgroups 〈a〉 and 〈b〉, then there exists an integer m such that 〈am, bm〉 is

a torsion-free abelian normal subgroup of G.

Given the extensive literature on factorised groups, it is perhaps surprising

that, apart from the above cases, the structure of products of finite cyclic and

abelian groups (not to mention products of finite abelian groups in general) has

remained largely unexplored. Of course, such groups will be metabelian by the

Theorem of Itô ([13, Satz 1] or [2, Theorem 3.1.7]). Aside from this, the only

general results applicable to products of finite cyclic and abelian groups are those

of Conder and Isaacs [6], who showed, in particular, that if G = AB for

abelian subgroups A and B such that B is finite and either A or B is cyclic, then

G
′
/(G

′ ∩ A) is isomorphic to a subgroup of B. As an initial attempt to provide

more detail on such products, the present paper investigates the structure of

finite p-groups that can be expressed as the product of a cyclic subgroup and

an elementary abelian subgroup. For the odd prime p, Lemma 2.5 shows that

the elementary abelian factor has index at most p in its normal closure. The

remainder of Section 2 consists of applications of Lemma 2.5 and some examples,

leading to Theorems 2.13, 2.14 and 2.15, which clarify how such factorised groups

can be constructed. For p = 2, the key results are Lemmas 3.3 and 3.7, which

ultimately lead to the classification given by Theorems 3.6, 3.15 and 3.16.

The following notation is used. For the subgroup U of a group G, UG denotes

the core of U in G. Thus UG =
⋂
g∈G

Ug. The normal closure of U in G is denoted

by UG, so that UG = 〈Ug | g ∈ G〉. The rank of the finite abelian group A, that

is the size of a minimal generating set of A, is denoted by r(A). Cpk denotes the

cyclic group of order pk, while o(g) denotes the order of the element g of a finite

group G. If G is a finite p-group, then Ωk(G) = 〈g ∈ G | gpk = 1〉 denotes

the characteristic subgroup of G generated by those elements of G whose order

is a divisor of pk. In particular, if G is non-trivial, then Ω1(G) is the subgroup

generated by all elements of order p in G. Moreover, if A is cyclic of order pk,

where k > 0, then for 0 < s ≤ k, Ωs(A) is the unique subgroup of order ps in A.

Finally, exp(G) denotes the exponent of the finite group G.
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2. The case p odd

We first present some elementary results that will be used in the remainder

of this paper.

Lemma 2.1. Let A be an abelian subgroup of a finite group G. If AG is

abelian, then exp(AG) = exp(A). In particular, if A is elementary abelian and

AG is abelian, then AG is elementary abelian.

Lemma 2.2. Let G be a finite p-group, and let N be a normal subgroup

of G such that G/N is a non-trivial cyclic factor group of G. Let U/N be the

unique subgroup of order pk in G/N , where k is such that pk ≤ |G/N |. Then

Ωk(G) 6 U .

Lemma 2.3. Let G = AB be a finite p-group for subgroups A and B such

that A is cyclic of order pk, where k ≥ 2. Then

(i) if B 6 U 6 G, then U = Ωs(A)B for a suitable value s such that 0 ≤ s ≤ k;

(ii) if A∩B = 1, then B = N0 /Ω1(A)B = N1 /Ω2(A)B = N2 / · · · /Ωk(A)B =

Nk = AB = G is the unique series of subgroups of G that contain B, and

which satisfy Ni/Ni−1
∼= Cp for i = 1, . . . , k;

(iii) if B has exponent p and A ∩ B 6= 1, then B = Ω1(A)B = N0 / Ω2(A)B =

N1 / · · · / Ωk(A)B = Nk−1 = AB = G is the unique series of subgroups of

G that contain B, and which satisfy Ni/Ni−1
∼= Cp for i = 1, . . . , k − 1.

Lemma 2.4. Let p be a prime, and let G be a finite p-group such that

G = AB, where A and B are elementary abelian, normal subgroups of G. Then

G
′
6 Z(G) (so G has class at most 2). If, in addition, p is odd, then exp(G) = p.

Proof. We have G/(A ∩ B) = A/(A ∩ B) × B/(A ∩ B), which is abelian,

so G
′
6 A ∩ B 6 Z(AB) = Z(G). If p is odd, then, for g ∈ G, we let g = ab,

where a ∈ A and b ∈ B. Since G has class at most 2, we have ab = az, where

z ∈ A∩B 6 Z(G). By induction, we have gp = bpapz
(p+1)p

2 . But ap = bp = zp = 1

and p is odd, so z
(p+1)p

2 = 1. We conclude that exp(G) = p. �

We note that the dihedral group of order 8 provides an example of a finite

2-group that is the product of two elementary abelian, normal subgroups, but

which does not have exponent 2. Our next result provides some key information

concerning products of elementary abelian and cyclic p-groups in the case where

p is odd.
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Lemma 2.5. Let p be an odd prime, and let G = AB be a finite p-group

for subgroups A and B such that A is cyclic and B is elementary abelian. Then

Ω1(A)B EG.

Proof. We let |A| = pk, and let A = 〈x〉. If k = 2, then the result follows

from Lemma 2.3. We thus assume that k ≥ 3. We first consider the case where

A∩B = Ω1(A) = 〈xpk−1〉 (or, equivalently, where A∩B 6= 1). We let n = r(B) and

use induction on n. For n = 1, we have B = Ω1(A)EA = G. For n > 1, B is non-

cyclic, so A 6= G. We let M be a maximal proper subgroup of G that contains A.

Then |G : M | = p and M E G. Since A 6 M , we have M = A(B ∩M). Now

|G| = |A||B|
|A ∩B|

= pk+n−1, so |M | = pk+n−2. Since Ω1(A) = A ∩B = A ∩B ∩M ,

we see, by comparison of orders, that |B∩M | = pn−1. We let B1 = B∩M . Then

B1 is elementary abelian of rank n−1 and M = AB1, where A∩B1 = Ω1(A). By

induction, B1EM . Since B1 is trivially normalised by B, we have B1EG = MB.

We let y ∈ B \ B1. Then B = B1〈y〉 and G = AB1〈y〉 = M〈y〉. We note that

o(y) = p.

We have M/B1 = AB1/B1EG/B1. But AB1/B1
∼= A/(A∩B1) = A/Ω1(A).

HenceM/B1
∼= Cpk−1 . In addition, Ω2(A)B1/B1 is the unique subgroup of order p

in M/B1. Since p is odd and y is an element of order p that acts by conjugation

on M/B1, we have [x, y] ∈ Ω2(A)B1. Hence [x, y] = ub1, where u ∈ Ω2(A) and

b1 ∈ B1. Now Ω2(A)B1/B1 is characteristic in M/B1, so Ω2(A)B1/B1 E G/B1.

Moreover, Ω2(A)B1/B1
∼= Cp, so Ω2(A)B1/B1 6 Z(G/B1). Thus [u, y] = b2,

where b2 ∈ B1. Now y ∈ B 6 CG(B1)EG, so u = ub1b
−1
1 = [x, y]b−1

1 ∈ CG(B1).

Hence b1 and b2 are centralised by both u and y. Since o(y) = p, we see by

induction that x = xy
p

= xupbp1b
p(p−1)

2
2 . Now bp1 = 1, since B is elementary

abelian. In addition, since p is odd, we have b
p(p−1)

2
2 = 1. Thus x = xup, so up = 1.

Since u ∈ Ω2(A) and up = 1, we have u ∈ Ω1(A) 6 B1. Therefore, [x, y] ∈ B1,

so B = B1〈y〉 = Ω1(A)B EG.

If A ∩ B = 1, then ABG/BG ∼= A ∼= Cpk . In addition, B/BG is elementary

abelian. Since B/BG has a trivial core and G is a p-group, we see, by a result

of Itô ([13, Satz 2] or [1, Lemma 2.1.4]), that (ABG/BG) ∩ Z(G/BG) 6= 1.

By minimality, we have 1 6= Ω1(A)BG/BG 6 Z(G/BG). Hence Ω1(A)B/BG is

elementary abelian and ABG/BG ∩ Ω1(A)B/BG 6= 1G/BG
. From the above, we

have Ω1(A)B/BG EG/BG, and it follows that Ω1(A)B EG. �

For the odd prime p, we use Lemma 2.5 to shed some light on the structure

of finite p-groups that are products of elementary abelian and cyclic subgroups.
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We first consider the case where the normal closure of the elementary abelian

factor is non-abelian.

Theorem 2.6. Let p be an odd prime, and let G = AB be a finite p-group

for subgroups A and B such that A is cyclic of order pk and B is elementary

abelian. If BG is not abelian, then

(i) AG = 1;

(ii) BG = Ω1(A)B;

(iii) BG = Z(BG) and |BG : BG| = p2;

(iv) BG has class 2 and exponent p;

(v) k ≥ 2 and G/BG ∼= 〈x, y | xp
k

= yp = 1, xy = x1+pk−1〉;

(vi) BG = Ω1(G);

(vii) Ω1(A)BG EG and Ω1(A)BG = Ω1(A)× BG, so, in particular, Ω1(A)BG is

an elementary abelian, normal subgroup of G;

(viii) G/Ω1(A)BG is abelian of type (p, pk−1);

(ix) if N is an elementary abelian, normal subgroup of G, then N 6 Ω1(A)BG
(so Ω1(A)BG is the unique maximal elementary abelian, normal subgroup

in G, and, in particular, Ω1(A)BG is characteristic in G);

(x) G has exponent pk;

(xi) G
′

is elementary abelian and r(G
′
) ≤ r(B).

Proof. If AG 6= 1, then Ω1(A) is the unique subgroup of order p in AG,

so Ω1(A) 6 Z(G). By Lemma 2.5, Ω1(A)B is then a normal elementary abelian

subgroup of G. It follows that BG is abelian. But this is ruled out, so AG = 1

and (i) follows.

For (ii) we have Ω1(A)BEG by Lemma 2.5, soBG 6 Ω1(A)B. By comparison

of orders, either BG = B or BG = Ω1(A)B. Hence, if BG is not abelian, we have

BG = Ω1(A)B.

Since BG is non-abelian, we see for (iii), that B is a proper subgroup of BG.

Thus |BG : B| = |Ω1(A)B : B| = |Ω1(A)| = p. Letting A = 〈x〉, we have

Bx 6= B, as otherwise B E G. Hence, by comparison of orders, BG = BBx and

|B : B ∩Bx| = |BG : B| = p, so |BG : B ∩Bx| = p2. Since B is abelian, we have

B∩Bx 6 Z(〈B,Bx〉) = Z(BG), so |BG : Z(BG)| ≤ p2. Then |BG : Z(BG)| = p2,

as otherwise BG/Z(BG) is cyclic and BG is abelian. It follows that B ∩ Bx =

Z(BG). Since Z(BG) E G and Z(BG) 6 B, we have Z(BG) 6 BG. But |B :

Z(BG)| = |B : B∩Bx| = p, so Z(BG) = BG and |BG : BG| = |BG : Z(BG)| = p2.
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From the preceding paragraph, we have BG = BBx, where |BG : B| = |BG :

Bx| = p. Thus BG is the product of two elementary abelian, normal subgroups,

so (iv) follows from Lemma 2.4.

We observe that k ≥ 2, as otherwise BEG and BG is abelian. Letting y ∈ B\
BG, we note that B = BG〈y〉. Since A ∩B 6 AG = 1 and |G : ABG| = |〈y〉| = p,

we see that G/BG is the extension of the normal subgroup ABG/BG ∼= Cpk

by B/BG ∼= Cp. In addition, G/BG is non-abelian, as otherwise B/BG EG/BG,

which is excluded. Since Aut(Cpk) possesses precisely one subgroup of order p,

we conclude that G/BG ∼= 〈x, y | xp
k

= yp = 1, xy = x1+pk−1〉, in accordance

with (v).

For (vi), we note, from (v), that Ω1(G/BG) ∼= Cp × Cp. By comparison of

orders, we then have Ω1(G)/BG 6 Ω1(G/BG) = Ω1(A)BG/BG × 〈y〉BG/BG =

Ω1(A)B/BG 6 Ω1(G)/BG, so Ω1(G) = Ω1(A)B = BG.

Since (B/BG)G/BG
= 1G/BG

, we see, by [13, Satz 2] (or [1, Lemma 2.1.4]),

that ABG/BG∩Z(G/BG) 6= 1G/BG
. Now Ω1(A) 66 B, as otherwise B = Ω1(A)BE

G, so Ω1(A)BG/BG is the unique subgroup of order p in ABG/BG. Hence

Ω1(A)BG/BG 6 Z(G/BG). In particular, Ω1(A)BG E G. We have Ω1(A) 6
BG 6 CG(BG), so Ω1(A)BG is elementary abelian. In addition, Ω1(A) ∩ BG 6
A ∩B 6 AG = 1. Hence Ω1(A)BG = Ω1(A)×BG, and (vii) follows.

For (viii), we have A∩Ω1(A)BG = Ω1(A), so ABG/Ω1(A)BG ∼= A/Ω1(A) ∼=
Cpk−1 . Now |G : ABG| = |B : BG| = p, so ABGEG. In addition, BG/Ω1(A)BG ∼=
Cp. We further have ABG/Ω1(A)BG ∩ BG/Ω1(A)BG = (A∩BG)BG/Ω1(A)BG =

Ω1(A)BG/Ω1(A)BG = 1G/Ω1(A)BG
. Hence G/Ω1(A)BG is the direct product of

ABG/Ω1(A)BG and BG/Ω1(A)BG, so G/Ω1(A)BG ∼= Cp × Cpk−1 . Therefore,

G/Ω1(A)BG is abelian of type (p, pk−1).

Now, for (ix), if N is an elementary abelian, normal subgroup of G, then N 6
Ω1(G) = Ω1(A)B. If NBG = Ω1(G), then, since BG = Z(BG) = Z(Ω1(G)) and

N is abelian, we see thatBG = Ω1(G) is abelian, which is excluded. HenceNBG is

a proper subgroup of Ω1(G). If N 66 Ω1(A)BG, then NBG/BG and Ω1(A)BG/BG
are distinct proper subgroups of Ω1(G)/BG. From (v), Ω1(G)/BG ∼= Cp × Cp,
so Ω1(G)/BG = NBG/BG × Ω1(A)BG/BG. Since NBG/BG and Ω1(A)BG/BG
are normal subgroups of order p in G/BG, we then have Ω1(G)/BG 6 Z(G/BG).

It follows that G/BG = (ABG/BG)(Ω1(G)/BG) is abelian, in contradiction to (v).

We conclude that N 6 Ω1(A)BG.

Next, we recall that A ∼= Cpk . From (vii) and (viii), we see that G/Ω1(A)BG
has exponent pk−1 and that Ω1(A)BG is elementary abelian. Hence G has ex-

ponent pk, in accordance with (x). Finally, by (viii), G
′
6 Ω1(A)BG, so G

′
is
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elementary abelian. In addition, r(G
′
) ≤ r(Ω1(A)BG) = 1 + r(B)− 1 = r(B), so

(xi) follows. �

In the case where the normal closure of the elementary abelian factor is non-

abelian, the decomposition G = AB, as in Theorem 2.6, displays some aspects of

uniqueness, as our next result shows.

Corollary 2.7. Let p be an odd prime, and let G = AB be a finite p-

group for subgroups A and B such that A is cyclic and B is elementary abelian.

If BG is not abelian and if G is also the product of the cyclic subgroup Ã and

the elementary abelian subgroup B̃, then

(i) B̃G = Ω1(Ã)B̃ = Ω1(G) = BG;

(ii) (B̃)G = Z(Ω1(G)) = BG;

(iii) Ã ∼= A and B̃ ∼= B.

Proof. If B̃G is abelian (and hence elementary abelian), then B̃G 6 Ω1(A)B

by Theorem 2.6 (ix). Now G/B̃G is isomorphic to a factor group of Ã, so G/B̃G is

cyclic. But G/Ω1(A)BG is isomorphic to a factor group of G/B̃G, so G/Ω1(A)BG
is also cyclic, in contradiction to Theorem 2.6 (viii). Hence B̃G is non-abelian, so

(i) and (ii) follow from Theorem 2.6 (vi) and (iii), respectively.

By Theorem 2.6 (x), we have exp(G) = |A| = |Ã|, so A ∼= Ã. Finally, both

B and B̃ have non-abelian normal closures, so we apply Theorem 2.6 (iii) to see

that |B̃G : B̃| = |BG : B| = p. Since B̃G = BG, it follows that |B̃| = |B|, so

B̃ ∼= B and (iii) is established. �

We now develop an alternative characterisation of the groups in Theorem 2.6.

For this, we require some preparatory results and examples.

Lemma 2.8. Let G be a finite p-group, and let W and A be subgroups of G

such that W is elementary abelian and A = 〈x〉 ∼= Cpk , for k ≥ 2. Suppose that

(i) [A,W ] 6W ;

(ii) [Ω1(A),W ] = 1;

(iii) Ω1(A) ∩W = 1.

Then, if w ∈W , we have o(xw) = pk.

Proof. We note that (xw)p
k−1

= wx
−1 · · ·wx−pk−1

xp
k−1

= w1x
pk−1

, where

w1 = wx
−1 · · ·wx−pk−1

. Since [A,W ] 6 W , we have w1 ∈ W . We further have

1 6= xp
k−1 ∈ Ω1(A). Now [Ω1(A),W ] = Ω1(A) ∩ W = 1, so o(w1x

pk−1

) = p.

It follows that o(xw) = pk. �
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Example 2.9. Let p be an odd prime, and let k ≥ 2. Let W = 〈w1, . . . , wpk−1〉
be elementary abelian of rank pk−1. Let 〈x〉 ∼= Cpk , and let x act on W as follows:

wxi = wi+1, i = 1, . . . , pk−1 − 1, wxpk−1 = w1.

Then x defines an automorphism of W such that C〈x〉(W ) = 〈xp
k−1

〉 = Ω1(〈x〉).
We let Hk be the semi-direct product of W by 〈x〉, and see that Hk can be

expressed as

Hk =

〈
w1, . . . , wpk−1

x

∣∣∣∣∣ wp1 = · · · = wp
pk−1 = xp

k

= 1; [wi, wj ] = 1, i, j = 1, . . . , pk−1

wxi = wi+1, i = 1, . . . , pk−1 − 1; wxpk−1 = w1

〉
.

We let z = w1 · · ·wpk−1 . Then Z(Hk) = 〈z, xpk−1〉 ∼= Cp × Cp.

Lemma 2.10. Let Hk, W , x and z be as in Example 2.9, and let w ∈ W .

Then wx
−1 · · ·wx−pk−1

∈ 〈z〉.

Proof. Since xp
k−1

centralises W , we can see that (wx
−1 · · ·wx−pk−1

)x =

wwx
−1 · · ·wx−pk−1+1

= wx
−1 · · ·wx−pk−1+1

w = wx
−1 · · ·wx−pk−1

. It then follows

that wx
−1 · · ·wx−pk−1

∈ W ∩ Z(Hk) = 〈z〉. �

Example 2.11. We let p be an odd prime, and let Hk be as in Example 2.9.

We define a mapping, y, of Hk as follows:

wyi = wi, for i = 1, . . . , pk−1, xy = x1+pk−1

w1.

Now xp
k−1

centralises W , so we see that xy acts on W in the same manner as x.

In addition, o(xy) = pk by Lemma 2.8. Hence y extends to an automorphism

of Hk. We have (xp
k−1

)y = (xxp
k−1

w1)p
k−1

= (xw1)p
k−1

xp
2k−2

. Since k ≥ 2,

we have xp
2k−2

= 1, so

(xp
k−1

)y = (xw1)p
k−1

= wx
−1

1 · · ·wx
−pk−1

1 xp
k−1

= xp
k−1

z.

Then [xp
k−1

, y]=z. In addition, we have xy
2

= (xxp
k−1

w1)y= xxp
k−1

w1x
pk−1

zw1=

x(xp
k−1

)2w2
1z, and we see inductively that

xy
p

= x(xp
k−1

)pwp1z
p(p−1)

2 .

Since p is odd, it follows that xy
p

= x, so y has order p in Aut(Hk). We then let

Gk be the semi-direct product of Hk by 〈y〉, so that

Gk =

〈
w1, . . . , wpk−1

x

y

∣∣∣∣∣∣∣
wp1 = · · · = wp

pk−1 = xp
k

= yp = 1; [wi, wj ] = 1, i, j = 1, . . . , pk−1

wxi = wi+1, i = 1, . . . , pk−1− 1; wxpk−1 = w1

wyi = wi, i = 1, . . . , pk−1; xy = x1+pk−1

w1

〉
.
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Letting A = 〈x〉 and B = 〈w1, . . . , wpk−1 , y〉, we see that Gk = AB, where A is

cyclic of order pk and B is elementary abelian. Since [x, y] = xp
k−1

w1, we see

that BGk = Ω1(A)B. But [xp
k−1

, y] = z 6= 1, so BGk is non-abelian. Thus

Gk is a group that satisfies the hypotheses of Theorem 2.6. We note that Gk
further provides us with an example of a group that is the product of a cyclic

subgroup and an elementary abelian subgroup, but which is neither an extension

of an elementary abelian group by a cyclic group, nor an extension of a cyclic

group by an elementary abelian group. Our next result shows that certain groups

are isomorphic to Gk.

Lemma 2.12. Let p be an odd prime, and let k ≥ 2. Let G = 〈x̃〉V 〈ỹ〉 be

a finite p-group such that

(i) V is an elementary abelian, normal subgroup of G;

(ii) 〈x̃〉 ∼= Cpk and 〈ỹ〉 ∼= Cp;

(iii) [V,Ω1(〈x̃〉)] = [V, 〈ỹ〉] = 1;

(iv) there exists an element v ∈ V such that V = 〈vx̃i | i = 1, . . . , pk〉;
(v) (V 〈ỹ〉)G is non-abelian.

Then G is isomorphic to Gk, for Gk as in Example 2.11.

Proof. Since Ω1(〈x̃〉) and 〈ỹ〉 both centralise V , v has at most pk−1 con-

jugates in G. Hence r(V ) ≤ pk−1. Now G is the product of the cyclic sub-

group 〈x̃〉 and the elementary abelian subgroup V 〈ỹ〉, where (V 〈ỹ〉)G is non-

abelian. We have V E G, so V 6 (V 〈ỹ〉)G. Then V = (V 〈ỹ〉)G, as other-

wise V 〈ỹ〉 E G and (V 〈ỹ〉)G is abelian. Hence, by Theorem 2.6 (v), we have

G/V ∼= 〈x, y | xp
k

= yp = 1, xy = x1+pk−1〉. In addition, (V 〈ỹ〉)G = Ω1(〈x̃〉)V 〈ỹ〉
by Theorem 2.6 (ii).

We have 〈x̃〉∩V 6 〈x̃〉∩Z(G) 6 〈x̃〉G = 1 (by Theorem 2.6 (i)), so 〈x̃〉V/V ∼=
Cpk . Thus we may assume that x̃ỹ = x̃1+pk−1

v1, where v1 ∈ V . Since k ≥ 2 and

v1 centralises Ω1(〈x̃〉) = 〈x̃pk−1〉, we have

(x̃p
k−1

)ỹ= (x̃x̃p
k−1

v1)p
k−1

= (x̃v1)p
k−1

x̃p
2k−2

= (x̃v1)p
k−1

= vx̃
−1

1 · · · vx̃
−pk−1

1 x̃p
k−1

.

Hence the relation (x̃p
k−1

)ỹ = x̃p
k−1

vx̃
−1

1 · · · vx̃−pk−1

1 is satisfied.

We let V1 = 〈v1, v
x̃
1 , . . . , v

x̃pk−1−1

1 〉. Then V1 = 〈vx̃i

1 | i = 1, . . . , pk〉, so x̃

normalises V1. Hence the mapping φ defined by

φ(w1) = v1, φ(w2) = vx̃1 , . . . , φ(wpk−1) = vx̃
pk−1−1

1 , φ(x) = x̃,
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extends to an epimorphism from Hk, as in Example 2.9, onto 〈x̃〉V1. We note that

φ(W ) = V1, and that φ(〈x〉) = 〈x̃〉 ∼= Cpk . Since 〈x̃〉 ∩ V1 6 〈x̃〉 ∩ V = 1, we have

ker(φ) 6W . If φ is not an isomorphism, then, by minimality, 〈z〉 6 ker(φ). Now

φ(w1) = v1, and we can apply Lemma 2.10 to see that w
x−1

1 · · ·wx
−pk−1

1 ∈ 〈z〉,
so vx̃

−1

1 · · · vx̃−pk−1

1 = 1. It follows that (x̃p
k−1

)ỹ = x̃p
k−1

. Hence ỹ centralises

Ω1(x̃), so (V 〈ỹ〉)G = Ω1(x̃)V 〈ỹ〉 is abelian, which is ruled out. We conclude that

φ defines an isomorphism from Hk to 〈x̃〉V1. In particular, r(V1) = r(W ), so

V1 = V by comparison of orders. We further extend φ by letting φ(y) = ỹ. Since

G/V is non-abelian, we have 〈ỹ〉 ∩ 〈x̃〉V = 1. Hence φ, thus extended, defines

an isomorphism from Gk to G. �

Theorem 2.13. Let p be an odd prime, let k ≥ 2 and let Gk be as in

Example 2.11. Then the following are equivalent for the finite p-group G:

(i) G = AB for subgroups A and B, where A is cyclic of order pk, B is elemen-

tary abelian and BG is non-abelian;

(ii) G = AB for subgroups A and B, where A is cyclic of order pk, B is elemen-

tary abelian, |B : BG| = p, and, for y ∈ B \BG, 〈A, y〉 ∼= Gk;

(iii) G is of the form G = AW 〈y〉, where

(a) W is an elementary abelian, normal subgroup of G;

(b) A ∼= Cpk and 〈y〉 ∼= Cp;

(c) [Ω1(A),W ] = [W, 〈y〉] = 1;

(d) 〈A, y〉 ∼= Gk.

Proof. To show that (i) implies (ii), we note first that |BG : BG| = p2

by Theorem 2.6 (iii). Since BG is non-abelian, it follows that |B : BG| = p.

Letting A = 〈x〉 and y ∈ B \ BG, we may assume, by Theorem 2.6 (v), that

xy = xxp
k−1

v, where v ∈ BG. By Theorem 2.6 (ii) and (iii), we have 〈xpk−1〉 =

Ω1(A) 6 BG 6 CG(BG). We let V = 〈v, vx, . . . , vxpk−1−1〉. Then V 6 BG, so V

is elementary abelian and [V,Ω1(A)] = [V, 〈y〉] = 1. In addition, x normalises V ,

so V E 〈A, V, y〉 = 〈A, y〉 = 〈x〉V 〈y〉.
Now, |〈A, y〉/V | = |〈x〉V 〈y〉/V | ≤ |〈x〉||〈y〉| = pk+1. In addition, G = AB =

〈A, y〉B and B = 〈y〉BG, so G/BG = 〈A, y〉BG/BG ∼= 〈A, y〉/(〈A, y〉 ∩ BG). But

V 6 〈A, y〉 ∩ BG and |G/BG| = pk+1 (by Theorem 2.6 (v)), so, by comparison

of orders, we have V = 〈A, y〉 ∩ BG and 〈A, y〉/V ∼= G/BG. It follows from The-

orem 2.6 (v) that (V 〈y〉)〈A,y〉/V = Ω1(A)V 〈y〉/V , so (V 〈y〉)〈A,y〉 = Ω1(A)V 〈y〉.
But BG = Ω1(A)B = Ω1(A)BG〈y〉 and BG = Z(BG) (by Theorem 2.6 (iii)).

In addition, BG is non-abelian, so 1 6= (BG)
′

= [Ω1(A), 〈y〉] = ((V 〈y〉)〈A,y〉)′ .
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Therefore, (V 〈y〉)〈A,y〉 is non-abelian, so we may apply Lemma 2.12 to see that

〈A, y〉 ∼= Gk.

Conversely, if |B : BG| = p and 〈A, y〉 ∼= Gk for y ∈ B \BG, then, letting y ∈
B\BG, we have B = BG〈y〉 and 〈A, y〉 = A(〈A, y〉∩B). Letting B̃ = 〈A, y〉∩B, we

see that B̃ is elementary abelian and that 〈A, y〉 = AB̃. Since 〈A, y〉 is isomorphic

to Gk, which is the product of a cyclic subgroup and an elementary abelian

subgroup whose normal closure is non-abelian, we apply Corollary 2.7 to see that

B̃〈A,y〉 ∼= Ω1(Gk), which is non-abelian. But B̃〈A,y〉 6 BG, so BG is non-abelian.

Hence (i) and (ii) are equivalent.

To show that (i) and (ii) imply (iii), we let y ∈ B \BG. Then G = ABG〈y〉,
where BG is an elementary abelian, normal subgroup of G, A ∼= Cpk and 〈y〉 ∼= Cp.

Since BG is non-abelian, we have Ω1(A) 6 BG 6 CG(BG), so [Ω1(A), BG] =

[BG, 〈y〉] = 1. In addition, we have 〈A, y〉 ∼= Gk from (ii). Thus, letting W = BG,

we have G = AW 〈y〉 and see that the conditions for (iii) are satisfied.

Finally, if (iii) holds, we let B = W 〈y〉. Then G = AB, where A ∼= Cpk

and B is elementary abelian. Since Gk ∼= 〈A, y〉 = A(〈A, y〉 ∩ B), we let B̃ =

(〈A, y〉 ∩ B) and again apply Corollary 2.7 to see that B̃〈A,y〉, and hence BG, is

non-abelian. We thus conclude that (iii) implies (i). �

For the odd prime, p, Theorem 2.13 shows that finite p-groups which fac-

torise as the product of a cyclic subgroup and an elementary abelian subgroup

whose normal closure is non-abelian can always be realised as an extension of

an elementary abelian group by a cyclic group, in turn extended by a suitable

group of automorphisms of order p. Our next two results deal with the case

where the normal closure of the elementary abelian factor is abelian (and hence

elementary abelian by Lemma 2.1). The first gives conditions under which certain

products can be realised as faithful split extensions of elementary abelian groups

by cyclic groups.

Theorem 2.14. Let p be an odd prime, and let G = AB be a finite p-group

for subgroups A and B such that A is cyclic and B is elementary abelian. Then

the following are equivalent:

(i) BG is abelian and AG = 1;

(ii) B EG and AG = 1;

(iii) B E G, A ∩ B = 1 and CA(B) = 1 (so that G is a faithful split extension

of B by A).
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Proof. To show that (i) implies (ii), we note that if B is not normal in G,

then BG = Ω1(A)B by Lemma 2.5. But BG is abelian, so B centralises Ω1(A).

Hence 1 6= Ω1(A) 6 A ∩ Z(G) 6 AG, and a contradiction arises.

To show that (ii) implies (iii), we note that A ∩ B 6 A ∩ Z(G) 6 AG = 1.

We similarly have CA(B) 6 A ∩ Z(G) = 1. Therefore, G is a faithful split

extension of B by A.

Finally, if G is a faithful split extension of B by A, then B EG, so BG = B

and BG is elementary abelian. In addition, AG ∩ B 6 A ∩ B = 1, so [AG, B] 6
AG ∩B = 1. Hence AG 6 CA(B) = 1, so (i) follows from (iii). �

For odd p, the final case we need to consider is where the elementary abelian

factor has an (elementary) abelian normal closure and the cyclic factor has a non-

trivial core. In fact, only the latter condition is required, as seen in the following

result.

Theorem 2.15. Let p be an odd prime, and let G = AB be a non-cyclic,

finite p-group for subgroups A and B such that A is cyclic of order pk and B is

elementary abelian. If AG 6= 1, then

(i) Ω1(A)B is an elementary abelian, normal subgroup of G;

(ii) if N is an elementary abelian, normal subgroup of G, then N 6 Ω1(A)B

(so Ω1(A)B is the unique maximal elementary abelian, normal subgroup

in G, and, in particular, Ω1(A)B is characteristic in G);

(iii) BG is elementary abelian;

(iv) G has exponent pk;

(v) G has a normal subgroup, W , such that

(a) W is elementary abelian;

(b) W = Ω1(A)× B̂, for a suitable subgroup B̂ 6 B;

(c) G/W is abelian of type (p, pk−1);

(vi) G
′

is elementary abelian and r(G
′
) ≤ r(B);

(vii) for B̃ = Ω1(A)B, we have G = AB̃, where B̃ is an elementary abelian,

normal subgroup of G and A ∩ B̃ = Ω1(A).

Proof. Since AG 6= 1, we have AG ∩ Z(G) 6= 1, so Ω1(A) 6 Z(G). Hence,

by Lemma 2.5, Ω1(A)B is an elementary abelian, normal subgroup of G, in ac-

cordance with (i).

For (ii), if N is an elementary abelian, normal subgroup of G such that

N 66 Ω1(A)B, then, by Lemma 2.3 (iii), we have Ω2(A) 6 Ω1(A)BN . Hence

exp(Ω1(A)BN) ≥ p2. But Ω1(A)BN is the product of two normal elementary
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abelian subgroups, so exp(Ω1(A)BN) = p by Lemma 2.4, and a contradiction

ensues.

We observe that (iii) follows from Theorem 2.6 (i). For (iv), we note that

G/Ω1(A)B ∼= A/Ω1(A) ∼= Cpk−1 and exp(Ω1(A)B) = p. Since A is cyclic of or-

der pk, we conclude that exp(G) = pk.

Since G is non-cyclic, Ω1(A) is a proper subgroup of Ω1(A)B. Therefore,

since G is a finite p-group and Ω1(A) 6 Z(G), there exists a normal subgroup

W EG with Ω1(A) 6W 6 Ω1(A)B, and such that |Ω1(A)B : W | = p. It follows

that W = Ω1(A)(W ∩ B). If Ω1(A) ∩ (W ∩ B) = 1, then we let B̂ = W ∩ B
and have W = Ω1(A) × B̂. If Ω1(A) ∩ (W ∩ B) 6= 1, then Ω1(A) 6 W ∩ B.

We let B̂ be a complement for Ω1(A) in W ∩ B and see that W = Ω1(A) × B̂.

Now, Ω1(A)B/W ∼= Cp and Ω1(A)B/W E G/W , so Ω1(A)B/W 6 Z(G/W ).

In addition, AW/W ∼= A/(A ∩ W ) = A/Ω1(A) ∼= Cpk−1 . We further have

Ω1(A)B ∩ AW = (Ω1(A)B ∩ A)W = Ω1(A)W = W , so Ω1(A)B/W ∩ AW/W =

1G/W . Hence G/W = Ω1(A)B/W × AW/W ∼= Cp × Cpk−1 , so G/W is abelian

of type (p, pk−1) and (v) is established.

For (vi), we see that G
′
6W , so G

′
is elementary abelian and r(G

′
) ≤ r(W ).

If Ω1(A) ∩ B = 1, then |Ω1(A)B : B| = p = |Ω1(A)B : W |, so r(W ) = r(B).

If Ω1(A) 6 B, then |Ω1(A)B : W | = |B : W | = p, so r(W ) = r(B) − 1. Hence

r(G
′
) ≤ r(B).

Finally, we note that (vii) follows directly from (i). �

Now suppose, as in the preceding theorem, that G = AB, where A is cyclic

of order pk, B is elementary abelian and AG 6= 1. Let A = 〈x〉, and let U =

Ω1(A)B. Then A ∩ U = Ω1(A) = 〈xpk−1〉. In addition, let u1 = xp
k−1

, and

let {u2, . . . , ut} be a minimal generating set for a complement for 〈u1〉 in U .

In particular, we have r(U) = t. Let 〈x̃〉 be isomorphic to Cpk . Since conjugation

by x induces an automorphism of order at most pk−1 on U , we may let 〈x̃〉 act on U

by letting ux̃i = uxi , and see that, under this action, U is centralised by 〈x̃pk−1〉.
We let G̃ be the semi-direct product of U by 〈x̃〉, so that

G̃ =

〈
u1, . . . , ut

x̃

∣∣∣∣∣ up1 = · · · = upt = x̃p
k

= 1; [ui, uj ] = 1, i, j = 1, . . . , t

ux̃i = uxi , i = 1, . . . , t

〉
.

We further observe that |G̃| = pt+k = p|G|, and that 〈u1, x̃
pk−1〉 6 Z(G̃). Since

the appropriate relations are satisfied, we have G ∼= G̃/〈u−1
1 x̃p

k−1〉. Bearing

Theorem 2.14 in mind, we then see that, for the odd prime p, finite p-groups

that factorise as the product of a cyclic subgroup and an elementary abelian

subgroup whose normal closure is abelian can either be realised as a faithful split
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extension of an elementary abelian group by a cyclic group, or as a split extension

of an elementary abelian group by a cyclic group, modulo a subgroup of order p

in its centre.

For the finite p-group G = AB, where A is cyclic, we observe that exp(G) ≥
exp(A) = |A|. Our next result gives an upper bound for exp(G) in such cases.

Lemma 2.16. Let G = AB be a finite p-group for subgroups A and B such

that A is cyclic. Then exp(G) ≤ exp(A) exp(B) = |A| exp(B).

Proof. We let |A| = pk and suppose that exp(G) > exp(A) exp(B), say

exp(G) = pk+s exp(B), where s ≥ 1. Since G is a finite p-group, G possesses

an element y whose order is equal to exp(G), so o(y) = pk+s exp(B). Now 〈y〉∩B
is cyclic, so |〈y〉 ∩B| is a divisor of exp(B). Hence

|G| ≥ |〈y〉B| = |〈y〉||B|
|〈y〉 ∩B|

≥ |〈y〉||B|
exp(B)

=
pk+s exp(B)|B|

exp(B)
= pk+s|B|.

But |G| ≤ |A||B| = pk|B|, and a contradiction arises since s ≥ 1. �

Combining Lemma 2.16 with Theorems 2.6 (x) and (xi), 2.14 and 2.15 (iv)

and (vi), we have the following bounds on exp(G) and |G′ | for a finite p-group G

that is the product of a cyclic subgroup and an elementary abelian subgroup,

where p is an odd prime.

Corollary 2.17. Let p be an odd prime, and let G = AB be a finite p-group

for subgroups A and B such that A is cyclic of order pk and B is elementary

abelian. Then:

(i) pk ≤ exp(G) ≤ pk+1;

(ii) G
′

is elementary abelian of rank at most r(B).

We finally present an example to show that there exist groups for which the

hypotheses of Theorems 2.14 and 2.15 are both satisfied. Thus, in contrast to

the case where the normal closure of the elementary abelian factor is non-abelian

(see Corollary 2.7), quite dissimilar factorisations can occur in the case where

a finite p-group (for p odd) is the product of a cyclic subgroup and an elementary

abelian subgroup whose normal closure is abelian. The example also shows that

the upper bounds on exp(G) and r(G
′
) can be attained.

Example 2.18. Let p be an odd prime, and let k ≥ 2. We let the wreath

product G = CpwrCpk−1 be presented as follows:

G=

〈
w1, . . . , wpk−1

θ

∣∣∣∣∣ wp1 = · · ·= wp
pk−1 = θp

k−1

= 1; [wi, wj ] = 1, i, j = 1, . . . , pk−1

wθi = wi+1, i = 1, . . . , pk−1− 1; wθpk−1 = w1

〉
.
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Then G = AB, where A = 〈θ〉 ∼= Cpk−1 and B = 〈w1, . . . , wpk−1〉 is elementary

abelian of rank pk−1. In this case, the hypotheses of Theorem 2.14 are satisfied.

We let x = θw1. We can confirm that o(x) = pk. We let Ã = 〈x〉 ∼= Cpk and

B̃ = 〈w2, . . . , wpk−1〉. Then B̃ is elementary abelian of rank pk−1 − 1, and we

see that G also factorises as G = ÃB̃, where the hypotheses of Theorem 2.15 are

satisfied.

Since exp(CpwrCPk−1) = pk, we see that the upper bound on exp(G) is at-

tained by the factorisation G=AB. In addition, G
′
=〈w1w

−1
2 , . . . , wpk−1−1w

−1
pk−1〉,

so r(G
′
) = pk−1 − 1. Hence the upper bound on r(G

′
) is attained by the factori-

sation G = ÃB̃.

3. The case p = 2

Turning to the case where p = 2, we first examine some cases where the nor-

mal closure of the elementary abelian factor is also elementary abelian. The fol-

lowing two results will be used in the proofs of Lemmas 3.3 and 3.7, respectively.

Lemma 3.1. Let G = B1B2 be a finite 2-group for subgroups B1 and B2

such that Bi is elementary abelian and |G : Bi| = 2 for i = 1, 2. Suppose that

there exists an element g ∈ G such that o(g) = 2 and such that g 6∈ B1 ∪ B2.

Then G is elementary abelian.

Proof. We let Z = B1 ∩ B2. Since the Bi are abelian, we have Z 6
Z(B1B2) = Z(G). In addition, we have |G : Z| = 4 and see that |Bi : Z| = 2 for

i = 1, 2. Letting bi ∈ Bi be such that Bi = 〈bi〉Z for i = 1, 2, we then have G/Z =

B1/Z × B2/Z = 〈b1〉Z/Z × 〈b2〉Z/Z ∼= C2 × C2. Since g /∈ B1 ∪ B2, there exists

z ∈ Z such that g = b1b2z. Now g2 = z2 = 1, so (b1b2z)
2 = (b1b2)2z2 = (b1b2)2 =

1. But bi ∈ Bi, so o(bi) = 2 for i = 1, 2. Hence [b1, b2] = b1b2b1b2 = (b1b2)2 = 1.

Thus b1 and b2 commute, so G = 〈b1, b2〉Z is abelian. Since G is generated by

elements of order 2, it follows that G is elementary abelian. �

Lemma 3.2. Let G be a finite 2-group, and let W 6 G and x ∈ G be such

that

(i) W is elementary abelian of rank 3;

(ii) [〈x〉,W ] 6W ;

(iii) [〈x2〉,W ] = 1.

Then |CW (x)| ≥ 4.
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Proof. Let W = 〈w1, w2, w3〉. Since G is a 2-group and x normalises W ,

we have CW (x) 6= 1. Hence we may assume that w1 ∈ CW (x). If |CW (x)| < 4,

then CW (x) = 〈w1〉 ∼= C2. Since x2 centralises W , we have (w2w
x
2 )x = wx2w2 =

w2w
x
2 , so w2w

x
2 ∈ CW (x) = 〈w1〉. If w2w

x
2 = 1, then wx2 = w−1

2 = w2, so w2 ∈
CW (x) = 〈w1〉, which is a contradiction. Hence w2w

x
2 = w1, and, similarly,

w3w
x
3 = w1. Then w2w

x
2w3w

x
3 = w2

1 = 1, so w2w3(w2w3)x = 1. Hence w2w3 ∈
CW (x). Once more a contradiction arises, so we conclude that |CW (x)| ≥ 4. �

Lemma 3.3. Let G = AB be a finite 2-group for subgroups A and B such

that A is cyclic and B is elementary abelian. Then BG is abelian (and thus

elementary abelian) if and only if BG 6 Ω1(A)B.

Proof. By Lemma 2.3, BG = Ωs(A)B for a suitable s. If BG is abelian,

then, by Lemma 2.1, we have exp(Ωs(A)) ≤ 2, so s ≤ 1. Hence BG 6 Ω1(A)B.

Conversely, suppose that BG 6 Ω1(A)B. If BG = B EG, then BG is elementary

abelian. If B is not normal in G, then B is a proper subgroup of BG, so BG =

Ω1(A)B and |BG : B| = |Ω1(A)B : B| = 2. Letting A = 〈x〉 ∼= C2k , we see

that Bx 6 BG = Ω1(A)B, but that Bx 6= B (as otherwise NG(B) = AB = G).

Then |Ω1(A)B : Bx| = 2, and by comparison of orders, we have Ω1(A)B = BBx.

Now x2k−1 ∈ Ω1(A)B \B, so x2k−1

/∈ B ∪Bx. Since o(x2k−1

) = 2, we may apply

Lemma 3.1 to conclude that BG is elementary abelian. �

Our next result gives a condition under which Lemma 3.3 can be applied.

Lemma 3.4. Let G = AB be a finite p-group for subgroups A and B such

that A is cyclic and B is elementary abelian. If B 6 CG(Ω2(A)), then Ω1(G) =

Ω1(A)B.

Proof. We let A ∼= Cpk , and note that the result is trivial for k = 1. For

k ≥ 2, we use induction on k. For k = 2, B centralises A, so G is abelian. Let

g ∈ G be such that gp = 1. Then g = ab, where a ∈ A and b ∈ B. Since B is

elementary abelian, we have ap = apbp = gp = 1. Hence Ω1(G) 6 Ω1(A)B. Since

the reverse inclusion is evident, it follows that Ω1(G) = Ω1(A)B.

We now assume that the result holds for some k ≥ 2 and consider the case

G = AB, where A ∼= Cpk+1 , B is elementary abelian and B 6 CG(Ω2(A)). By

Lemma 2.3, Ωk(A)B is the unique maximal subgroup of G that contains B. Now

Ωk(A)∼=Cpk and Ω2(Ωk(A))=Ω2(A) centralises B. By induction, Ω1(Ωk(A)B)=

Ω1(Ωk(A))B = Ω1(A)B. In particular, Ω1(A)B is characteristic in Ωk(A)B and

is thus normal in G. Then

G/Ω1(A)B = AΩ1(A)B/Ω1(A)B ∼= A/(A ∩ Ω1(A)B) = A/Ω1(A) ∼= Cpk .
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Now k ≥ 2, so Ω1(A)B is a proper subgroup of Ωk(A)B. Thus Ωk(A)B/Ω1(A)B

contains the unique subgroup of order p in G/Ω1(A)B. By Lemma 2.2, we have

Ω1(G) 6 Ωk(A)B. Hence Ω1(G) 6 Ω1(Ωk(A)B) = Ω1(A)B, and we conclude

that Ω1(G) = Ω1(A)B. �

Corollary 3.5. Let G = AB be a finite 2-group for subgroups A and B

such that A is cyclic and B is elementary abelian. If B 6 CG(Ω2(A)), then BG

is elementary abelian.

Proof. By Lemma 3.4, we have Ω1(A)B = Ω1(G). Hence Ω1(A)B is char-

acteristic in G, so BG 6 Ω1(A)B. By Lemma 3.3 it follows that BG is elementary

abelian. �

We apply Lemma 3.3 to provide a partial analogue to Theorem 2.15 in the

case where p = 2.

Theorem 3.6. Let G = AB be a non-cyclic, finite 2-group for subgroups A

and B such that A is cyclic of order 2k and B is elementary abelian. If BG is

abelian and AG 6= 1, then

(i) Ω1(A)B is an elementary abelian, normal subgroup of G;

(ii) BG is elementary abelian;

(iii) G has exponent 2k;

(iv) G has a normal subgroup, W , such that

(a) W is elementary abelian;

(b) W = Ω1(A)× B̂, for a suitable subgroup B̂ 6 B;

(c) G/W is abelian of type (2, 2k−1);

(v) G
′

is elementary abelian and r(G
′
) ≤ r(B);

(vi) for B̃ = Ω1(A)B, we have G = AB̃, where B̃ is an elementary abelian,

normal subgroup of G and A ∩ B̃ = Ω1(A).

Proof. Since AG 6= 1, we have Ω1(A) 6 Z(G), so Ω1(A)B is elementary

abelian. Moreover, BG 6 Ω1(A)B, by Lemma 3.3. Since G/BG ∼= A/(A ∩ BG),

which is cyclic, we then have Ω1(A)B E G, so (i) follows. We further observe

that (ii) follows immediately from Lemma 2.1. Substituting p = 2, the remainder

of the proof now follows that of Theorem 2.15 (iv)–(vii), respectively. �

We come to the main result used to describe the structure of a finite 2-group

that is the product of an elementary abelian subgroup and a cyclic subgroup

in the case where the normal closure of the elementary abelian factor is non-

abelian.
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Lemma 3.7. Let G = AB be a finite 2-group for subgroups A and B

such that A is cyclic and B is elementary abelian. If BG 66 Ω1(A)B, then

|G : CG(Ω2(A))| = 2.

Proof. Let |A| = 2k. We note first that k ≥ 3, as otherwise BG 6 Ω1(A)B

by Lemma 2.3. We let A = 〈x〉, and let Ai = Ωi(A) (= 〈x2k−i〉), i = 1, . . . , k.

We further let C = CG(A2) (= CG(Ω2(A))), and let B1 = CB(A2). Thus B1 =

B ∩ C and C = AB1. If C = G, then B 6 CG(A2), so, by Lemma 3.4, BG 6
Ω1(A)B, which is excluded. Hence |G : C| ≥ 2.

Now BG 66 A1B, so A1B is not normal in G. By Lemma 2.3, A1B is

a proper normal subgroup of A2B, so, again by Lemma 2.3, we have NG(A1B) =

AsB, where 2 ≤ s < k. Since s < k, we have |As+1B : AsB| = 2, so x2k−s−1

normalises AsB, but does not normalise A1B. We let x1 = x2k−s−1

. Then A1B

and (A1B)x1 = A1B
x1 are distinct normal subgroups of AsB.

Since AsB/A1B ∼= As/(As ∩A1B) ∼= As/A1 = C2s−1 , we see that A2B/A1B

is the unique subgroup of order 2 in AsB/A1B. In addition, A1B and A1B
x1 are

generated by elements of order 2. Hence, by Lemma 2.2, we have A1BA1B
x1 =

A1BB
x1 6 Ω1(AsB) 6 A2B. Since A1B and A1B

x1 are then distinct subgroups

of index 2 in A2B, we have A1BB
x1 = A2B. But A1 = Φ(A2) 6 Φ(A2B), so

A2B = 〈B,Bx1〉. Since B is abelian, we have B ∩Bx1 6 Z(〈B,Bx1〉) = Z(A2B).

In particular, B ∩Bx1 6 CG(A2) = C, so B ∩Bx1 6 B1.

Now A1
∼= C2, so either A1 6 B or A1 ∩ B = 1. If A1 6 B, then A1 6 Bx1 .

Applying Lemma 2.3, we further have |A2B : B| = |A2B : Bx1 | = 2. Thus

A2B = BBx1 and |B : B ∩ Bx1 | = 2. Since |B : B1| ≤ |B : B ∩ Bx1 |, we have

|G| =
|B||C|
|B ∩ C|

=
|B||C|
|B1|

≤ 2|C|. It then follows that |G : C| = 2. We may thus

assume that A1 ∩ B = 1 (= A ∩ B). Then |A2B : B| = |A2B : Bx1 | = 4, so

|B : B ∩ Bx1 | ≤ 4. Hence |C| = |A||B1| ≥ |A||B ∩ Bx1 | ≥ |A||B|
4

=
|G|
4

, so

|G : C| ≤ 4. It follows that either |G : C| = 2 or |G : C| = 4. Thus, we may

now further assume that |G : C| = 4. Then |B : B1| = 4. Since B is elementary

abelian, there exist y1 and y2 ∈ B such that B = B1〈y1, y2〉. Hence G = C〈y1, y2〉.
Since G is a 2-group, we may assume, without loss of generality, that

C = AB1 E C〈y1〉 = AB1〈y1〉EG = AB1〈y1, y2〉.

We show that A1B1 is normal in G. By Lemma 3.4, we have A1B1 = Ω1(C).

Hence A1B1 is characteristic in C, so A1B1EC〈y1〉. Then C/A1B1 = AB1/A1B1

is a cyclic normal subgroup of order 2k−1 in C〈y1〉/A1B1. But A2B1/A1B1 is

characteristic in C/A1B1, so A2B1EC〈y1〉. Since A2B1 is an abelian 2-group, we
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have Φ(A2B1) = Φ(A2)Φ(B1) = A1. Hence A1 E C〈y1〉. Since A1
∼= C2, we then

have A1 6 Z(C〈y1〉). But Z(C〈y1〉) 6 C, as otherwise the contradiction C〈y1〉 =

CZ(C〈y1〉) 6 CG(A2) = C would result. In addition, if Z(C〈y1〉) 66 A1B1, then,

by minimality, A2B1/A1B1 6 Z(C〈y1〉)A1B1/A1B1, so A2 6 Z(C〈y1〉)A1B1.

But y1 centralises both Z(C〈y1〉) and A1B1, so y1 centralises A2, and once more

a contradiction ensues. Therefore, Z(C〈y1〉) 6 A1B1. Now A1 6 Z(C〈y1〉), so

A1B1 = B1Z(C〈y1〉). But Z(C〈y1〉) is characteristic in C〈y1〉, and hence normal

in G. In addition, B is abelian, so y2 centralises B1. Therefore, y2 normalises

A1B1 = B1Z(C〈y1〉). But we already have A1B1 E C〈y1〉. Since G = C〈y1, y2〉,
we conclude that A1B1 EG.

Next, we show that A1 6 Z(G) and that BG 6 CG(A1B1). We note that

Ak−1B1/A1B1 = Φ(AB1/A1B1) 6 Φ(C〈y1〉/A1B1). In addition, Ak−1B1/A1B1

is characteristic in AB1/A1B1, so Ak−1B1EC〈y1〉. We further have |C〈y1〉/A1B1 :

Ak−1B1/A1B1| = |AB1〈y1〉 : Ak−1B1| = 4. But y1Ak−1B1 and (by Lemma 2.3)

xAk−1B1 are distinct elements of order 2 in C〈y1〉/Ak−1B1, so C〈y1〉/Ak−1B1 is

elementary abelian. Hence Ak−1B1/A1B1 = Φ(C〈y1〉/A1B1), so Ak−1B1/A1B1E
G/A1B1. In addition, A2B1/A1B1 is characteristic in Ak−1B1/A1B1, so A2B1 E
G. Now, from the above, A1 = Φ(A2B1), so A1EG. Since A1

∼= C2, we conclude

that A1 6 Z(G). Then A1B1 is a normal subgroup of G that is centralised by B,

so it follows that BG 6 CG(A1B1).

By Lemma 2.3, we have BG = AsB, where s ≥ 0. Since BG 66 A1B, we

again apply Lemma 2.3 to see that A2B 6 BG. We suppose first that BG =

A2B. From the preceding paragraph, we have A2B1 E G. But A2B1/A1B1
∼=

C2, so A2B1/A1B1 6 Z(G/A1B1). Now A1B/A1B1 = 〈y1, y2〉A1B1/A1B1
∼=

C2 × C2 and A1B/A1B1 ∩ A2B1/A1B1 = A1B1/A1B1 = 1G/A1B1
. Therefore,

BG/A1B1 is the direct product of A1B/A1B1 and A2B1/A1B1, so BG/A1B1 is

elementary abelian of rank 3. Since Ak−1B1/A1B1 is normal in G/A1B1, we have

[〈y1, y2〉, Ak−1]A1B1/A1B1 6 BG/A1B1 ∩ Ak−1B1/A1B1 = A2B1/A1B1. Hence,

by minimality, we see that either [〈y1, y2〉, Ak−1]A1B1 = A2B1 or [〈y1, y2〉, Ak−1]6
A1B1.

If [〈y1, y2〉, Ak−1]A1B1 =A2B1, thenA2 6 [〈y1, y2〉, Ak−1]A1B1 6 B
Ak−1BA1.

It follows that A1 = Φ(A2) 6 Φ(BAk−1BA1). Then BAk−1BA1 = BAk−1B , so we

have A2 6 B
Ak−1B . Since 〈y1, y2〉 ∼= C2 × C2 and [〈y1, y2〉, Ak−1]A1B1/A1B1 =

A2B1/A1B1
∼= C2, there exists a non-trivial element 1 6= y ∈ 〈y1, y2〉 such that

conjugation by y induces the identity automorphism on Ak−1B1/A1B1 (which

is cyclic of order 2k−2). Then [Ak−1, 〈y〉] 6 A1B1, so 〈y〉A1B1 E Ak−1B. Now

〈y〉B1 6 B and A1 6 Z(G), so B centralises 〈y〉A1B1. Thus A2 6 BAk−1B 6
CAk−1B(〈y〉A1B1). But then y centralises A2, which is a contradiction.
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We may thus assume that [〈y1, y2〉, Ak−1] 6 A1B1. Recalling that A =

〈x〉, so that Ak−1 = 〈x2〉, we then have [〈y1, y2〉, 〈x2〉] 6 A1B1. It follows that

[〈x2〉, BG] 6 A1B1. Since BG/A1B1 is elementary abelian of rank 3, we may

apply Lemma 3.2 to see that |CBG/A1B1
(xA1B1)| ≥ 4. Hence, by comparison

of orders, A1B/A1B1 ∩ CBG/A1B1
(xA1B1) 6= 1G/A1B1

. Since B = 〈y1, y2〉B1,

it follows that there exists 1 6= y ∈ 〈y1, y2〉 such that [y, x] ∈ A1B1. Then

〈y〉A1B1 E G. Since A1 6 Z(G), we see that B centralises both 〈y〉B1 and A1.

Hence BG 6 CG(〈y〉A1B1). But A2 6 BG so y centralises A2, and once more

a contradiction ensues.

We now have BG 66 A2B. If k = 3, then, by Lemma 2.3, we have BG 6 A2B,

which is excluded. Thus k > 3. Again by Lemma 2.3, we have A3B 6 BG 6
CG(A1B1). From the above we have Ak−1B1/A1B1 = Φ(C〈y1〉/A1B1)EG/A1B1.

Since A3B1/A1B1 is characteristic in Ak−1B1/A1B1, we have A3B1 E G. But

A3 6 BG 6 CG(A1B1), so A3B1 is abelian. Then A2 = Φ(A3) = Φ(A3B1), so

A2EG. But A2
∼= C4 and Aut(C4) ∼= C2. Since 〈y1, y2〉 ∼= C2×C2, we have a final

contradiction 1 6= C〈y1,y2〉(A2). We thus conclude that |G : CG(Ω2(A))| = 2. �

We apply Lemma 3.7 to establish some properties of products of elementary

abelian and cyclic 2-groups in the case where the normal closure of the elementary

abelian factor is non-abelian.

Theorem 3.8. Let G = AB be a finite 2-group for subgroups A and B such

that A is cyclic of order 2k and B is elementary abelian. Let B1 = CB(Ω2(A)).

If BG is not abelian, then

(i) k ≥ 3;

(ii) Ω1(A)B1 is an elementary abelian, normal subgroup of G;

(iii) Ω1(A) 6 Z(G) (so, in particular, AG 6= 1);

(iv) BG 6 CG(Ω1(A)B1);

(v) Ω1(Z(G/Ω1(A)B1)) = Ω2(A)B1/Ω1(A)B1;

(vi) if N is an elementary abelian, normal subgroup of G, then N 6 Ω1(A)B1

(so Ω1(A)B1 is the unique maximal elementary abelian, normal subgroup

in G, and, in particular, Ω1(A)B1 is characteristic in G);

(vii) G has exponent 2k;

(viii) if k = 3, then G/Ω1(A)B1
∼= 〈x, y | x4 = y2 = 1, xy = x−1〉 (the dihedral

group of order 8);

(ix) if k ≥ 4, then G/Ω1(A)B1 is isomorphic to one of the following groups

(a) 〈x, y | x2k−1

= y2 = 1, xy = x−1〉 (the dihedral group of order 2k);



Products of cyclic and elementary abelian p-groups 205

(b) 〈x, y | x2k−1

= y2 = 1, xy = x−1+2k−2〉 (the quasi-dihedral, or semi-

dihedral, group of order 2k);

(c) 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉;
(x) if G/Ω1(A)B1 is dihedral or quasi-dihedral of order 2k, then

(a) G
′

is abelian of rank at most r(B);

(b) exp(G
′
) = 2k−1;

(c) Φ(G
′
) = Ωk−2(A) ∼= C2k−2 ;

(d) there exists an element x1 ∈ G and a subgroup B̂ 6 B1 such that

o(x1) = 2k−1 and G
′

= B̂ × 〈x1〉;
(xi) if G/Ω1(A)B1 is isomorphic to the group 〈x, y | x2k−1

= y2 = 1, xy =

x1+2k−2〉, then

(a) G
′

is abelian of rank at most r(B);

(b) exp(G
′
) = 4;

(c) Φ(G
′
) = Ω1(A) ∼= C2;

(d) there exists an element x1 ∈ G and a subgroup B̂ 6 B1 such that

o(x1) = 4 and G
′

= B̂ × 〈x1〉.

Proof. As in the proof of Lemma 3.7, we let Ai = Ωi(A) (for i = 1, . . . , k),

and let C = CG(A2) (= CG(Ω2(A))), so that C = AB1. If k < 3, then BG 6
A1B EG by Lemma 2.3. Hence BG is abelian by Lemma 3.3, which is excluded,

so (i) follows.

For (ii) we see, by Lemma 3.7, that |G : C| = 2, so C E G. By Lemma 3.4,

A1B1 = Ω1(C), so A1B1 is characteristic in C, and hence normal in G. Now A1

has order 2 and is centralised by B1. Since B1 is elementary abelian, we see that

A1B1 is an elementary abelian, normal subgroup of G.

For (iii), we note that A2
∼= C4 since k ≥ 3. In addition, C/A1B1 =

AB1/A1B1 is a cyclic normal subgroup of G/A1B1. Hence A2B1/A1B1 is char-

acteristic in C/A1B1, and is thus normal in G/A1B1. It follows that A2B1 is

normal in G. But A2B1 is abelian, so Φ(A2B1) = Φ(A2)Φ(B1) = A1. Thus A1 is

a normal subgroup of order 2 in G, so A1 6 Z(G).

Now B1 6 B, which is abelian, and B centralises A1 by (iii). Therefore,

B centralises the normal subgroup A1B1, so (iv) follows by the normality of

CG(A1B1).

For (v), we observe that G/A1B1 is non-abelian, as otherwise A1B/A1B1 E
G/A1B1 and BG 6 A1B. It follows that Z(G/A1B1) 6 AB1/A1B1, as otherwise

G/A1B1 = Z(G/A1B1)(AB1/A1B1), which is abelian. By comparison of orders,

we then see that Ω1(Z(G/A1B1)) = Ω1(AB1/A1B1) = A2B1/A1B1.
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Now, if N is an elementary abelian, normal subgroup of G, we see that

if N 66 A1B1, then there exists a subgroup N1 6 N with N1A1B1/A1B1
∼= C2 and

such that N1A1B1/A1B1 EG/A1B1. Then N1A1B1/A1B1 6 Z(G/A1B1), so, by

comparison of orders, we have N1A1B1/A1B1 = Ω1(Z(G/A1B1)) = A2B1/A1B1.

Hence N1A1B1 = A2B1. Since A2B1 is abelian, and N1 and A1B1 are elementary

abelian, we see that exp(A2B1) = 2. But A2
∼= C4, and a contradiction ensues.

Thus N 6 A1B1, in accordance with (vi).

From the above, G/A1B1 is non-abelian and |G/A1B1| = 2|AB1/A1B1| =

2k, so exp(G/A1B1) ≤ 2k−1. Since A1B1 is elementary abelian and A ∼= C2k ,

it follows that exp(G) = 2k, so (vii) holds.

For (viii) and (ix), we note that, since A1B1 is elementary abelian by (ii), we

have A ∩ A1B1 = A1. It follows that C/A1B1 = AB1/A1B1
∼= A/(A ∩ A1B1) =

A/A1
∼= C2k−1 . Since BG is non-abelian, we have BG 66 A1B1 by Lemma 3.3, so,

in particular, B 66 A1B1. In addition, |G : C|=2, so |B : B∩A1B1|≤|B : B1|≤2.

Therefore, |B : B ∩ A1B1| = 2. Hence, letting y ∈ B \ B ∩ A1B1, we have

A1B/A1B1
∼= B/(B ∩ A1B1) = 〈y〉B1/B1

∼= C2. Since A1B/A1B1 ∩ C/A1B1 =

(A1B∩AB1)/A1B1 = 1G/A1B1
, it follows that G/A1B1 is a group of order 2k that

is the semi-direct product of C/A1B1
∼= C2k−1 , by A1B/A1B1

∼= C2. Moreover,

G/A1B1 is non-abelian. Thus, if k = 3, then G/A1B1 is isomorphic to the dihedral

group of order 8, whereas if k ≥ 4, we see, by, say, [3, Theorem 1.2], that G/A1B1

is isomorphic to either the dihedral group of order 2k, the quasi-dihedral group

of order 2k or the group 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉.
To see that (x) holds, we let y ∈ B \ (B∩A1B1), and let A = 〈x〉. If G/A1B1

is either dihedral or quasi-dihedral, then G
′
A1B1/A1B1 = 〈[x, y]〉A1B1/A1B1 =

Ak−1B1/A1B1. By (iv), we have y ∈ BG 6 CG(A1B1)EG. Since A1B1 is abelian,

we see, by normality, that G
′
A1B1 = 〈[x, y]〉A1B1 = Ak−1B1 6 CG(A1B1). But

Ak−1 is cyclic and B1 is abelian, so G
′
A1B1 is abelian. In particular, G

′
is abelian

and r(G
′
) ≤ r(B1)+1 ≤ r(B)−1+1 = r(B). We further see that exp(Ak−1B1) =

o(x2) = 2k−1. Therefore, since exp(A1B1) = 2, we have exp(G
′
) = 2k−1. In ad-

dition, we have Φ(Ak−1B1) = Φ(Ak−1) = Ak−2 = Φ(G
′
A1B1) = Φ(G

′
), so

Φ(G
′
) = Ak−2 = 〈x4〉. Now, since G

′
has exponent 2k−1, we let x1 be an element

of order 2k−1 in G
′
. Since B1 is elementary abelian, we have Ω1(Ak−1B1) =

A1B1. Hence, by comparison of orders, we see that Ak−1B1 = A1B1〈x1〉. But

Φ(A1B1〈x1〉) = Φ(〈x1〉) = 〈x2
1〉, so 〈x2

1〉 = 〈x4〉. Thus, since k ≥ 3, it follows that

A1 = 〈x2k−1〉 = 〈x2k−2

1 〉, so Ak−1B1 = A1B1〈x1〉 = B1〈x1〉. Since x1 ∈ G
′
, we

then have G
′

= (G
′ ∩B1)〈x1〉. If B1∩〈x1〉 = 1, then we let B̂ = G

′ ∩B1 and have

G
′

= B̂×〈x1〉. If B1 ∩ 〈x1〉 6= 1, then B1 ∩ 〈x1〉 = G
′ ∩B1 ∩ 〈x1〉 = 〈x2k−2

1 〉 ∼= C2.
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Letting B̂ be a complement for 〈x2k−2

1 〉 in G
′ ∩B1, we then see, by comparison of

orders, that G
′

= B̂ × 〈x1〉. Thus (x) has been established.

For (xi), we again let y ∈ B \ (B ∩ A1B1). Since G/A1B1 is isomorphic to

the group 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉, we see that G
′
A1B1/A1B1 =

〈[x, y]〉A1B1/A1B1 = A2B1/A1B1. We can then repeat the proof of part (x), with

minor adjustments, to show that (xi) holds. �

We apply Theorem 3.8 to provide a partial analogue to Corollary 2.7 in the

case where p = 2.

Corollary 3.9. Let G = AB be a finite 2-group for subgroups A and B such

that A is cyclic and B is elementary abelian. If BG is not abelian and if G is also

the product of the cyclic subgroup Ã and the elementary abelian subgroup B̃,

then

(i) B̃G is non-abelian;

(ii) Ω1(Ã)CB̃(Ω2(Ã)) = Ω1(A)CB(Ω2(A));

(iii) Ã ∼= A;

(iv) Ω1(Ã) = Ω1(A).

Proof. Let W = Ω1(A)CB(Ω2(A)). Then, by Theorem 3.8 (vi), W is the

unique maximal elementary abelian, normal subgroup in G. If B̃G is abelian (and

hence elementary abelian), then B̃G 6 W . It follows that G/W is isomorphic

to a factor group of G/B̃G, which in turn is isomorphic to a factor group of

Ã. But Ã is cyclic and G/W is non-abelian by Theorem 3.8 (viii) and (ix), so

a contradiction arises. Hence B̃G is non-abelian, in accordance with (i), and

(ii) then follows by Theorem 3.8 (vi). We further have exp(G) = |Ã| = |A| by

Theorem 3.8 (vii), so Ã ∼= A. Finally, by Theorem 3.8 (x)(c) and (xi)(c), we have

Ω1(A) = Ω1(Φ(G
′
)) = Ω1(Ã). �

We present some examples of factorised 2-groups. They will be used to pro-

vide a characterisation of the groups that satisfy the hypotheses of Theorem 3.8,

similar to that given by Theorem 2.13 for p odd.

Example 3.10. Let k ≥ 3, and let G = 〈x, y | x2k

= y2 = 1, xy = x−1〉. Thus

G is isomorphic to the dihedral group of order 2k+1. We have G = AB, where A =

〈x〉 ∼= C2k and B = 〈y〉 ∼= C2. We note that BG = 〈x2, y〉, which is isomorphic to

the dihedral group of order 2k. Hence BG is non-abelian. We observe that G also

admits the factorisation G = ÃB̃, where Ã = A and B̃ = 〈x2k−1

, xy〉 ∼= C2 × C2.

In this case, B̃ 6∼= B. In addition, B̃G = 〈x2, xy〉 6= BG.
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Example 3.11. Letting k ≥ 3, we present the quasi-dihedral (or semi-dihedral)

group of order 2k+1 as follows: G = 〈x, y | x2k

= y2 = 1, xy = x−1+2k−1〉. Then

G = AB, where A = 〈x〉 ∼= C2k and B = 〈y〉 ∼= C2. As in Example 3.10, we have

BG = 〈x2, y〉, which is isomorphic to the dihedral group of order 2k, and is thus

non-abelian.

Example 3.12. Let G = 〈w, x, y | w2 = x2k

= y2 = 1, wx = w,wy = w, xy =

x−1w〉, where k ≥ 3. G is the split extension of 〈w, x〉 ∼= C2 × C2k by 〈y〉 ∼= C2.

We have G = AB, where A = 〈x〉 ∼= C2k and B = 〈w, y〉 ∼= C2 ×C2. In this case,

BG = 〈w, x2, y〉 = 〈w〉 × 〈x2, y〉. Thus BG is isomorphic to the direct product of

a cyclic group of order 2 and a dihedral group of order 2k, so BG is non-abelian.

Example 3.13. Let k ≥ 4, and let G = 〈w, x, y | w2 = x2k

= y2 = 1, wx =

wx2k−1

, wy=w, xy=x−1+2k−2

w〉. We can confirm that 〈w, x〉 = 〈x〉〈w〉 is a non-

abelian group of order 2k+1 with Z(〈w, x〉) = 〈x2〉. We can further confirm

that (xy)2 = x−1x2k−2

wx−1x2k−2

w = x−1wx−1wx2k−1

= wxwx
2

x−2x2k−1

=

wx2k−1

wx−2x2k−1

= w2x−2x2k

= x−2. Hence o(xy) = o(x) = 2k, and we

see that (xy)2k−1

= (x−2)2k−2

= x−2k−1

= x2k−1

. It now follows that (wy)x
y

=

wx
−1x2k−2

w=wx = wx2k−1

=wy(xy)2k−1

. Since the relevant relations are satis-

fied, we see that y defines an automorphism of 〈w, x〉. It further follows that

xy
2

= (x−1x2k−2

w)y = wxx−2k−2

x−2k−2

w = xx−1wxwx−2k−1

= xwxwx2k−1

=

xwx2k−1

wx2k−1

= xw2x2k

= x. This confirms that conjugation by y induces an

automorphism of order 2 on 〈w, x〉. Hence G is the split extension of 〈w, x〉
by 〈y〉, where 〈y〉 ∼= C2. We have G = AB, where A = 〈x〉 ∼= C2k and

B = 〈w, y〉 ∼= C2 × C2. In this case, BG = 〈w, x2, y〉 = 〈w〉 × 〈x2, y〉, which

is isomorphic to the direct product of a cyclic group of order 2 and a dihedral

group of order 2k. Thus BG is once more non-abelian.

We describe our final example in more detail and show that it satisfies the

hypotheses of Theorem 3.8.

Example 3.14. We let k ≥ 4, and let W = 〈w1, . . . , w2k−2〉 be an elementary

abelian 2-group of rank 2k−2. Let 〈x〉 ∼= C2k , and let x act on W as follows:

wxi = wi+1, i = 1, . . . , 2k−2 − 1, wx2k−2 = w1.

We note that C〈x〉(W ) = 〈x2k−2〉 ∼= C4. We let Ek be the semi-direct product of

W by 〈x〉, so that

Ek=

〈
w1, . . . , w2k−2

x

∣∣∣∣∣ w2
1 = · · ·= w2

2k−2 = x2k

= 1; [wi, wj ] = 1, i, j = 1, . . . , 2k−2

wxi = wi+1, i = 1, . . . , 2k−2− 1; wx2k−2 = w1

〉
.
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We let z = w1 · · ·w2k−2 and observe that Z(Ek) = 〈z, x2k−2〉 ∼= C2 × C4. Thus

zx2k−1

is an element of order 2 in Z(Ek). We let Fk be the factor group Fk =

Ek/〈zx2k−1〉. Then Fk can be presented as follows:

Fk=

〈
w1, . . . , w2k−2

x

∣∣∣∣∣ w2
1 = · · ·= w2

2k−2 = x2k

= 1; [wi, wj ] = 1, i, j = 1, . . . , 2k−2

wxi = wi+1, i = 1, . . . , 2k−2− 1; wx2k−2 = w1; x2k−1

= w1 · · ·w2k−2

〉
.

We again let z = w1 · · ·w2k−2 and identify W with the corresponding subgroup

of Fk. We observe that r(W ) = 2k−2 and that W ∩Z(Fk) = 〈z〉 = 〈x2k−1〉. Since

Fk is the product of the abelian subgroups 〈x〉 and W , we have

Z(Fk) = (Z(Fk) ∩ 〈x〉)(Z(Fk) ∩W ) = 〈x2k−2

〉〈z〉 = 〈x2k−2

〉 ∼= C4.

We define a mapping, y, by

wyi = wi, i = 1, . . . , 2k−2, xy = x1+2k−2

w1.

We show that y extends to an automorphism, of order 2, of Fk. Since Fk is

generated by wy1 , . . . , w
y
2k−2 and xy, we need only confirm that the appropriate

relations are satisfied. We observe first that (wy1)2 = · · · = (wy
2k−2)2 = 1 and

that [wyi , w
y
j ] = 1, for i, j = 1, . . . 2k−2. Since W is abelian and x2k−2 ∈ Z(Fk),

we further see that (wyi )x
y

= wi+1 = wyi+1, for i = 1, . . . , 2k−2 − 1, and that

(wy
2k−2)x

y

= w1 = wy1 . For the remaining relations, we note that (xy)2 =

x1+2k−2

w1x
1+2k−2

w1 = xw1xw1(x2k−2

)2 = x2wx1w1x
2k−1

= x2w2w1x
2k−1

. Then

(xy)4 = (xy)2(xy)2 = x2w2w1x
2k−1

x2w2w1x
2k−1

= x4(w2w1)x
2

w2w1(x2k−1

)2 =

x4w4w3w2w1x
2k

. Hence (xy)4 = x4w1w2w3w4. More generally, for k ≥ 5 and

3 ≤ s ≤ k − 2, we see inductively that

(xy)2s

= (xy)2s−1

(xy)2s−1

= x2s−1

w1 · · ·w2s−1x2s−1

w1 · · ·w2s−1

= x2s

(w1 · · ·w2s−1)x
xs−1

w1 · · ·w2s−1

= x2s

w2s−1+1 · · ·w2s−1+2s−1w1 · · ·w2s−1 .

Hence (xy)2s

= x2s

w1 · · ·w2s , for 3 ≤ s ≤ k − 2. In particular, we see that

(xy)2k−2

= x2k−2

w1 · · ·w2k−2 = x2k−2

x2k−1

. Thus (xy)2k−2

=(x2k−2

)3=(x2k−2

)−1,

so (xy)2k

= ((xy)2k−2

)4 = ((x2k−2

)−1)4 = 1. In addition, we have (xy)2k−1

=

(xy)2k−2

(xy)2k−2

=(x2k−2

)−1(x2k−2

)−1=x−2k−1

=x2k−1

. But x2k−1

=w1 · · ·w2k−2=

wy1 · · ·w
y
2k−2 , so the relation (xy)2k−1

= wy1 · · ·w
y
2k−2 is satisfied. This confirms

that y defines an automorphism of Fk.
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To show that y has order 2, we note that xy
2

= (xx2k−2

w1)y = xy(xy)2k−2

wy1 .

Now x2k−2

centralises W , and, from the above, (xy)2k−2

= (x2k−2

)−1. Hence

xy
2

= x1+2k−2

w1(x2k−2

)−1w1 = xx2k−2

(x2k−2

)−1w2
1 = x. Since wyi = wi, i =

1, . . . , 2k−2, we see that y has order 2 in Aut(Fk).

We now let Jk be the semi-direct product of Fk by 〈y〉, so that

Jk=

〈
w1, . . . , w2k−2

x

y

∣∣∣∣∣∣∣
w2

1 = · · ·= w2
2k−2 = x2k

= y2 = 1; [wi, wj ] = 1, i, j = 1, . . . , 2k−2

wxi = wi+1, i = 1, . . . , 2k−2 − 1; wx2k−2 = w1; x2k−1

= w1· · ·w2k−2

wyi = wi, i = 1, . . . , 2k−2; xy = x1+2k−2

w1

〉
.

We have [x, y] = x2k−2

w1 /∈ W , so Jk/W is non-abelian. Hence Z(Jk) 6 Fk,

as otherwise Jk/W = (Fk/W )(Z(Jk)W/W ), which is abelian. Thus Z(Jk) 6
〈x2k−2〉. But, from the above, (x2k−2

)y = (x2k−2

)−1 6= x2k−2

. It follows that:

Z(Jk) = 〈x2k−1

〉 ∼= C2.

We see that Jk = AB, where A = 〈x〉 is cyclic of order 2k, and B = W 〈y〉 is

elementary abelian of rank 1 + 2k−2. Since [x, y] = x2k−2

w1, we have (B)Jk 66
Ω1(A)B. Hence (B)Jk is non-abelian by Lemma 3.3. Since y does not centralise

x2k−2

, we have y /∈ CJk(Ω2(A)). It follows that CJk(Ω2(A)) = A〈w1, . . . , w2k−2〉 =

Fk, so |Jk : CJk(Ω2(A))| = 2, in accordance with Lemma 3.7. We observe that

Ω1(A) = 〈x2k−1〉 6 W = B ∩ Fk = CB(Ω2(A)). We have AW/W ∼= A/Ω1(A) ∼=
C2k−1 , and 〈y〉W/W ∼= C2. Since [x, y] = x2k−2

w1, we further have 〈[x, y]〉W/W =

Ω2(A)W/W ∼= C2. Now |Jk/W | = 2k, where k ≥ 4. It follows, by, say,

[3, Theorem 1.2], that Jk/W is isomorphic to the non-abelian group of order 2k

given by 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉.

Our next result uses Examples 3.10–3.14 to provide an alternative description

of the groups that satisfy the hypotheses of Theorem 3.8.

Theorem 3.15. The following are equivalent for the finite 2-group G:

(i) G = AB for subgroups A and B such that A is cyclic, B is elementary

abelian and BG is non-abelian;

(ii) G is of the form G = AW 〈ỹ〉, where

(a) A ∼= C2k , for k ≥ 3;

(b) W is an elementary abelian, normal subgroup of G;

(c) 〈ỹ〉 ∼= C2;

(d) [W, 〈ỹ〉] = 1;

(e) Ω1(A) 6W ;
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(f) 〈A, ỹ〉 is isomorphic to one of the following:

(i) 〈x, y | x2k

= y2 = 1, xy = x−1〉 (the dihedral group of order

2k+1);

(ii) 〈x, y | x2k

= y2 = 1, xy = x−1+2k−1〉 (the quasi-dihedral, or

semi-dihedral, group of order 2k+1);

(iii) 〈w, x, y | w2 = x2k

= y2 = 1, wx = w,wy = w, xy = x−1w〉;
(iv) 〈w, x, y | w2 = x2k

= y2 = 1, wx = wx2k−1

, wy = w, xy =

x−1+2k−2

w〉 (with k ≥ 4);

(v) Jk, as in Example 3.14 (with k ≥ 4).

Proof. To show that (i) implies (ii), we let A = 〈x̃〉. By Theorem 3.8 (i),

A ∼= C2k , where k ≥ 3. As in Theorem 3.8, we let B1 = CB(Ω2(A)). Then

|B : B1| = 2 by Lemmas 3.3 and 3.7. Moreover, by Theorem 3.8 (vi), Ω1(A)B1

is the unique maximal elementary abelian, normal subgroup of G. We let W =

Ω1(A)B1. Since |B : B1| = 2, we have B ∩ W = B1, as otherwise B 6 W

and BG is elementary abelian. Letting ỹ ∈ B \ B1, we have B = B1〈ỹ〉, so

G = AB = AΩ1(A)B1〈ỹ〉 = AW 〈ỹ〉. Since Ω1(A) 6 Z(G), by Theorem 3.8 (iii),

and B is abelian, we have [W, 〈ỹ〉] = 1. Thus G satisfies (ii)(a)–(e).

For (ii) (f), we note that G/W is the product of the normal subgroup

AW/W ∼= A/Ω1(A) ∼= C2k−1 , and 〈ỹ〉W/W ∼= C2. By Theorem 3.8 (viii) and (ix),

G/W is isomorphic either to the dihedral group of order 2k, the quasi-dihedral

group of order 2k, or the group 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉. In the

latter two cases, we may assume that k ≥ 4 by Theorem 3.8 (viii). Since G/W is

non-abelian in each case, we note further that ỹ /∈ AW . We deal with these three

cases in turn.

If G/W is dihedral of order 2k, we may assume that x̃ỹ = x̃−1w̃, where

w̃ ∈W . Since ỹ centralises W and o(ỹ) = 2, we have

x̃ = x̃ỹ
2

= (x̃−1w̃)ỹ = (x̃ỹ)−1w̃ỹ = w̃−1x̃w̃.

Thus w̃ commutes with x̃, so w̃ ∈ Z(〈A, ỹ〉) and 〈A, ỹ〉 = A〈w̃〉〈ỹ〉. If w̃ = 1, then

x̃ỹ = x̃−1, so 〈A, ỹ〉 is dihedral of order 2k+1. If 1 6= w̃ ∈ A, then w̃ = x̃2k−1

.

Hence x̃ỹ = x̃−1+2k−1

, so 〈A, ỹ〉 is isomorphic to the quasi-dihedral group of order

2k+1. Finally, if w̃ /∈ A, then 〈A, w̃〉 = A × 〈w̃〉 ∼= C2k × C2. Since 〈A, ỹ〉 is the

split extension of 〈A, w̃〉 by 〈ỹ〉, we see that 〈A, ỹ〉 is isomorphic to the group

〈w, x, y | w2 = x2k

= y2 = 1, wx = w,wy = w, xy = x−1w〉.
If G/W is quasi-dihedral of order 2k, we may assume that k ≥ 4, and that

x̃ỹ = x̃−1+2k−2

w̃, where w̃ ∈ W . By normality, we have x̃−2+2k−2

= [x̃, ỹ]w̃ ∈
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CG(W ). Since k ≥ 4, it follows that x̃2 ∈ CG(W ), so 〈x̃2〉W is abelian. Now

ỹ normalises 〈x̃2〉W , so ỹ also normalises Φ(〈x̃2〉W ) = Φ(〈x̃2〉) = 〈x̃4〉. Hence

ỹ normalises Ω2(〈x̃4〉) = 〈x̃2k−2〉 = Ω2(A). Since ỹ /∈ B1 = CB(Ω2(A)), we

have (x̃2k−2

)ỹ = (x̃2k−2

)−1 = x̃−2k−2

. Now Ω1(A) 6 Z(G), so x̃ = x̃ỹ
2

=

(x̃−1+2k−2

w̃)ỹ = (x̃ỹ)−1(x̃2k−2

)ỹw̃ = w̃−1x̃x̃−2k−2

x̃−2k−2

w̃ = w̃−1x̃x̃−2k−1

w̃ =

w̃−1x̃w̃x̃−2k−1

. Hence x̃ = w̃−1x̃w̃x̃2k−1

, so x̃−1w̃x̃ = w̃x̃2k−1

. Equivalently,

we have w̃x̃ = w̃x̃2k−1

. Since x̃2k−1 6= 1, we see, in particular, that w̃ 6= 1

and w̃ /∈ 〈x̃〉 = A. In addition, 〈A, w̃〉 = A〈w̃〉. Thus 〈A, ỹ〉 is the split

extension of A〈w̃〉 by 〈ỹ〉. It follows that 〈A, ỹ〉 is isomorphic to the group

〈w, x, y | w2 = x2k

= y2 = 1, wx = wx2k−1

, wy = w, xy = x−1+2k−2

w〉.
For our third case, we have G/W ∼= 〈x, y | x2k−1

= y2 = 1, xy = x1+2k−2〉.
Here we may assume that k ≥ 4, and that x̃ỹ = x̃!+2k−2

w̃, where w̃ ∈ W . Since

W 6 CG(Ω2(A)), we see that 〈w̃x̃i | i = 1, . . . , 2k〉 = 〈w̃, w̃x̃, . . . , w̃x̃2k−2−1〉.
Letting W1 = 〈w̃, w̃x̃, . . . , w̃x̃2k−2−1〉, we have W1 6 W , so W1 is elementary

abelian and is centralised by ỹ. In addition, W1 is normalised by x̃, so 〈A, ỹ〉 =

AW1〈ỹ〉. Since x̃2k−2

and ỹ commute with w̃, we have

x̃= x̃ỹ
2

=(x̃1+2k−2

w̃)ỹ= x̃ỹ(x̃2k−2

)ỹw̃= x̃x̃2k−2

w̃(x̃2k−2

)ỹw̃= x̃x̃2k−2

(x̃2k−2

)ỹw̃2.

Hence x̃= x̃x̃2k−2

(x̃2k−2

)ỹ, so (x̃2k−2

)ỹ = x̃−2k−2

. Since k≥4, we have x̃22k−4

= 1,

so we can also evaluate (x̃2k−2

)ỹ as

(x̃2k−2

)ỹ = (x̃ỹ)2k−2

= (x̃1+2k−2

w̃)2k−2

= (x̃w̃)2k−2

x̃22k−4

= (x̃w̃)2k−2

.

But

(x̃w̃)2k−2

= w̃x̃
−1

· · · w̃x̃
−2k−2

x̃2k−2

= w̃x̃
2k−2−1

· · · w̃x̃w̃x̃2k−2

,

so w̃w̃x̃ · · · w̃x̃2k−2−1

x̃2k−2

= x̃−2k−2

, and it follows that w̃w̃x̃ · · · w̃x̃2k−2−1

= x̃−2k−1

=

x̃2k−1

. Therefore, since the relevant relations are satisfied, we see that the map-

ping φ defined by

φ(w1) = w̃, φ(w2) = w̃x̃, . . . , φ(w2k−2) = w̃x̃
2k−2−1

, φ(x) = x̃, and φ(y) = ỹ,

extends to an epimorphism from Jk (as in Example 3.14) to 〈A, x̃〉. Since Z(Jk) =

〈x2k−1〉 ∼= C2 and φ(x2k−1

) = x̃2k−1 6= 1, we see that ker(φ) = 1. Thus φ defines

an isomorphism, and so we conclude that (i) implies (ii).

Conversely, if G is of the form given by (ii), then G is the product of the cyclic

subgroup, A, and the elementary abelian subgroup B = W 〈ỹ〉. If BG is abelian,

then, by (ii)(e) and Lemma 3.3, we have Ω1(A) 6 W 〈ỹ〉 = B E G. In partic-

ular, G/B ∼= A/Ω1(A), so G/B is cyclic. Letting N = 〈A, ỹ〉 ∩ B, it follows
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that N is an elementary abelian, normal subgroup of 〈A, ỹ〉 such that 〈A, ỹ〉/N
is cyclic. But, as noted in Examples 3.10–3.14, 〈A, ỹ〉 satisfies the hypotheses of

Theorem 3.8, so by Theorem 3.8 (vi), (viii) and (ix), 〈A, ỹ〉 has a unique maxi-

mal elementary abelian, normal subgroup, whose quotient is non-abelian. Thus

a contradiction arises, so we conclude that BG is non-abelian and (i) follows. �

Noting that the cyclic factor will have a non-trivial core whenever the el-

ementary abelian factor has a non-abelian normal closure, the following partial

analogue to Theorem 2.14 covers the remaining case for p = 2, in which namely

the cyclic factor has a trivial core and the normal closure of the elementary abelian

factor is abelian.

Theorem 3.16. Let G = AB be a finite 2-group for subgroups A and B such

that A is cyclic and B is elementary abelian. Then the following are equivalent:

(i) AG = 1;

(ii) B EG, A∩B = 1 and CA(B) = 1 (so that G is a faithful split extension of

B by A).

Proof. If AG = 1, then A ∩ Z(G) = 1, so, by Theorem 3.8 (iii), BG is

abelian. If B is not normal in G, then BG = Ω1(A)B by Lemma 3.3, so Ω1(A)

is centralised by B. Then 1 6= Ω1(A) 6 A ∩ Z(G) 6 AG, and a contradiction

arises. Hence B EG. We further see that A ∩ B 6 A ∩ Z(G) = 1 and CA(B) 6
A ∩ Z(G) = 1. Thus G is a faithful split extension of B by A. Since (i) clearly

follows from (ii), the proof is complete. �

We conclude this section with a result analogous to Corollary 2.17 that is

a consequence of Lemma 2.16 and Theorems 3.6 (iii) and (v), 3.8 (vii), (x)(a) and

(xi)(a), and 3.16.

Corollary 3.17. Let G = AB be a finite 2-group for subgroups A and B

such that A is cyclic of order 2k and B is elementary abelian. Then

(i) 2k ≤ exp(G) ≤ 2k+1;

(ii) G
′

is abelian of rank at most r(B).

4. Groups of exponent pk+1 and concluding remarks

We recall from Lemma 2.16 that if the finite p-group G = AB is the product

of a cyclic subgroup A, of order pk, and an elementary abelian subgroup B, then

pk ≤ exp(G) ≤ pk+1. As a consequence of Theorems 2.6 (x), 2.15 (iv), 3.6 (iii)
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and 3.8 (vii), we see that if exp(G) = pk+1, then either Theorem 2.14 (iii) or

Theorem 3.16 applies, so that G is a faithful split extension of B by A. We provide

more information on the structure of G in this particular case.

Theorem 4.1. Let G = AB be a finite p-group for subgroups A and B such

that A is cyclic of order pk and B is elementary abelian. Then the following are

equivalent:

(i) G has a subgroup isomorphic to the wreath product CpwrCpk ;

(ii) G has exponent pk+1.

Proof. It is well-known that the wreath product CpwrCpk has exponent

pk+1. Hence (ii) follows from (i) by Lemma 2.16. Conversely, if G has exponent

pk+1, then we let g ∈ G be such that o(g) = pk+1. We let A = 〈x〉 and observe

that, since G = AB, we have g = xtw, for a suitable positive integer t and a suit-

able element w ∈ B. By Lemma 2.16, we have exp(〈xp〉B) ≤ p1+k−1 = pk, so,

without loss of generality, we may further assume that g = xw. Since G has ex-

ponent pk+1, we see, by Theorem 2.6 (x) or Theorem 3.8 (vii), that BG is abelian,

and hence elementary abelian. Thus 〈w〉〈w,x〉 = 〈w,wx, . . . , wx
pk−1

〉 is an elemen-

tary abelian, normal subgroup of 〈w, x〉 such that 〈w, x〉 = 〈w,wx, . . . , wxpk−1〉〈x〉.
We let H ∼= CpwrCpk . Since the requisite relations are satisfied by w,wx, . . . ,

wx
pk−1

and x, we see that 〈w, x〉 is isomorphic to a factor group of H. Thus

〈w, x〉 ∼= H/N , for a suitable subgroup N EH. But Z(H) ∼= Cp and H/Z(H) has

exponent pk. Hence, if N is non-trivial, then Z(H) 6 N and 〈w, x〉 ∼= H/N has

exponent pk, which is a contradiction. We conclude that N = 1, so 〈w, x〉 ∼= H ∼=
CpwrCpk , as desired. �

Our final result provides bounds for the rank of a maximal normal elementary

abelian subgroup in a finite p-group that factorises as the product of a cyclic

subgroup and an elementary abelian subgroup.

Theorem 4.2. Let G = AB be a finite p-group for subgroups A and B such

that A is cyclic and B is elementary abelian. Let N be an elementary abelian,

normal subgroup of maximal order in G. Then r(B)− 1 ≤ r(N) ≤ r(B) + 1.

Proof. We have |AN | = |A||N |
|A ∩N |

6 |G| = |A||B|
|A ∩B|

, so |N | ≤ |A ∩N ||B|
|A ∩B|

≤

|A ∩N ||B|. But A is cyclic and N is elementary abelian, so |A ∩N | ≤ p. Thus

|N | ≤ p|B|, so r(N) ≤ r(B) + 1. On the other hand, letting A ∼= Cpk , we

see, by Theorems 2.6 (viii), 2.14 (iii), 2.15 (v)(c), 3.6 (iv)(c), 3.8 (viii) and (ix),

and 3.16 (ii), that G has a elementary abelian, normal subgroup of index pk, so
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|G : N | ≤ pk. Hence |N | ≥ |G|
pk

=
|A||B|
|A ∩B|pk

=
|B|
|A ∩B|

. As above, we have

|A ∩B| ≤ p, so |N | ≥ |B|
p

. It follows that r(N) ≥ r(B)− 1. �

The results in this paper indicate that it may be possible to provide a de-

tailed account of the structure of finite groups that are the product of an abelian

subgroup and a cyclic subgroup. However, the variety of examples presented,

particularly in the case p = 2, suggests that a comprehensive understanding

of the structure of groups that are the product of two abelian subgroups in gen-

eral may be difficult to achieve.
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