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Linear divisibility sequences and Salem numbers
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Abstract. We study linear divisibility sequences of order 4, finding a characteri-

zation by means of their characteristic polynomials and providing their factorization as

a product of linear divisibility sequences of order 2. Moreover, we show new interesting

connections between linear divisibility sequences and Salem numbers. Specifically, we

generate linear divisibility sequences of order 4 by means of Salem numbers modulo 1.

1. Introduction

The study of linear divisibility sequences is a fruitful and fascinating branch of

number theory, whose relevance is apparent from many open questions and some

unexpected connections with other topics such as cryptography, elliptic curves

and algebraic integers, as pointed out in [22], [13] and [21]. We may say that the

most cited example of a sequence (an)+∞
n=0 having the divisibility property

m|n⇒ am|an

is the classic Fibonacci sequence, which is the most known linear divisibility se-

quence of order 2. During the years, the work of many mathematicians has offered

a deep insight and many generalizations to the subject, for instance, extending the

concept to matrix divisibility sequences as in [9]. The well-known Lucas–Lehmer

theory offers a detailed analysis of linear recurrence sequence of order 2, while

strong divisibility sequences and polynomial divisibility sequences are deeply stud-

ied in [12] and [15]. Linear recurrence sequences of higher order turned out to be
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an intriguing challenge, examined since the paper of Hall [11] concerning se-

quences of order 3, to the general results presented by Bézivin, Pethő and Van

der Poorten in [4] on the characterization of divisibility sequences, and lately

revisited in [2]. The aim of this paper is to shine new light to linear divisibility

sequences of order 4, which recently have been deeply examined in [18], [23] and

[24]. In particular, Williams and Guy in their papers [23], [24] introduced and

studied a class of linear divisibility sequences of order 4 that extends the Lucas–

Lehmer theory for divisibility sequences of order 2. In Section 2, we consider these

sequences, proving that all the (non-degenerate) divisibility sequences of order 4

have the same characteristic polynomials as the sequences of Williams and Guy

do. Moreover, we provide all the factorizations of divisibility sequences of order

4 into the product of divisibility sequences of order 2. Since the construction of

divisibility sequences by means of powers of algebraic integers is a research field

that has been recently developed (see, e.g., [21]), we present in Section 3 a way

to generate linear divisibility sequences of order 4 by means of powers of Salem

numbers. This result is particularly interesting, since connections between Salem

numbers and divisibility sequences have been studied only in some particular cases

(see, e.g., [17]).

2. Standard linear divisibility sequences

Definition 1. Given a ring R, a sequence a = (an)+∞
n=0, with ai ∈ R, is

a divisibility sequence if

m|n⇒ am|an.

Conventionally, we will consider a0 = 0.

In the following, we will deal with linear divisibility sequences (LDSs), i.e.,

divisibility sequences that satisfy a linear recurrence. Classic LDSs are the Lucas

sequences, i.e., linear recurrence sequences whose characteristic polynomial is

x2 − hx+ k and with initial conditions 0, 1.

In [23] and [24], the authors introduced and studied some linear divisibility

sequences of order 4. We recall these sequences in the following definition.

Definition 2. Let us consider linear recurrence sequences of order 4 over Z
with characteristic polynomial

x4 − px3 + (q + 2r)x2 − prx+ r2,
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and with initial conditions

0, 1, p, p2 − q − 3r.

We say that these sequences are standard LDSs of order 4, and we call the previous

polynomial as a standard polynomial.

In the next theorem, we will prove that the product of two LDSs of order 2 is

a standard LDS of order 4. First of all, we recall the definition of the Kronecker

product of two matrices and an important lemma proved in [8].

Definition 3. Given any matrices A and B, with dimensions m×n and p×q,
respectively, the Kronecker product A⊗B is a matrix mp×nq defined as follows:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Lemma 1. Let a = (an)+∞
n=0 and b = (bn)+∞

n=0 be linear recurrence se-

quences with characteristic polynomials f(x) and g(x), respectively. The sequence

ab = (anbn)+∞
n=0 is a linear recurrence sequence that recurs with f(x)⊗ g(x), the

characteristic polynomial of the matrix F ⊗ G (Kronecker product of matrices),

where F and G are the companion matrices of f(x) and g(x), respectively.

Remark 1. The previous lemma also corresponds to the following statement.

Let a = (an)+∞
n=0 and b = (bn)+∞

n=0 be linear recurrence sequences whose charac-

teristic polynomials have roots α1, ..., αs and β1, ..., βt, respectively. Then, the

sequence c = (cn)+∞
n=0 = (anbn)+∞

n=0 is also a linear recurrence sequence whose

characteristic polynomial has roots γ1, ..., γst, where

(γ1, ..., γst) = (α1, ..., αs)⊗ (β1, ..., βt).

Theorem 1. Let a = (an)+∞
n=0 and b = (bn)+∞

n=0 be LDSs of order 2 with

characteristic polynomials x2 − h1x+ k1, x2 − h2x+ k2, respectively, and initial

conditions 0, 1. The sequence ab = (anbn)+∞
n=0 is a standard LDS of order 4 with

initial conditions 0, 1, h1h2,
(
h2

1 − k1

) (
h2

2 − k2

)
.

Proof. Since a and b are LDSs, it immediately follows that ab is a divisibility

sequence, and, by Lemma 1, we know that it is a linear recurrence sequence

of order 4 whose characteristic polynomial is

x4 − h1h2x
3 + (k1h

2
1 − k2h

2
1 + 2k1k2)x2 + h1k1h2k2x+ k2

1k
2
2.

By Definition 2, ab is a standard LDS for p = h1h2, q = h2
1k2 + k1

(
h2

2 − 4k2

)
,

r = k1k2. The initial conditions can be directly calculated. �
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Moreover, we prove that all the LDSs of order 4 have characteristic polyno-

mial equal to the characteristic polynomial of standard LDSs.

Theorem 2. Let a = (an)+∞
n=0 be a non-degenerate LDS of order 4 with

a0 = 0 and a1 = 1. Then its characteristic polynomial is

x4 − px3 + (q + 2r)x2 − prx+ r2, (1)

for some p, q, r.

Proof. Since we deal with the non-degenerate case, i.e., the ratios between

the roots of the characteristic polynomial are not roots of unity, the characteristic

polynomial of a has four distinct roots α, β, γ, δ. From well-known results on

the characterization of divisibility sequences (see [4] and [2]), the sequence a is

a divisor of the sequence b = (bn)+∞
n=0, where

bn =
αn − βn

α− β
·
αn − γn

α− γ
·
αn − δn

α− δ
·
βn − γn

β − γ
·
βn − δn

β − δ
·
γn − δn

γ − δ
.

In other words, there exists a sequence c = (cn)+∞
n=0 such that bn = ancn, for any

index n.

By Lemma 1 and Remark 1, the sequence b can be written as the product

of six Lucas sequences with characteristic polynomials having roots (α, β), (α, γ),

(α, δ), (β, γ), (β, δ), (γ, δ), respectively. Thus, without loss of generality, we may

suppose that the roots of the characteristic polynomial of b are the entries of the

following vector with 64 components:

B = (α, β)⊗ (α, γ)⊗ (α, δ)⊗ (β, γ)⊗ (β, δ)⊗ (γ, δ),

where all the roots appear with the due multiplicity. We can write the vector B

as

B =

(
αC ′, γC ′, βC ′,

βγ

α
C ′
)
, (2)

where

C ′ = (α2, αδ)⊗ (β, γ)⊗ (β, δ)⊗ (γ, δ)

is a vector with 16 components. Moreover, B = A⊗C, where C is a vector whose

components are the roots of the characteristic polynomial of c (appearing with

the due multiplicity), and

A = (ω1, ω2, ω3, ω4),
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a certain permutation of (α, β, γ, δ). Thus, we have

B = (ω1C,ω2C,ω3C,ω4C), (3)

where C clearly has 16 components. Subtracting (3) from (2), we obtain(
w1C − αC ′, w2C − γC ′, w3C − βC ′, w4C −

βγ

α
C ′

)
= O64,

where O64 is the zero vector with 64 components. Thus

w1C − αC ′ = w2C − γC ′ = w3C − βC ′ = w4C −
βγ

α
C ′ = O16,

where O16 is the zero vector with 16 components. From w1C − αC ′ = O16, it

follows that C =
α

w1
C ′ and(

w2α

w1
− γ

)
C ′ =

(
w3α

w1
− β

)
C ′ =

(
w4α

w1
−
βγ

α

)
C ′ = O16.

Since C ′ 6= O16, clearly,

w2α

w1
− γ =

w3α

w1
− β =

w4α

w1
−
βγ

α
= 0,

and from these equalities it is straightforward to obtain that w1w4 = w2w3, i.e.,

the characteristic polynomial of a must be of the form (1). �

Now, we show how any standard LDS can be factorized as a product of two

LDS of order 2 over C .

Definition 4. Given the sequences (un)+∞
n=0, (vn)+∞

n=0, (sn)+∞
n=0, (tn)+∞

n=0 over

a ring R, we say that the sequences (unvn)+∞
n=0 and (sntn)+∞

n=0 are equivalent

if

un = λn−1sn, vn = λ1−ntn,

where λ ∈ R is a unit.

Theorem 3. Let a = (an)+∞
n=0 be a standard LDS over Z. Then an = bncn,

for all n ≥ 0, where b = (bn)+∞
n=0 and c = (cn)+∞

n=0 are LDSs of order 2 over C with

initial conditions 0, 1 and characteristic polynomials
x2 −

√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

x+ 1,

x2 −
√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
x+ r,
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when p 6= 0. Moreover, when p = 0 and q + 4r 6= 0, q 6= 0 (to avoid degenerate

cases) we have the two possible families of characteristic polynomials for b and c

given by {
x2 + 1

x2 −
√
q + 4rx+ r

and

{
x2 + 1

x2 −√qx− r.

These are all the families of non-equivalent factorizations of a over C.

Proof. We want to factorize a standard polynomial into the Kronecker

product of two polynomials of degree 2, i.e., we want to find h1, h2, k1, k2 such

that

(x2 − h1x+ k1)⊗ (x2 − h2x+ k2) = x4 − px3 + (q + 2r)x2 − px+ r2.

Let us observe that the characteristic polynomial of a must have distinct non-zero

roots in order to guarantee that a is an LDS of order 4. Let γ1, γ2 and σ1, σ2 be

the roots of x2 − h1x+ k1 and x2 − h2x+ k2, respectively. We have
(γ1 + γ2)(σ1 + σ2) = p

(γ2
1 + γ2

2)σ1σ2 + γ1γ2(σ1 + σ2)2 = q + 2r

γ1γ2σ1σ2(γ1 + γ2)(σ1 + σ2) = pr

(γ1γ2σ1σ2)2 = r2.

(4)

When p 6= 0, these conditions are equivalent to the system
k1k2 = r,

h1h2 = p,

h2
1k2 + h2

2k1 = q + 4r,

(5)

which is a particular case of 
k1k2 = A,

h1h2 = B,

h2
1k2 + h2

2k1 = C,

where A 6= 0, since we suppose that the standard polynomial has non-zero roots.

Thus

A

(
h2

1

k1

)2

− C

(
h2

1

k1

)
+B2 = 0,
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from which we have

h1 = ±
√
k1

√
C + 2B

√
A±

√
C − 2B

√
A

2
√
A

,

and

h2 = ±

√
C + 2B

√
A∓

√
C − 2B

√
A

2
√
k1

.

Therefore, the solutions of the system (5) are

h1 = ±
√
k1

√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

h2 = ±
√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
√
k1

k2 =
r

k1
.

Set

λ = ±
√
k1, s =

√
q + 4r + 2p

√
r ±

√
q + 4r − 2p

√
r

2
√
r

,

s̄ =

√
q + 4r + 2p

√
r ∓

√
q + 4r − 2p

√
r

2
.

Considering the solutions of the system (5), we find x2−h1x+k1 = x2−sλx+λ2

and x2 − h2x+ k2 = x2 − s̄
λx+ r

λ2 , whose roots are

γ1,2 = λ

(
s±
√
s2 − 4

2

)
, σ1,2 =

1

λ

(
s̄±
√
s̄2 − 4

2

)
.

In this case, we have un = λn−1bn and vn = λ1−ncn, where b and c are Lucas

sequences with characteristic polynomials x2−sx+1 and x2− s̄x+r, respectively.

When p = 0 in conditions (4), we may suppose γ1 + γ2 = h1 = 0 and find the two

systems 
h1 = 0

k1k2 = r

h2
2k1 = q + 4r

and


h1 = 0

k1k2 = −r
h2

2k1 = q,

with respective solutions
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
h1 = 0

h2 = ±
√

q+4r
k1

k2 = r
k1

and


h1 = 0

h2 = ±
√

q
k1

k2 = − r
k1
,

which give, with analogous considerations as in the case p 6= 0, with λ = ±
√
k1,

the two families of characteristic polynomials for b and c related to this case. �

Remark 2. It would be interesting to find when the previous factorizations

determine sequences in Z or Z[i].

In the next section, we see a new connection between LDSs of order 4 and

Salem numbers.

3. Construction of linear divisibility sequences by means

of Salem numbers of order 4

The Salem numbers have been introduced in 1944 by Raphael Salem [20],

and they are closely related to the Pisot numbers [19]. There are several results

regarding Pisot numbers and recurrence sequences [5], [6], [7]. In the following,

we relate Salem numbers and LDS.

There are many equivalent definitions of Salem numbers, here we report the

following one.

Definition 5. A Salem number is a real algebraic integer τ > 1 of degree

d ≥ 4 such that all the conjugate elements lie on the unit circle, unless τ and τ−1.

In the following, we work with Salem numbers of degree 4, which can be

characterized as follows (see [3, p. 81]).

Proposition 1. The Salem numbers of degree 4 are all the real roots, τ > 1,

of the following polynomials with integer coefficients

x4 + tx3 + cx2 − tx+ 1, (6)

where

2(t− 1) < c < −2(t+ 1).

It is immediate to note that the previous polynomials are standard polyno-

mials for p = −t, q = −2 + c, r = 1. In [18], the author studied properties of

the sequences having characteristic polynomials (6), also highlighting divisibility

properties and factorization. Moreover, in [17], the divisibility property of the

sequences was proved in the cases c = −1,−3.
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Definition 6. Salem standard polynomials are the polynomials

x4 − px3 + (q + 2)x2 − px+ 1

with

2(−p− 1) < 2 + q < −2(−p+ 1).

The study of the distribution modulo 1 of the powers of a given real number

greater than 1 is a rich and classic research field (see, e.g, [14]). In the following,

we use the same notation of [3, p. 61)].

Definition 7. Given a real number α, let E(α) be the nearest integer to α,

i.e., α = E(α) + ε(α), where ε(α) ∈
[
− 1

2 ,
1
2

]
is called α modulo 1.

In the original work of Salem [20], he proved that if α is a Pisot number,

then αn modulo 1 tends to zero, and if α is a Salem number, then αn modulo 1

is dense in the unit interval. Further results on the distribution modulo 1 of the

Salem numbers can be found, e.g., in [1] and [26]. Moreover, integer and fractional

parts of Pisot and Salem numbers have been studied, e.g., in [10] and [27].

Let R ⊆ C be a ring and α ∈ R, then the sequence (αn)+∞
n=0 is clearly an

LDS. Given a couple of irrational numbers λ and α, it is interesting to study when

the sequence (E(λαn))+∞
n=0 is an LDS.

Example 1. If we consider 1√
5

and the golden mean φ, it is well-known that

E

(
1√
5
φn
)

= Fn,

where Fn is the n-th Fibonacci number, consequently, we get an LDS.

Let g(x) be a Salem standard polynomial, having real roots α > 1, α−1,

and complex roots γ, γ−1 with norm 1. Let (un)+∞
n=0 be a standard LDS with

characteristic polynomial g(x). By the Binet formula, there exist λ, λ1, λ2, λ3

such that

un = λαn + λ1α
−n + λ2γ

n + λ3γ
−n.

Since

|un − λαn| ≤ |λ1α
−n|+ |λ2|+ |λ3|,

for all ε > 0, with n sufficiently large, we have

|un − λαn| ≤ ε+ |λ2|+ |λ3|.
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Thus, if |λ2|+ |λ3| < 1
2 , there exists n0 such that

un = E(λαn), ∀n > n0,

and if |λ1α
−1|+ |λ2|+ |λ3| < 1

2 , then

un = E(λαn), ∀n ≥ 1.

An interesting case is given by the Salem standard polynomial

x4 − tx3 + tx2 − tx+ 1

for t ≥ 6. In this case, we have the Salem numbers

α =
1

4

(
t+
√

(t− 4)t+ 8 +
√

2

√
t(t+

√
(t− 4)t+ 8− 2)− 4

)
and

λ =
1√

(t− 4)t+ 8
.

Thus, we can determine infinitely many LDSs generated by powers of a Salem

number, specifically the sequences

(θn(t))+∞
n=1 = E(λαn), ∀t ≥ 6 ∈ Z.

For example, when t = 6 and t = 7, respectively, we have the LDSs

1, 6, 29, 144, 725, 3654, 18409, . . . ,

and

1, 7, 41, 245, 8897, 53621, . . . .

These sequences appear to be new, since they are not listed in OEIS [16]. More-

over, as a consequence, we have the following property:

d|n⇒ E(λαd)|E(λαn).

Finally, in the following proposition we characterize all the Salem standard

polynomials that yield LDSs of this kind.
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Proposition 2. With the above notation, if |λ1α
−1|+ |λ2|+ |λ3| < 1

2 , then

the integer coefficients p, q of g(x) must satisfy the following inequalities:
2 ≤ p ≤ 8, −4− 2p < q <

p4 + 8p3 − 160p− 400

4p2 + 32p+ 64
,

p > 8, −4− 2p < q < −4 + 2p.

Proof. The real root α > 1 of g(x) can be written as

α =

(
p+

√
p2 − 4q +

√
(p+

√
p2 − 4q)2 − 16

)
4

.

Moreover, by the Binet formula

λ = λ1 =
αγ

(α− γ)(αγ − 1)
, λ2 = λ3 = −

αγ

(α− γ)(αγ − 1)
.

Thus, from |λ1α
−1|+ |λ2|+ |λ3| < 1

2 we get

|(α− γ)(αγ − 1)| > 2α+ 2.

Posing γ = a+ ib, with some calculations we find

α4 − 4aα3 + 2(2a2 − 7)α2 − 4(a+ 4)α− 3 > 0,

from which we have

α > 2 + a+
√

(a+ 2)2 + 1,

since −1 < a < 1 and α > 1. Using the explicit expression of α and the equality

a =
p−
√
p2−4q

4 , we finally obtain

1

4

(
p+

√
−16 + (−p−

√
p2 − 4q)2 +

√
p2 − 4q

)
> 2 +

p

4
+

√
1 +

1

16
(8 + p−

√
p2 − 4q)2 − 1

4

√
p2 − 4q,

whose solutions are
2 ≤ p ≤ 8, −4− 2p < q <

p4 + 8p3 − 160p− 400

4p2 + 32p+ 64
,

p > 8, −4− 2p < q < −4 + 2p. �
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