
Publ. Math. Debrecen

91/1-2 (2017), 217–233

DOI: 10.5486/PMD.2017.7803

Conformal vector fields on submanifolds of a Euclidean space

By HANAN ALOHALI (Riyadh), HAILA ALODAN (Riyadh)
and SHARIEF DESHMUKH (Riyadh)

Abstract. In this paper, we investigate n-dimensional immersed compact sub-

manifold M of a Euclidean space Rn+p, with the immersion ψ : M → Rn+p, where the

tangential component ψT of ψ is a conformal vector field. A characterization of n-sphere

in the Euclidean space Rn+p is obtained. Also conditions under which ψT is a conformal

vector field in the general case and those in the special case where the submanifold has

flat normal connection and p = 2 are obtained as well.

1. Introduction

Given an immersed n-dimensional submanifold M of a Euclidean space

(Rn+p, 〈, 〉), where 〈, 〉 is the Euclidean metric, one of the important questions

is to find conditions under which the submanifold M lies on the hypersphere

Sn+p−1(c) of the Euclidean spaceRn+p. This question has been studied in [ALO07],

[ALO02], [ALOD02]. Recall that a smooth vector field ξ on a Riemannian mani-

fold (M, g) is said to be a conformal vector field if its flow consists of conformal

transformations of the Riemannian manifold (M, g) and it is equivalent to the

requirement that the vector field ξ satisfies

£ξg = 2ρg,

where £ξ is the Lie derivative with respect to the vector field ξ, and ρ is a

smooth function on M , called the potential function of the conformal vector

Mathematics Subject Classification: 53C20, 53A50.
Key words and phrases: Ricci curvature, conformal gradient vector field, flat normal vector

field, submanifolds.
This work is supported by the Deanship of Scientific Research of King Saud University, College

of Science, Research Center.



218 Hanan Alohali, Haila Alodan and Sharief Deshmukh

field ξ. Conformal vector fields have been used to characterize spheres among

compact Riemannian manifolds (cf. [DES12], [DES08], [DES10]). If M is an

n-dimensional immersed submanifold of the Euclidean space Rn+p with the im-

mersion ψ : M → Rn+p, then treating ψ as the position vector field of points

of M , we can express it as

ψ = ψT + ψ⊥,

where ψT is the tangential component of ψ to M , and ψ⊥ is the normal compo-

nent of ψ. Thus, we get a globally defined vector field ψT on the submanifold

M , which might be either a Killing vector field or a conformal vector field. How-

ever, the covariant derivative of ψT being symmetric (see Section 2), asking ψT be

a Killing vector field, will not yield interesting geometry. Therefore, it is a natural

question to find conditions under which the vector field ψT is a conformal vector

field on M , as well as to study the geometry of the submanifold for which the

vector field ψT is a conformal vector field. In this paper, we address these ques-

tions. It is interesting to note that in the case when ψT is a nonzero conformal

vector field on the compact submanifold M , under suitable restrictions on the

Ricci curvatures, the submanifold is shown to be isometric to the sphere Sn(c) of

constant curvature c (cf. Theorem 3.1). We also find conditions under which the

vector field ψT is a conformal vector field on the submanifold M (cf. Theorems 3.2

and 4.1). Finally, we use the conformal vector field associated to the normal com-

ponent ψ⊥ on the submanifold M to find a necessary and sufficient condition for

the submanifold to lie on the hypersphere Sn+p−1(c) (cf. Theorem 3.3).

2. Preliminaries

Let M be an n-dimensional submanifold of the Euclidean space Rn+p with

immersion ψ : M → Rn+p. We denote by 〈, 〉 and ∇ the Euclidean metric and

the Euclidean connection, respectively, on Rn+p, we also denote by g and ∇ the

induced metric and the Riemannian connection on the submanifold M . Then, we

have the following equations for the submanifold M (cf. [CHE83]):

∇XY = ∇XY + h (X,Y ) , ∇XN = −ANX +∇⊥XN (2.1)

X,Y ∈ X (M), N ∈ Γ (Λ), where X (M) is the Lie algebra of smooth vector fields

on M , Γ (Λ) is the space of smooth sections of the normal bundle Λ of M , h is the

second fundamental form, AN is the Weingarten map with respect to the normal

N ∈ Γ(Λ) which is related to the second fundamental form h by

g (ANX,Y ) = g (h (X,Y ) , N) , X, Y ∈ X (M) ,
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and ∇⊥ is the connection in the normal bundle Λ. We also have the Gauss

equation

R (X,Y )Z = Ah(Y,Z)X −Ah(X,Z)Y, X, Y, Z ∈ X(M), (2.2)

where R (X,Y )Z, X,Y, Z ∈ X(M) is the curvature tensor field of the submani-

fold M . The Ricci tensor field of M is given by

Ric (X,Y ) = ng (h (X,Y ) , H)−
n∑
i=1

g (h (X, ei) , h (Y, ei)) , (2.3)

where {e1, ..., en} is a local orthonormal frame on M , and

H =
1

n

n∑
i=1

h (ei, ei)

is the mean curvature vector field.

The Ricci operator Q is the symmetric operator defined by

Ric (X,Y ) = g (Q (X) , Y ) , X, Y ∈ X (M) .

If we express ψ = ψT + ψ⊥, where ψT ∈ X (M) is the tangential component

and ψ⊥ ∈ Γ(Λ) is the normal component of ψ, and if we denote by B = Aψ⊥ the

Weingarten map with respect to the normal vector field ψ⊥, then using equation

(2.1), we get

∇xψT = X +BX, ∇⊥Xψ⊥ = −h
(
X,ψT

)
, X, Y ∈ X (M) . (2.4)

We use the mean curvature vector field H to define a smooth function F :

M → R on the submanifold M by F =
〈
H,ψ⊥

〉
. Now, for an n-dimensional

submanifold ψ : M → Rn+p, and a local orthonormal frame {e1, ..., en} on M , we

have

divψT =

n∑
i=1

〈
∇eiψT , ei

〉
=

n∑
i=1

〈
ei +Aψ⊥ei, ei

〉
= n+

n∑
i=1

〈
h (ei, ei) , ψ

⊥〉 = n+ n
〈
H,ψ⊥

〉
= n (1 + F ) ,

that is,

divψT = n (1 + F ) . (2.5)

We have the following Lemmas:



220 Hanan Alohali, Haila Alodan and Sharief Deshmukh

Lemma 2.1 (Hsiung–Minkowski formula). Let M be an n-dimensional com-

pact submanifold of the Euclidean space Rn+p. Then∫
M

(1 + F )dυ = 0.

Lemma 2.2 ([ALO07]). Let M be an n-dimensional submanifold of Rn+p.

Then the tensor field B satisfies

(i) TrB = nF ;

(ii) (∇B) (X,Y )− (∇B) (Y,X) = R (X,Y )ψT ;

(iii)
∑n
i=1 (∇B) (ei, ei) = n∇F +Q

(
ψT
)
;

where (∇B) (X,Y ) = ∇XBY −B∇XY X, Y ∈ X (M).

Lemma 2.3 ([ALO07]). Let ψ : M → Rn+p be an n-dimensional compact

submanifold. Then a necessary and sufficient condition for ψ (M) ⊂ Sn+p−1(c) is

that ψT = 0 and F = −1.

Definition 2.1. A smooth vector field ξ on a Riemannian manifold (M, g)

is said to be a conformal vector field if there exists a smooth function ρ on M

that satisfies £ξg = 2ρg, ρ called a potential function, where £ξg is the Lie

derivative of g with respect to ξ. We say that ξ is a non-trivial conformal vector

field if the potential function ρ is not a constant. A conformal vector field ξ is said

to be a gradient conformal vector field if ξ = ∇f , for a smooth function f on M .

Using Koszul’s formula, we immediately obtain the following for a vector

field ξ on M :

2g (∇Xξ, Y ) = (£ξg) (X,Y ) + dη (X,Y ) , X, Y ∈ X (M) ,

where η is the 1-form dual to ξ, that is, η (X) = g (X, ξ), X ∈ X (M). Define

a skew-symmetric tensor field ϕ of type (1, 1) on M by dη (X,Y ) = 2g (ϕX, Y ),

and a symmetric tensor filed C of type (1, 1) by

£ξg(X,Y ) = 2g(CX, Y ), X, Y ∈ X (M) ,

then, for a smooth vector field ξ on M , we have

∇Xξ = CX + ϕX, X, Y ∈ X (M) . (2.6)

Using the definition of a conformal vector field and equation (2.6), we have
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Lemma 2.4 ([DES12]). Let ξ be a conformal vector field on an n-dimensional

Riemannian manifold (M.g), with potential function ρ. Then

∇Xξ = ρX + ϕX, X ∈ X (M) and div ξ = nρ.

Remark 2.1 ([DES08]). Let ξ be a conformal gradient vector field on a com-

pact Riemannian manifold (M, g). Then, for ρ = n−1 div ξ,∫
M

ρdυ = 0.

Let λ1 be the nonzero eigenvalue of the Laplacian operator ∆ acting on the

smooth functions of a compact Riemannian manifold (M, g), where we adopt the

sign convention of the Laplacian operator as ∆f = div∇f . Then, for a smooth

function f on M satisfying ∫
M

fdυ = 0,

by minimum principle we have∫
M

‖∇f‖2 dυ ≥ λ1
∫
M

f2dυ, (2.7)

and the equality holds if and only if ∆f = −λ1f . Moreover, for a smooth func-

tion f , the Hessian operator Hf is given by

HfX = ∇X∇f, X ∈ X (M) ,

and on a compact Riemannian manifold, we have the following Bochner formula:∫
M

{
Ric(∇f,∇f) + ‖Hf‖2 − (∆f)2

}
dυ = 0. (2.8)

3. Submanifolds with ψT as conformal vector field

Let M be an n-dimensional submanifold of the Euclidean space Rn+p, with

immersion ψ : M → Rn+p. In this section, we study the geometry of the sub-

manifold M for which the vector field ψT is a conformal vector field. First, we

prove the following Lemmas.



222 Hanan Alohali, Haila Alodan and Sharief Deshmukh

Lemma 3.1. Let M be an n-dimensional submanifold of the Euclidean space

Rn+p, with immersion ψ : M → Rn+p and f = 1
2

∥∥ψ⊥∥∥2. If the gradient∇f of the

smooth function f is a conformal vector field, then

Ric
(
ψT , ψT

)
+ nψT (F ) + nρ+ nF + ‖B‖2 = 0,

where ρ is the potential function of ∇f .

Proof. As ∇f is a conformal vector field with potential function say ρ,

we have

£∇fg = 2ρg.

Since the 1-form dual to the conformal vector field ∇f is closed, we have

ϕ = 0, and Lemma 2.4 takes the form

∇X (∇f) = ρX and ∆f = nρ, (3.1)

where ∆ is the Laplacian operator. Now, for X ∈ X (M), we have

g (∇f,X) = X (f)=X

(
1

2

∥∥ψ⊥∥∥2)=g
(
∇Xψ⊥, ψ⊥

)
=g
(
−Aψ⊥X +∇⊥Xψ⊥, ψ⊥

)
= g

(
∇⊥Xψ⊥, ψ⊥

)
= −g

(
h
(
X,ψT

)
, ψ⊥

)
= −g

(
Aψ⊥ψT , X

)
,

which gives ∇f = −Aψ⊥ψT = −BψT . Putting ξ = ψT , we get ∇f = −Bξ, and

consequently,

∇X (∇f) = −∇XBξ = − [(∇B) (X, ξ) +B∇Xξ] ,

which, using equation (2.4), gives

∇X (∇f) = − (∇B) (X, ξ)−B (X +BX)

= − (∇B) (X, ξ)−BX −B2X. (3.2)

Now, using Lemma 2.2 and the fact that B is a symmetric operator, we have

n∑
i=1

g ((∇B) (ei, ξ) , ei) = g

(
n∑
i=1

(∇B) (ei, ei) , ξ

)
= g (n∇F +Q (ξ) , ξ) = nξ (F ) + Ric (ξ, ξ) . (3.3)

Also, using equations (3.1) and (3.2), we get

n∑
i=1

g ((∇B) (ei, ξ) , ei) =

n∑
i=1

g
(
−ρei −Bei −B2ei, ei

)
= −nρ− TrB − ‖B‖2 . (3.4)
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Then, using TrB = nF and equations (3.3) and (3.4), we arrive at

Ric (ξ, ξ) + nξ (F ) + nρ+ nF + ‖B‖2 = 0,

which proves the Lemma. �

Lemma 3.2. Let ψ : M → Rn+p be an n-dimensional compact submanifold.

Then ∫
M

{
Ric

(
ψT , ψT

)
− n2 (1 + F )

2
+ ‖B‖2 − n

}
dυ = 0.

Proof. Taking ξ = ψT , we have

div (Fξ) = g (∇F, ξ) + F div ξ = g (∇F, ξ) + nF (1 + F ) .

Consider a local orthonormal frame {e1, ..., en}, then using Lemma 2.2 and equa-

tion (2.5) to compute div (Bξ), we get

div (Bξ) =

n∑
i=1

g (∇eiBξ, ei) =

n∑
i=1

g ((∇B) (ei, ξ) +B∇eiξ, ei)

=

n∑
i=1

[g ((∇B) (ei, ei) , ξ) + g (∇eiξ,Bei)]

= g (n∇F +Q (ξ) , ξ) +

n∑
i=1

[g (ei, Bei) + g (Bei, Bei)]

= ng (∇F, ξ) + Ric (ξ, ξ) + TrB + ‖B‖2

= ng (∇F, ξ) + Ric (ξ, ξ) + nF + ‖B‖2 ,

and

g (∇F, ξ) = div (Fξ)− nF 2 − nF,

which gives

ng (∇F, ξ) = ndiv (Fξ)− n2F 2 − n2F.

Consequently,

div (Bξ) = ndiv (Fξ)− n2F 2 − n2F + Ric (ξ, ξ) + nF + ‖B‖2 ,

and we have

div (Bξ − nFξ) = Ric (ξ, ξ)− n2F 2 − n2F + nF + ‖B‖2 ,
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which after integration gives∫
M

{
Ric (ξ, ξ)− n2

(
F 2 − 1

)
+ ‖B‖2 − n

}
dυ = 0. (3.5)

Also using Lemma 2.1, we have∫
M

(1 + F )
2
dυ =

∫
M

(
F 2 − 1

)
dυ,

which, together with equation (3.5), gives∫
M

{
Ric (ξ, ξ)− n2 (1 + F )

2
+ ‖B‖2 − n

}
dυ = 0. �

Theorem 3.1. Let ψ : M → Rn+p be an n-dimensional compact subman-

ifold with the tangential component ψT , a nonzero conformal vector field with

potential function ρ, and λ1 be the first nonzero eigenvalue of the Laplacian op-

erator on the submanifold M . If c = n−1λ1 and the Ricci tensor on M satisfies

(i) Ric
(
∇ρ+ cψT ,∇ρ+ cψT

)
≥ 0,

(ii) Ric (∇ρ,∇ρ) ≤ (n− 1) c ‖∇ρ‖2,

then M is isometric to a sphere Sn (c).

Proof. Let ξ = ψT be a conformal vector field with potential function ρ.

If we define f = 1
2 ‖ψ‖

2
, then it is easy to show that ξ = ∇f . Thus ξ is a gradient

conformal vector field, and consequently, as the 1-form η dual to ξ being η = df

is closed, we get that ϕ = 0. Then, by Lemma 2.4, we have

∇Xξ = ρX,

and using equation (2.4) in the above equation, we have

BX +X = ρX,

which gives B = (ρ− 1) I and div ξ = nρ. However, as ξ = ∇f , we have ∆f = nρ.

Now,

(∇B) (X,Y ) = ∇XBY −B∇XY = ∇X (ρ− 1)Y − (ρ− 1)∇XY = X (ρ)Y,

which, together with Lemma 2.2, gives

X (ρ)Y − Y (ρ)X = R (X,Y ) ξ. (3.6)
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The above equation immediately gives

Ric (ξ,X) =

n∑
i=1

R (ei, X; ξ, ei) = g(X,∇ρ)− nX(ρ),

and consequently, we have

Q (ξ) = − (n− 1)∇ρ. (3.7)

The above equation gives

Ric (ξ, ξ) = − (n− 1) ξ (ρ) = − (n− 1) [div (ρξ)− ρdiv ξ] ,

that is,

Ric (ξ, ξ) = − (n− 1) div (ρξ) + n (n− 1) ρ2. (3.8)

Also, equation (3.7) gives

Ric (ξ,∇ρ) = g (− (n− 1)∇ρ,∇ρ) = − (n− 1) ‖∇ρ‖2 . (3.9)

Let λ1 be the first nonzero eigenvalue of the Laplacian operator on M . Then

Remark 2.1, together with equation (2.7), gives∫
M

‖∇ρ‖2 dυ ≥ λ1
∫
M

ρ2dυ, (3.10)

with equality holding if and only if ∆ρ = −λ1ρ.

Using c = n−1λ1 and equations (3.8), (3.9) and (3.10), we arrive at∫
M

Ric (∇ρ+ cξ,∇ρ+ cξ) dυ

=

∫
M

{
Ric (∇ρ,∇ρ) + n (n− 1) c2ρ2 − 2 (n− 1) c ‖∇ρ‖2

}
dυ

≤
∫
M

{
Ric (∇ρ,∇ρ)− (n− 1) c ‖∇ρ‖2

}
dυ,

Using the conditions in the statement, and the above inequality, we conclude

that

Ric (∇ρ+ cξ,∇ρ+ cξ) = 0 and Ric (∇ρ,∇ρ)− (n− 1) c ‖∇ρ‖2 = 0. (3.11)
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Thus we have

Ric(∇ρ,∇ρ) + 2cRic(∇ρ, ξ) + c2 Ric(ξ, ξ) = 0,

which, together with equation (3.9) and the second equation in (3.11), gives

Ric(ξ, ξ) = (n− 1)c−1 ‖∇ρ‖2 . (3.12)

Now, using ∇f = ξ, that is, Hf (X) = ρX and ∆f = nρ in the Bochner

Formula (2.8), we arrive at∫
M

{
Ric(ξ, ξ) + nρ2 − n2ρ2

}
dυ = 0,

which, together with equation (3.12), gives∫
M

‖∇ρ‖2 dυ = nc

∫
M

ρ2dυ = λ1

∫
M

ρ2dυ.

This equality in (3.10) gives ∆ρ = −λ1ρ, which, together with ∆f = nρ,

gives ∆(ρ + λ1n
−1f) = 0, and on compact M , we have ρ + λ1n

−1f = constant.

This last equation, together with Hf (X) = ρX, gives ∇ρ = −c∇f , that is,

∇X∇ρ = −cρX. (3.13)

If ρ is a constant, then we have −c∇f = 0, that is, ξ = 0, which is a contra-

diction, as ξ is a nonzero conformal vector field. Hence the nonconstant function ρ

satisfies the Obata’s differential equation (3.13) (cf. [OBA62]), and therefore is

isometric to the sphere Sn(c). �

In the following result, we consider the tangential component ψT and find

conditions under which it becomes a conformal vector field on the submanifold M .

Theorem 3.2. Let ψ : M → Rn+p be an n-dimensional compact submani-

fold, with λ = inf 1
n−1 Ric > 0. If

∥∥ψT∥∥2 ≥ nλ−1 (1 + F )
2
, then ψT is a conformal

vector field on M .

Proof. Taking ξ = ψT in Lemma 3.2, we get∫
M

{
Ric (ξ, ξ)− n2 (1 + F )

2
+ ‖B‖2 − n

}
dυ = 0,
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which gives∫
M

(
Ric (ξ, ξ)−λ (n−1) ‖ξ‖2

)
+(‖B‖2−nF 2)+

(
(n−1)

(
λ ‖ξ‖2−n (1+F )

2
))

=0.

Using Ric (ξ, ξ) ≥ (n− 1)λ ‖ξ‖2, the Schwarz inequality ‖B‖2 ≥ nF 2 and

the condition in the statement λ ‖ξ‖2 ≥ n (1 + F )
2

in the above equation, we get

the equality ‖B‖2 = nF 2, which holds if and only if B = FI. Thus

∇Xξ = BX +X = FX +X = (1 + F )X = ρX,

where ρ = (1 + F ), that is,

£ξg = 2ρg,

which proves that ξ = ψT is a conformal vector field. �

In the next result, we consider a conformal vector field on the submanifold M

associated with the normal component ψ⊥, and it is interesting to note that in

this case we get the criterion for the submanifold to lie on the hypersphere in the

Euclidean space, that is, we get a criterion for a spherical submanifold.

Theorem 3.3. Let ψ : M → Rn+p be an n-dimensional compact subman-

ifold with mean curvature H. Suppose that the smooth function f = 1
2

∥∥ψ⊥∥∥2
gives the conformal vector field∇f onM , and that∇⊥ψTH= 0. Then h

(
ψT , ψT

)
=

0 if and only if ψ (M) ⊂ Sn+p−1 (c) for some constant c > 0.

Proof. Suppose that h
(
ψT , ψT

)
= 0. Then, for ξ = ψT , we have

ξ (F ) = g
(
∇⊥ξ H,ψ⊥

)
+ g

(
H,∇⊥ξ ψ⊥

)
= −g (H,h (ξ, ξ)) = 0,

that is, ξ (F ) = 0, which, together with Lemma 3.1, gives

Ric (ξ, ξ) + nξ (F ) + nρ+ nF + ‖B‖2 = 0.

Integrating the above equation, we get∫
M

{
Ric (ξ, ξ) + nF + ‖B‖2

}
dυ =

∫
M

{
Ric (ξ, ξ) + ‖B‖2 − n

}
dυ = 0,

where we used Lemma 2.1.

Now, using Lemma 3.2 in the above equation, we get∫
M

−n2 (1 + F )
2
dυ = 0,

that is, F = −1, which, by virtue of Lemma 2.3, gives ψ (M) ⊂ Sn+p−1 (c) for

some constant c > 0.

Conversely, if ψ (M) ⊂ Sn+p−1 (c), c > 0, then by Lemma 2.3 F = −1 and

ψT = 0, and this proves h (ξ, ξ) = 0. �
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4. Submanifolds with flat normal connection

In this section, we study codimension-two submanifolds in the Euclidean

space Rn+2 with flat normal connection, and find conditions under which the

tangential component of the position vector field is a conformal vector field. Let

ψ : M → Rn+2 be an immersion of a compact manifold with a flat normal

connection and a mean curvature vector field H. We assume that the mean

curvature vector field H is nowhere zero, and choose a local orthonormal frame

{N1, N2} of normals such that H = αN1, where α = ‖H‖. Then, using the

definition of the smooth function F =
〈
ψ⊥, H

〉
, in this case we have

ψ⊥ =
F

α
N1 + µN2, µ =

〈
N2, ψ

⊥〉 . (4.1)

Define a smooth 1-form ω by ω (X) = g
(
∇⊥XN1, N2

)
, X ∈ X(M), and let υ

be the smooth vector field on M dual to ω.

Lemma 4.1. Let ψ : M → Rn+2 be an immersion of a smooth manifold

with a local orthonormal frame {N1, N2} of normals such that H = αN1. Then,

the normal connection on M is flat if and only if ω is closed.

Proof. Using ω (X) = g
(
∇⊥XN1, N2

)
, we have ∇⊥XN1 = ω (X)N2 and that

∇⊥XN2 = −ω (X)N1. We compute R⊥ (X,Y )N1 to get

R⊥ (X,Y )N1 = X (ω (Y ))N2 − Y (ω (X))N2 − ω ([X,Y ])N2 = dω (X,Y )N2,

and similarly we have

R⊥ (X,Y )N2 = −dω (X,Y )N1, X, Y ∈ X (M) ,

which proves the normal connection is flat if an only if dω = 0, that is, ω is

closed. �

Let M be a submanifold of Rn+2 with flat normal connection. Then as

the smooth 1-form ω, which is dual to smooth vector field v, is closed using

equation (2.6), we have a symmetric tensor field C that is given by ∇Xv = CX,

for X ∈ X (M).

Lemma 4.2. Let ψ : M → Rn+2 be an immersion of a smooth manifold

with a local orthonormal frame {N1, N2} of normals such that H = αN1 and

shape operators A1 = AN1
and A2 = AN2

. Then

(i)
n∑
i=1

(∇A1) (ei, ei) = n∇α+A2v,
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(ii)
n∑
i=1

(∇A2) (ei, ei) = nαv −A1v,

where {e1, ..., en} is a local orthonormal frame on M .

Proof. Using the expression

(Dh) (X,Y, Z) = ∇⊥Xh (Y,Z) = h (∇XY,Z)− h (∇XZ, Y ) ,

and the Codazzi equation of the submanifold

(Dh) (X,Y, Z) = (Dh) (Y,Z,X) , X, Y, Z ∈ X (M) ,

we get

(∇A1) (X,Y )− (∇A1) (Y,X) = A∇⊥
XN1

Y −A∇⊥
YN1

X, (4.2)

and that

(∇A2) (X,Y )− (∇A2) (Y,X) = A∇⊥
XN2

Y −A∇⊥
YN2

X. (4.3)

Also we have

TrA1 = nα and TrA2 = 0, (4.4)

and consequently, we get

n∑
i=1

g ((∇A1) (X, ei) , ei) =

n∑
i=1

g (∇XA1ei, ei)− g (A1∇Xei, ei) = ng (X,∇α) .

Using equations (4.2) and (4.3) in the above equation, we arrive at the desired

result in (i).

Similarly, using equations (4.3) and (4.4), we get

n∑
i=1

g ((∇A2) (X, ei) , ei) =

n∑
i=1

g (∇XA2ei, ei)− g (A2∇Xei, ei) = X (TrA2) = 0,

and arrive at the desired result in (ii). �

In the following main result of this section, we find necessary conditions for

the vector field ξ = ψT on the submanifold M of the Euclidean space Rn+2 with

flat normal connection to be a conformal vector field. Let ψ : M → Rn+2 be

a compact submanifold with flat normal connection, and v be the vector field

dual to the closed 1-form ω given in Lemma 4.1, and h = TrC, C being the

symmetric tensor field given by CX = ∇Xv.
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Theorem 4.1. Let ψ : M → Rn+2 be an immersion of a compact manifold

with a flat normal connection, and {N1, N2} a local orthonormal frame of normals

such that H = αN1, H(p) 6= 0, p ∈M . If there is a constant c and the following

conditions hold:

(i) Ric (v, v) ≥ n−1
n h2,

(ii) Ric (ξ − cv, ξ − cv) ≥ 0,

(iii) |ch− nF | ≤ n,

where ξ = ψT , then ξ is a conformal vector field.

Proof. Using the definition of the curvature tensor field and

∇Xv = CX, (4.5)

we get

R (X,Y ) v = (∇C) (X,Y )− (∇C) (Y,X) . (4.6)

Since h = TrC, the above equation gives

Ric (X.v) = g

(
n∑
i=1

(∇C) (ei, ei)−∇h,X

)
,

that is,

Q (v) =

n∑
i=1

(∇C) (ei, ei)−∇h. (4.7)

Now, using equation (4.7) in computing divCv, we get

divCv = Ric (v, v) + v (h) + ‖C‖2 . (4.8)

Also, equation (4.5) gives divv = h, and thus we have

div hv = v (h) + h2,

which on integration gives ∫
M

v (h) dv = −
∫
M

h2dv.

Now, integrating equation (4.8) and using the above equation, we get∫
M

{
Ric (v, v) + ‖C‖2 − h2

}
dv = 0,
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that is, ∫
M

{(
Ric (v, v)− n− 1

n
h2) + (‖C‖2 − 1

n
h2
)}

dv = 0.

Thus the condition (i) in the statement, together with Schwarz inequality

‖C‖2 ≥ 1
nh

2, gives

Ric (v, v) =
n− 1

n
h2 and ‖C‖2 =

1

n
h2. (4.9)

The second equation in (4.9) gives

C =
h

n
I and ∇Xv =

h

n
X. (4.10)

Now, using equation (4.7), we get

Ric (v, v) = −
(
n− 1

n

)
v (h) ,

which, together with equation (4.9), gives v (h) = −h2. Also, the first equation

in (4.10) and TrB = F give TrCB = hF .

Using equation (4.1) in (2.4), we get

X

(
F

α

)
N1 +

F

α
∇⊥XN1 +X (µ)N2 + µ∇⊥XN2 = −h (X, ξ) , (4.11)

which, taking inner product with N1, gives

∇
(
F

α

)
= µv −A1ξ, (4.12)

similarly, taking inner product with N2 gives

∇µ = −A2ξ −
F

α
v. (4.13)

Now, we compute the divergence of the vector field Bv,

divBv =

n∑
i=1

g (∇eiBv, ei) =

n∑
i=1

g

(
∇ei

(
F

α
A1v + µA2v

)
, ei

)
,

which, using equations (4.4), (4.12), (4.13) and Lemma 4.1, gives

divBv = −g
(
A2

1v +A2
2v, ξ

)
+ n

F

α
v (α) + nαµ ‖v‖2 + Fh. (4.14)
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On using equation (4.12), we get

v (F ) =
F

α
v (α) + αµ ‖v‖2 − αg (A1v, ξ) , (4.15)

and

divFv = F div v + v (F ) = hF +
F

α
v (α) + αµ ‖v‖2 − αg (A1v, ξ) ,

and consequently, that

ndivFv + nαg (A1v, ξ) = n
F

α
v (α) + nαµ ‖v‖2 + nhF. (4.16)

Now, using the expression for the Ricci tensor of submanifold, we have

Ric (X, v) = ng (h (v,X) , H)−
n∑
i=1

g (h (X, ei) , h (v, ei)) ,

which gives

Q (v) = nαA1v −A2
1v −A2

2v. (4.17)

Using equations (4.16) and (4.17) in equation (4.14), we get

divBv = Ric (ξ, v) + n divFv − (n− 1)hF,

and integrating the above equation we have∫
M

{Ric (ξ, v)− (n− 1)hF} dv = 0. (4.18)

Finally, using equations (4.9) and (4.18) and Lemma 3.2, we get∫
M

Ric (ξ − cv, ξ − cv) dv=

∫
M

{(
nF 2 − ‖B‖2

)
+
n− 1

n

[
(ch− nF )

2 − n2
]}
dv,

which, together with the conditions in the statement and the Schwarz inequality

‖B‖2 ≥ nF 2, gives

‖B‖2 = nF 2, ξ = cv and |ch− nF | = n.

The second equation, together with equation (4.10), gives

∇Xξ =
c

n
hX, X ∈ X (M) .

This proves that

(£ξg) (X,Y ) = 2
c

n
hg (X,Y ) ,

that is, ξ = ψT is a conformal vector field. �
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