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Integral formulae for codimension-one foliated Randers spaces

By VLADIMIR ROVENSKI (Haifa) and PAWE L WALCZAK (Lódź)

Abstract. Integral formulae for foliated Riemannian manifolds provide obstruc-

tions for existence of foliations or compact leaves of them with given geometric prop-

erties. This paper continues our recent study and presents new integral formulae for

codimension-one foliated Randers spaces. Our main goal is a generalization of the Reeb

formula (that the total mean curvature of the leaves is zero) and its companion with the

total second mean curvature. The paper also extends results by Brito, Langevin and

Rosenberg (that total mean curvatures of arbitrary order for a codimension-one foliated

Riemannian manifold of constant curvature do not depend on a foliation). All of that

is done by a comparison of extrinsic and intrinsic curvatures of the two Riemannian

structures which arise in a natural way from a given Randers structure.

Introduction

The two recent decades have brought increasing interest in Finsler spaces

(M,F ), especially, in extrinsic geometry of their hypersurfaces, see [CS2], [S1],

[S2]. Randers metrics F = α+β, where α is the norm of a Riemannian structure,

and β a 1-form of α-norm smaller than 1 on M (which was introduced in [Ra]

and appeared in a solution of Zermelo’s control problem [BRS]), are of particular

interest, see [CS1]. Extrinsic geometry of foliated Riemannian manifolds also

became popular since some time (see [RW1] and the bibliography therein). Among

other topics of interest, one can find the so-called integral formulae (i.e., integral

relations for invariants of the shape operator of leaves, e.g., the higher order mean

curvatures σk(1 ≤ k ≤ m), and Riemann curvature, see surveys in [RW1], [ARW]).

Such formulae provide obstructions for the existence of foliations or compact
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leaves of them with given geometric properties. The first known integral formula

(by G. Reeb, [Re]) for codimension-one foliated closed manifolds tells us that

the total mean curvature H = σ1 is zero;∫
M

σ1 d Vg = 0, (1)

thus, either H ≡ 0 or H(x)H(y) < 0 for some points x, y ∈ M . Its counterpart

in the case of the second mean curvature is the formula, according to our knowl-

edge, obtained for the first time in [No],∫
M

(2σ2 − RicN ) d Vg = 0, (2)

where N is a unit normal to the leaves. Formula (2) has been used in [LW1] to

prove that codimension-one foliations of a closed Riemannian manifold of either

negative Ricci curvature or constant nonzero curvature are far, in a sense defined

there, from being totally umbilical, and in [BW], to estimate the energy of a vector

field. An infinite series of integral formulae was provided in [RW2]: they include

(1) and (2) and generalize the Brito–Langevin–Rosenberg formulae [BLR],∫
M

σk d Vg =

{
Kk/2

(
m/2
k/2

)
Volg(M), m, k even,

0, m or k odd,
(3)

which tell us that total mean curvatures (of arbitrary order k) for codimension-one

foliations on a closed (m + 1)-dimensional manifold of constant sectional curva-

ture K depend only on K, k, m and the volume of the manifold, not on a foliation.

Using the approach of [RW2] and a unit vector field ν orthogonal in the Finsler

sense to the leaves, we studied in [RW3] integral formulae for a codimension-one

foliated closed Finsler space (M,F ), we defined a new Riemannian structure g

on M , and derived its Riemann curvature and the shape operator of the leaves in

terms of F .

We produced the integral formulae for (M,F ) and for Randers space (M,α+

β) with β] (i.e., the α-dual of β) tangent to the leaves.

This paper presents new integral formulae for a codimension-one foliated

Randers space. Section 1 surveys necessary facts and recent results. Section 3

contains our main results, which generalize (1) and (2), and extend (3); in par-

ticular, we generalize some results of [RW3]. All integral formulae of this paper

hold when the foliation and the 1-form, the both of them, are defined outside

a finite union of closed submanifolds of codimension ≥ 2 under convergence of

some integrals (as in Lemma 1 in what follows), leaving details to the readers.

The singular case is important since there exist plenty of manifolds which admit

no (smooth) codimension-one foliations, while all of them admit such foliations

and non-singular 1-forms β outside some “set of singularities”.
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1. Preliminaries

We work with a closed manifold M equipped with a codimension-one foliation

defined on M \Σ, where Σ is a (possibly empty) union of pairwise disjoint closed

submanifolds Σi of variable codimensions ≥ 2. Briefly, we say that our foliation

admits singularities at points of Σ. For Randers spaces (with metrics F = α+β),

we assume also that β admits singularities, i.e., is defined on M \ Σ. Moreover,

the compactness of M can be replaced by the weaker conditions that M has finite

F -volume, and ‘bounded geometry’ in the following sense:

supM ‖Rν‖F <∞, supM ‖A‖F <∞.

Lemma 1 (see [LW2, Lemma 2]). Let Σ1, codim Σ1 ≥ 2, be a closed sub-

manifold of a Riemannian manifold (M,a), and X a vector field on M \ Σ1 such

that
∫
M
‖X‖2 d Va <∞. Then

∫
M

(divX) d Va = 0.

Given arbitrary quadratic m×m real matrices A1, . . . , Ak and the unit ma-

trix Im, one can consider the determinant det(Im+ t1A1 + · · ·+ tkAk) and express

it as a polynomial of real variables t = (t1, . . . , tk). Given λ = (λ1, . . . , λk), a se-

quence of nonnegative integers with |λ| := λ1 + · · ·+ λk ≤ m, we shall denote by

σλ(A1, . . . , Ak) its coefficient at tλ = tλ1
1 × · · · t

λk

k , see [RW2]:

det(Im + t1A1 + · · ·+ tkAk) =
∑
|λ|≤m

σλ(A1, . . . , Ak)tλ.

The invariants σλ(A1, . . . , Ak) of real matrices Ai generalize the elementary sym-

metric functions of a single matrix A. We use them in Section 5.

The Newton transformations of an m×m matrix A (see [RW1]) are defined

inductively by T0(A) = Im, Tr(A) = σr(A)Im − ATr−1(A) (r ≥ 1). Note that

Tr(λA) = λrTr(A) for λ 6= 0 and Tr(Tr(A)) = (m − r)σr(A). Certainly, σr(A)

coincides with the r-th elementary symmetric polynomial of the eigenvalues of A.

Lemma 2 ([RW3]). Let C,D,Ai (i ≤ s) be m ×m matrices, rankAi = 1.

Then

σk(C +D +A1 + · · ·+As)

= σk(C) +
∑

j>0
σk−j,j(C,D) + Tr(Tk−1(C +D)A1)

+ · · ·+ Tr(Tk−1(C +D +A1 + · · ·+As−1)As). (4)

In particular, when D = 0 and s = 1, σk(C +A) = σk(C) + Tr(Tk−1(C)A).
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2. The Randers norm

A Minkowski norm on a vector space V m+1 is a function F : V m+1 → [0,∞)

with the properties of regularity, positive 1-homogeneity and strong convexity,

see [S2]. The fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0

(5)

obeys gλy = gy (λ > 0), and {F (y) ≤ 1} is a strictly convex set. There exist

two F -normal directions n ∈ V m+1 to a hyperplane W ⊂ V m+1, i.e., gn(n,w) =

0 (w ∈ W ), which are opposite when F is reversible, i.e., F (−y) = F (y) (y ∈
V m+1). Let N ∈ V m+1 be a unit normal to a hyperplane W in V m+1 with respect

to 〈· , ·〉,

〈N,w〉 = 0 (w ∈W ), α(N) = ‖N‖α =
√
〈N,N〉 = 1.

Let n be a vector F -normal to W , i.e., gn(n, v) = 0 (v ∈ W ), lying in the same

half-space as N and such that ‖n‖α = α(n) = 1. Set

g(u, v) := gn(u, v), u, v ∈ V m+1.

Then g(n, n) = F 2(n), and F (n) = 1 + β(n). By (5), for y = n we have

g(u, v) = (1 + β(n))〈u, v〉+ β(u)β(v)

− β(n)〈n, u〉〈n, v〉+ β(u)〈n, v〉+ β(v)〈n, u〉. (6)

The ‘musical isomorphisms’ ] and [ will be used for rank 1 and symmetric rank 2

tensors on Riemannian manifolds. For example, if β is a 1-form on (V m+1, 〈· , ·〉)
and v ∈ V m+1, then 〈β], u〉 = β(u) and v[(u) = 〈v, u〉 for any u ∈ V m+1.

The tangent component of a vector, say β], will be denoted by β]>, its dual

1-form is β>.

Lemma 3. Put c := (1− ‖β]>‖2α)
1
2 > 0 and ĉ = c+ β(N). Then

n = ĉN − β], or, equivalently, n = cN − β]>, (7)

g(u, v) = cĉ(〈u, v〉 − β(u)β(v)), u, v ∈W, (8)

g(n, n) = (cĉ)2. (9)

The vector ν = (cĉ)−1n is an F -unit normal to W .

Proof. It is similar to the proof of [RW3, Lemma 2.2] for β(N) = 0. �
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Lemma 4. If u, U ∈W and g(u, v) = 〈U, v〉 for all v ∈W , then

(cĉ)u = U + c−2β>(U)β]>. (10)

Proof. It is similar to the proof of [RW3, Lemma 2.3] for β(N) = 0. �

Let Mm+1 be a connected smooth manifold and TM its tangent bundle.

A Finsler structure F on M is a family of Minkowski norms in tangent spaces

TpM which depend smoothly on a point p ∈ M . Given a transversally oriented

codimension-one foliation F of (Mm+1, F ), there exists a globally defined smooth

vector field n being F -normal to the leaves, which defines a Riemannian metric

g := gn with the Levi–Civita connection ∇. Then g(n, u) = 0 (u ∈ TF) and

g(n, n) = F 2(n), see (9), and ν = n/F (n) is an F -unit normal.

3. Codimension-one foliated Randers spaces

This section generalizes results in [RW3], where the case of β(N) = 0 has

been studied. Let C]ν be a (1, 1)-tensor g-dual to the symmetric bilinear form

Cν(· , · ,∇νν). Note that C]n = ĉ3C]ν . As before, write 〈· , ·〉 – a Riemannian

metric on Mm+1. Let F be a transversally oriented codimension-one foliation of

a Randers space (Mm+1, F ):

F (y) =
√
〈y, y〉+ β(y), ‖β‖α < 1, β] ∈ Γ(TM).

Let N be a unit α-normal vector field to F , and n an F -normal vector field to F
with the property 〈n, n〉 = 1. Let ∇̄ be the Levi–Civita connection of 〈· , ·〉 on M .

The canonical volume forms of F , metrics g and 〈· , ·〉 satisfy [CS1]

d VF =
(
1− ‖β]‖2α

)m+2
2 d Va, dVg = (cĉ)m+2 dVa. (11)

Recall that ν = (cĉ)−1n. Let Z = ∇νν and Z̄ = ∇̄NN be the curvature vectors

of ν- and N -curves for g and 〈· , ·〉, respectively.

In the case of β]> 6= 0, let X⊥β be the projection of X ∈ Γ(TF) on β]⊥:

X⊥β = X − 〈X, β]>〉‖β]>‖−2
α β]>. (12)

Notation (12) will be used in decompositions of matrices B̃ = B +
∑
iBi, where

Bi are rank 1 matrices of the form U⊥β ⊗ β]>, (U⊥β)[ ⊗ β]> and f · β> ⊗ β]>
for some U ∈ TF . The invariants of B̃ and B are close in the sense.
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The shape operator Ag : TF → TF of F is given by

Ag(u) = −∇uν (u ∈ TF). (13)

Let L be the leaf through a point p ∈ M , and ρ the local distance function to L

in a neighborhood of p. Denote by ∇̂ the Levi–Civita connection of the (local

again) Riemannian metric ĝ := g∇ρ. Note that ∇ρ = ν on L. The shape operator

A : TF → TF (self-adjoint for g) is defined by

A(u) = −∇̂uν (u ∈ TF).

The derivative ∇̄u : TM → TM and its conjugate (∇̄u)t : TM → TM are

(1, 1)-tensors defined by (∇̄u)(v) = ∇̄vu and 〈(∇̄u)t(v), w〉 = 〈v, (∇̄u)(w)〉 for

v, w ∈ TM . The deformation tensor, 2Defu = ∇̄u + (∇̄u)t, measures the degree

to which the flow of a vector field u distorts the metric 〈· , ·〉. The same notation

Defu will be used for its 〈· , ·〉-dual (1, 1)-tensor. Set Def
>
u (v) = (Defu(v))>.

Proposition 1. The shape operators of F satisfy the following:

cAg = Ā− 1

2
c−1ĉ−2(ĉN − β])(cĉ)Im + ĉ−1(Defβ])>|TF

+
1

2

(
U − Ā(β]>)

)
⊗ β> +

1

2
c−2
(
Ā(β]>)− 〈Ā(β]>), β]>〉β]>

+ 2ĉ−1(Defβ]β]>)> + U + β(U)β]>
)
[ ⊗ β]>, (14)

where U = ĉ−1(∇̄ĉN−β]β]>)> − cZ̄. At points p ∈M with β]>(p) 6= 0, we get

cAg = Ā− 1

2
c−1ĉ−2(ĉN − β])(cĉ)Im + ĉ−1(Defβ])>|TF

+
1

2
c−2
(

2ĉ−1(Defβ]β]>)> + (U + Ā(β]>))⊥β
)
[ ⊗ β]>

+
1

2

(
U − Ā(β]>)

)⊥β
⊗ β> +

1

c2(1− c2)
β(U)β>⊗ β]>. (15)

Proof. For the convenience of the readers, we give the proof, which is similar

to the proof of [RW3, Proposition 4.1], for β(N) = 0. By the formula for the

Levi–Civita connection and the use of the equalities g(u, n) = 0 = g(v, n) and

g([u, v], n) = 0, we have

2g(∇un, v) = n(g(u, v)) + g([u, n], v) + g([v, n], u) (u, v ∈ TF). (16)
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One may assume ∇̄>Xu = ∇̄>Xv = 0 for all X ∈ TpM at a given point p ∈ M .

Using (6)–(8), we obtain

n(g(u, v)) = n
(
cĉ(〈u, v〉 − β(u)β(v))

)
= n(cĉ)(〈u, v〉−β(u)β(v))−cĉ

(
β(u)(∇̄n(β>))(v)+(∇̄n(β>))(u)β(v)

)
,

g([u, n], v) = cĉ
(
〈[u, n], v〉+ 〈[u, n], n〉β(v)

)
= −cĉ〈ĉĀ(u) + ∇̄uβ], v〉+ cĉ2〈Ā(β]>) + cZ̄, u〉β(v),

g([v, n], u) = cĉ
(
〈[v, n], u〉+ β(u)〈[v, n], n〉

)
= −cĉ〈ĉĀ(v) + ∇̄vβ], u〉+ cĉ2β(u)〈Ā(β]>) + cZ̄, v〉.

Substituting the above into (16), we find

2g(∇un, v) = n(cĉ)(〈u, v〉 − β(u)β(v))− 2cĉ2〈Ā(u), v〉 − 2cĉ〈Defβ](u), v〉

− cĉ
(
β(u)(∇̄n(β>))(v) + (∇̄n(β>))(u)β(v)

)
+ cĉ2

(
β(v)〈Ā(β]>) + cZ̄, u〉+ β(u)〈Ā(β]>) + cZ̄, v〉

)
. (17)

Assume g(∇un, v) = 〈D(u), v〉, where D : TF → TF is a linear operator. Using

Lemma 4 and g(∇un, v) = −cĉg(Ag(u), v), see (13), we obtain from (17)

−2(cĉ)2Ag(u) = 2D(u) + c−2〈2D(u), β]>〉β]>, (18)

where

2D(u) = n(cĉ)(u− β(u)β]>)− 2cĉ2Ā(u)− 2cĉ(Defβ](u))>

− cĉ
(
β(u)(∇̄nβ]>)> + (∇̄n(β>))(u)β]>

)
+ cĉ2

(
〈Ā(β]>) + cZ̄, u〉β]> + β(u)(Ā(β]>) + cZ̄)

)
. (19)

From (18) and (19), we obtain (14). For β]> 6= 0, we apply (12) with X = Ā(β]>)

and X = U , and find (15). �

In [RW3], we applied the variational approach to express the Riemann cur-

vature of g in terms of the Riemann curvature and the Cartan torsion of F . In

this section, we find a relationship between the Riemann curvature of metrics g

and 〈· , ·〉 on a Randers space. Observe that

Cn(u, v, w) =
1

m+ 2

(
In(u)hn(v, w) + In(v)hn(u,w) + In(w)hn(u, v)

)
,

where hn(u, v) = cĉ(〈u, v〉 − 〈u, n〉〈v, n〉) is the angular form, see [CS1], and

In(u) = TrCn(· , ·, u) =
m+ 2

2cĉ
〈β] − (cĉ− 1)u, n〉.
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Proposition 2. We have

Z = (cĉ)−1Z̄ − c−1ĉ−2∇̄>ĉ+ c−3ĉ−1β(Z̄ − ĉ−1∇̄>ĉ)β]> (20)

and

(cĉ)C]n = C̄ + c−2(β> ◦ C̄)⊗ β]>, (21)

where

2C̄ = Sym(β>⊗ (Z̄ − ĉ−1∇̄>c)) + (cĉ)−1
(
(ĉ− 2c−1)β]>(ĉ) + (c− ĉ−1)n(ĉ)

)
Im

+ (cĉ)−1
(
(2c−1 − 3ĉ)β]>(ĉ) + (ĉ−1 − 3c)n(ĉ)

)
β> ⊗ β]>

+ (cĉ)−1β(Z̄)
(
(cĉ− ĉ2 + 2c−1ĉ− 1)Im+(3ĉ2 − 3cĉ− 2c−1ĉ+ 1)β> ⊗ β]>

)
.

Proof. It is similar to the proof of [RW3, Proposition 4.3] for β(N) = 0. �

Corollary 1. (i) Let ∇̄β = 0 and β(N) = const, then Z̄ = 0 provides

C]n = 0. (ii) Let m > 3, β(N) ≥ 0 and ‖β‖α be constant, then C]n = 0 if and only

if Z̄ = 0.

Proof. (i) Since c and ĉ are constant, and by Proposition 2, C̄ = 0, we get

C]n = 0. (ii) It is similar to the proof of [RW3, Corollary 4.4] for β(N) = 0. �

Remark 1. For a codimension-one foliated (M,a) we have, see [RW3]:

〈∇̄uZ̄, v〉 = 〈∇̄vZ̄, u〉, g(∇uZ, v) = g(∇vZ, u) (u, v ∈ TF), (22)

R̄N = (DefZ̄)>|TF + ∇̄N Ā− Ā2 − Z̄[ ⊗ Z̄. (23)

In [CS1], Ry is expressed (using coordinate presentations) through R̄y for y ∈ TM .

If ∇̄β = 0 (i.e., F is a Berwald structure), then Ry = R̄y. Alternative formulas

with relationship between Rν and R̄ν follow from (23) and similar formula for g,

where Ag and Z are expressed using Ā and Z̄ given in Propositions 1 and 2.

Given a transversely oriented codimension-one foliation F of a closed Finsler

manifold (Mm+1, F ), denote by k1, k2, . . . , km (k1 ≤ k2 ≤ · · · ≤ km) the eigen-

values of the shape operator A of the leaves of F . If M is oriented and VF is the

Busemann–Hausdorff volume form on M , then one can consider the integral

UFF =

∫
M

∑
i<j

(ki − kj)2 d VF ,

which measures “how far from umbilicity” is F (see also [RW1, Example 2.6] for

the Riemannian case). Similar measure of non-umbilicity (with different powers

of ki−kj which made it conformally invariant) for foliated Riemannian manifolds

has been considered in [LW1, Section 4.1].
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Theorem 1. Let ∇̄β = 0 on (M,a), and let the Randers metric F = α+ β

with RicN ≤ −r < 0. Then

UFF ≥ (1− ‖β]‖2)
m+2

2 mr

∫
M

c−2 d Va . (24)

Proof. One may show that∑
i<j

(ki − kj)2 = (m− 1)σ2
1(A)− 2mσ2(A).

Hence, and similarly to (2) formula in [RW3]∫
M

(
σ2(A)− 1

2
Ricν

)
d VF = 0, (25)

we obtain

UFF ≥ −m
∫
M

2σ2(A) d VF = −m
∫
M

Ricν d VF . (26)

By ∇̄β] = 0, we have ‖β]‖α = const and R̄(X,Y )β] = 0 (X,Y ∈ TM). Using

Ricn = RicĉN−β] = ĉ2RicN + Ricβ] − 2ĉ
∑

i
R̄(N, bi, β

], bi),

we obtain Ricν = (cĉ)−2Ricn = (cĉ)−2Ricn = c−2RicN . From (26), where the

volume form is d VF = (1− ‖β]‖2α)
m+2

2 d Va, see (11)1, we find

UFF ≥ −(1− ‖β]‖2α)
m+2

2 m

∫
M

c−2RicN d Va,

which reduces to (24) since our assumption RicN ≤ −r < 0. �

Let Σ be a union of pairwise disjoint closed submanifolds Σi ⊂ M of codi-

mensions ≥ 2. Following [BW] for the Riemannian case, define the energy of a

unit vector field X on M \ Σ by the formula

E(X) =
m+ 1

2
VolF (M) +

1

2

∫
M

‖DX‖2F d VolF .

Let X = ν be a unit normal to a codimension-one foliation. By the inequality

‖Dν‖2F ≥ 2
mσ2(A), see [BW] for the Riemannian case, Lemma 1 and (25), we get

Theorem 2. Let (M,α + β) be a codimension-one foliated Randers space

with ∇̄β = 0. Then

E(ν) ≥ (1− ‖β]‖2)
m+2

2

(
m+ 1

2
Vola(M) +

1

2m

∫
M

c−2RicN d Va

)
. (27)
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Remark 2. Recall that generally (i.e., when N(β) 6= 0), c2 = 1 − ‖β>‖2 6=
const and 1 − ‖β‖2 are not the same quantities in (27). If m ≥ 2, then equality

holds in (27) if and only if ν is geodesic and A = λIm. For example, if (M,a) is

a round sphere and c = const, then

E(ν) ≥ (1− ‖β]‖2)
m+2

2
(m+ 1)c2 + 1

2c2
Vola(Sm+1).

One can also drop the condition ∇̄β = 0 in Theorems 1 and 2, and use Ricn =

Ricn + Θ(n) for a certain (explicitly given in [CS1, p. 54]) function Θ on TM0.

4. Around the Reeb formula

We will discuss (1) and (2) for Randers spaces. The next formula reduces

to (1) when f = const, see [RW1, Lemma 2.5]:∫
M

(fσ1(Ā)−N(f)) d Va = 0. (28)

Theorem 3. For a codimension-one foliated closed Randers space, we have∫
M

(cĉ)m
(m+ 2

2
cĉN(ĉ) +

(m
2
ĉ+ c

)
ĉN(c)− m+ 2

2
cβ](cĉ)

− (ĉ− c)c−1ĉ〈Ā(β]>) + cZ̄, β]〉
)

d Vola = 0. (29)

Proof. We calculate

Tr(Defβ])>|TF = divβ]+β(Z̄)−N(β(N)), (30)

〈Defβ](β]>), β]>〉 = −cβ]>(c)− β(N)〈Ā(β]>), β]〉. (31)

Tracing (14), we then obtain

cσ1(Ag) = σ1(Ā)− m

2
c−1ĉ−2(ĉN−β])(cĉ) + ĉ−1

(
divβ]+β(Z̄)−N(β(N))

)
+

1

2

(
β(U)− 〈Ā(β]>), β]〉

)
+

1

2
c−2
(
c2〈Ā(β]>), β]〉

− 2ĉ−1(cβ]>(c) + β(N)〈Ā(β]>), β]〉) + (2− c2)β(U)
)

= σ1(Ā)− m

2
c−1ĉ−2(ĉN − β])(cĉ) + ĉ−1divβ] − ĉ−1N(ĉ)

− (ĉ− c)(cĉ)−1N(c)− (ĉ− c)c−2ĉ−1〈Ā(β]>) + cZ̄, β]〉. (32)
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By (32), (1) for 〈· , ·〉 and g, and using d Vg = (cĉ)m+2 d Va, see (11)2, the

Divergence Theorem and fdivβ] = div(fβ])− β](f) with f = (cĉ)m+1, we get∫
M

(cĉ)m+2c−1
(
σ1(Ā)− m

2
(cĉ)−1N(cĉ)− ĉ−1N(ĉ)− m+ 2

2
c−1ĉ−2β](cĉ)

− (ĉ− c)(cĉ)−1N(c)− (ĉ− c)c−2ĉ−1〈Ā(β]>) + cZ̄, β]〉
)

d Vola = 0, (33)

which is the Reeb formula when β = 0. Applying (28), we obtain (29). �

Remark 3. If c and β(N) 6= 0 are constant, then (29) reduces to∫
M

〈Ā(β]>) + cZ̄, β]〉d Va = 0. (34)

For β = 0, we have c = 1 = ĉ; hence, (33) reduces to the Reeb formula. The

following application of (34) seems to be interesting. Let β(Z̄) = 0, and a unit

vector field X ∈ Γ(TF) be an eigenvector of Ā corresponding to an eigenvalue

λ : M → R. By Theorem 3, β] = ε′X + εN , where ε = const ∈ (−1, 1) and

ε′ = const ∈ (0,
√

1− ε2), obeys (34). Note that c2 = 1−ε2−(ε′)2, β(N) = ε and

cĉ = 1 + ε. Thus, assuming ε 6= 0, we get
∫
M
λ d Va = 0. Consequently, either

λ ≡ 0 on M or λ(x) · λ(y) < 0 for some points x and y of M . This implies the

Reeb formula
∫
M
σ1(Ā) d Va =

∑
i

∫
M
λi d Va = 0 when Z̄ = 0.

The next theorem generalizes (2), using the approach of foliated Randers

spaces: given a Riemannian manifold (M,a) with a vector field β] of small norm,

we associate a Randers space (M,α + β). Recall that F = α + β is Berwald if

and only if ∇̄β] = 0. In this case, the Finsler metric and the source metric 〈· , ·〉
have equal Riemann curvatures: Ry = R̄y for y ∈ TM0, see Remark 1.

Theorem 4. Let (M,a) admit a non-trivial parallel vector field β] (say,

‖β]‖α < 1), which is nowhere orthogonal to a codimension-one foliation F . Then∫
M

c−2

(
σ2(Ā+ cC]ν) +

(
c− 2ĉ

cĉ
〈Ā(β]>), β]〉 − ĉ− c

c2ĉ
β(Z̄)

)
σ1(Ā+ cC]ν)

+
ĉ− c

cĉ(1− c2)
〈(Ā+ cC]ν)(β]>), β]>〉〈Ā(β]>), β]>〉 − c(c− 2ĉ)2(1− c2)

4cĉ2
‖Z̄⊥β‖2α

+
c− 2ĉ

cĉ(1− c2)
β(Z̄)〈(Ā+ cC]ν)(β]>), β]>〉 − 1− (c− 2ĉ)2

4ĉ2
‖Ā(β]>)⊥β‖2α

− (c− 2ĉ)(1− c2 + 2cĉ)

2ĉ2
〈Ā(β]>)⊥β , Z̄〉 − 1 + c2 − 2cĉ

2ĉ
〈Ā(β]>)⊥β , C]ν(β]>)〉

− (c− 2ĉ)(1 + c2)

2ĉ
〈C]ν(β]>)⊥β , Z̄⊥β〉 − 1

2
RicN

)
d Va = 0. (35)
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Furthermore, if β(N) = const, N being a unit normal to F , then (35) reads∫
M

(
cTr(C]ν)σ1(Ā)− cTr(ĀC]ν)− 1− (c− 2ĉ)2

4ĉ2
‖Ā(β]>)‖2α

− (c− 2ĉ)(1− c2 + 2cĉ)

2ĉ2
〈Ā(β]>), Z̄〉 − 1 + c2 − 2cĉ

2ĉ
〈Ā(β]>), C]ν(β]>)〉

−c(c− 2ĉ)2(1− c2)

4cĉ2
‖Z̄⊥β‖2α −

(c− 2ĉ)(1 + c2)

2ĉ
〈C]ν(β]>), Z̄〉

)
d Va = 0. (36)

Proof. Note that c < 1 when β]> 6= 0 on a Randers space (M,α+ β). For

∇̄β] = 0, we get (∇̄nβ]>)> = −β(N)(Ā(β]>) + cZ̄). We have, see [RW1],

A−Ag = C]ν , (37)

and cAg = Ā + A1 + A2 + A3, see (15), where A1 = U [1 ⊗ β]>, A2 = U2 ⊗ β>,

A3 = a3β
>⊗ β]> are rank 1 matrices, and

a3 =
c− 2ĉ

cĉ(1− c2)
β(Z̄)− ĉ− c

c2ĉ(1− c2)
〈Ā(β]>), β]〉,

U1 =
1

2cĉ

(
Ā(β]>) + (c− 2ĉ)Z̄

)⊥β
, U2 =

c− 2ĉ

2ĉ

(
Ā(β]>) + cZ̄

)⊥β
. (38)

Thus, cA = Ā + cC]ν + A1 + A2 + A3. We have σ1(A1) = σ1(A2) = σ2(Ai) = 0.

Recall the following identity for square matrices:

σ2

(∑
i
Ai

)
=
∑

i
σ2(Ai) +

∑
i<j

(
(TrAi)(TrAj)− Tr(AiAj)

)
.

By the above, we obtain

c2σ2(A) = σ2(Ā+ cC]ν) + σ1(A3)σ1(Ā+ cC]ν)−Q,

where σ1(A3) = a3(1− c2) and

Q : = Tr(A1A2 +A1(Ā+ cC]ν) +A2(Ā+ cC]ν) +A3(Ā+ cC]ν))

= − ĉ− c
cĉ(1− c2)

〈(Ā+ cC]ν)(β]>), β]>〉〈Ā(β]>), β]>〉

− c− 2ĉ

cĉ(1− c2)
β(Z̄)〈(Ā+ cC]ν)(β]>), β]>〉+

c(c− 2ĉ)2(1− c2)

4cĉ2
‖Z̄⊥β‖2α

+
1− (c− 2ĉ)2

4ĉ2
‖Ā(β]>)⊥β‖2α +

(c− 2ĉ)(1− c2 + 2cĉ)

2ĉ2
〈Ā(β]>)⊥β , Z̄〉
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+
1 + c2 − 2cĉ

2ĉ
〈Ā(β]>)⊥β , C]ν(β]>)〉+

(c− 2ĉ)(1 + c2)

2ĉ
〈Z̄⊥β , C]ν(β]>)〉.

The condition ∇̄β] = 0 implies ‖β]‖α = const and R̄(X,Y )β] = 0(X,Y ∈ TM).

Using equality

Ricn = RicĉN−β] = ĉ2RicN + Ricβ] − 2ĉ
∑

i
R̄(N, bi, β

], bi),

we obtain Ricν = (cĉ)−2Ricn = (cĉ)−2Ricn = c−2RicN . From (2) for F , where

the volume form is d VF = (1 − ‖β]‖2α)
m+2

2 d Va, see (11)1, we get (35). Since

lim
β→0

Ā(β]>)⊥β = 0, (35) reduces to (2) when β → 0. If β(N) = const, then

β(Z̄)=0 and 〈Ā(β]>), β]>〉=0:

0 = 〈∇̄Nβ], N〉 = 〈∇̄N (β]> + β(N)N), N〉 = −〈β], Z̄〉,

0 = 〈∇̄β]>β], N〉 = 〈∇̄β]>(β]> + β(N)N), N〉 = −〈Ā(β]>), β]〉. (39)

Hence, by (4) for σ2(Ā+ cC]ν) and by (2), we reduce (35) to (36). �

Remark that a parallel vector field β] forms a constant angle with (the leaves

of) F if and only if β(N) = const (e.g., β(N) = 0) and ‖β]>‖α = const.

Corollary 2. Assume that a Riemannian manifold (M,a) admits a non-

trivial parallel vector field β], which forms a constant angle with the leaves of

a Riemannian (Z̄ = 0) foliation F , and 2β(N) + c 6= 1. Then Ā(β]>) = 0 on M .

If, in addition, F is totally umbilical (Ā = H̄ · Im), then F is totally geodesic.

Proof. Let ‖β]‖α < 1. By conditions and Corollary 1 (i), Z̄ = 0 yields

C]ν = 0 on a Randers space (M,α+ β). Since c and ĉ are constant, (36) reads

1− (2ĉ− c)2

4ĉ2

∫
M

‖Ā(β]>)‖2α d Va = 0.

By conditions, 1 − (2ĉ − c)2 is nonzero. This yields Ā(β]>) = 0 on M . If F is

a totally umbilical foliation, then 0=〈Ā(β]>), β]>〉=H̄‖β]>‖2α, hence H̄=0. �

Remark 4. Using the formula in [CS1, Lemma 4.2.2] for Ric–Ric (see also

Remark 2), one may generalize (35) (completing it with more terms) for foliated

Randers spaces without additional condition ∇̄β] = 0.

5. Around Brito–Langevin–Rosenberg formula

Results of this section are valid for a codimension-one foliation and 1-form

with singularities (according to [RW2, Theorem 2 and Corollary 4] and Lemma 1).
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Observe that if a rank 1 matrix A := U⊗β has trace zero, i.e., β(U) = 0, then

A2 = U(β])t · U(β])t = Uβ(U)(β])t = β(U)A = 0.

Define the quantity

δ := −1

2
c−1ĉ−2(ĉN − β])(cĉ).

Let our Randers space be Berwald, and β] be nowhere orthogonal to F :

∇̄β] = 0, β]> 6= 0, (40)

for β ⊥ F , see Remark 5. If, in addition, 〈· , ·〉 has constant curvature K̄, then

K̄ = 0, because only flat space forms admit parallel vector fields.

Theorem 5. A codimension-one foliated closed Randers–Berwald space,

with (40) and constant sectional curvature K̄ of 〈· , ·〉, obeys for 1 ≤ k ≤ m,∫
M

(
δ(m− k + 1)σk−1(Ā) +

∑
j>0

σk−j,j(Ā+ δIm, cC
]
ν)

+ 〈Tk−1(Ā+ δIm+cC]ν)(β]>), U1〉+ β
(
Tk−1(Ā+ δIm+cC]ν + U [1 ⊗ β]>)(U2)

)
+a3β

(
Tk−1(Ā+ δIm + cC]ν + U [1 ⊗ β]>+ U2 ⊗ β>)(β]>)

))
d Va = 0, (41)

where U1, U2 and a3 are given in (38). Moreover, if β(N) = const and Z̄ = 0,

then ∫
M

1 + c2 − 2cĉ

2cĉ

〈
Tk−1(Ā)(β]>), Ā(β]>)⊥β

〉
d Va= 0.

Proof. As was shown, K̄ = 0, and Ry = R̄y = 0 for y ∈ TM0. By assump-

tions, c < 1 and ‖β‖α = const. By (15) and (37),

cA = cAg + cC]ν = Ā+ δIm + cC]ν +A1 +A2 +A3,

where Ai are three rank ≤ 1 matrices, A1 = U [1 ⊗ β]>, A2 = U2 ⊗ β> and

A3 = a3β
>⊗ β]>. By (4) with C = Ā+ δIm and D = cC]ν , we have

ckσk(A) = σk(Ā+ δIm) +
∑

j>0
σk−j,j(Ā+ δIm, cC

]
ν)

+U [1(Tk−1(Ā+δIm+cC]ν)(β]>))+β(Tk−1(Ā+ δIm+cC]ν+A1)(U2))

+ a3β(Tk−1(Ā+ δIm + cC]ν +A1 +A2)(β]>)). (42)
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Recall that d VF = (1− ‖β]‖2α)
m+2

2 d Va, see (11)1. Comparing the analogue

of (3) for F , see [RW3], when K = 0 with
∫
M
σk(Āp) d Va = 0, and using σk(Ā+

δIm) = σk(Ā) + δ(m− k + 1)σk−1(Ā), see (4) and (42), we find (41). If β(N) =

const and Z̄ = 0, then c and ĉ are constant; hence, δ = 0. Then 〈Ā(β]>), β]>〉 =

0, see (39), and a3 = 0. Thus, the second claim follows from Corollary 1 (i)

and (41). �

Example 1. For k = 1 and Z̄ = 0, (41) yields the Reeb type formula∫
M

ĉ−c
c2ĉ 〈Ā(β]>), β]〉d Va = 0, see also (34); thus, if ĉ 6= c, then Ā(β]>) = 0

on M .

Corollary 3. Assume that (Mm+1, α+β) is a closed Randers–Berwald space

of constant sectional curvature K̄ = 0 of 〈· , ·〉, endowed with a codimension-one

totally geodesic (for our metric a) foliation, and that conditions (40) hold. Then∫
M

(
ckσk(C]ν) +

c− 2ĉ

2cĉ
〈Tk−1(C]ν + δIm)(β]>), Z̄⊥β〉

+
c(c− 2ĉ)

2ĉ
β

(
Tk−1

(
cC]ν + δIm +

c− 2ĉ

2cĉ
(Z̄⊥β)[ ⊗ β]>

)
(Z̄⊥β)

)
+

c− 2ĉ

cĉ(1− c2)
β(Z̄)β

(
Tk−1

(
cC]ν + δIm +

c− 2ĉ

2cĉ
(Z̄⊥β)[ ⊗ β]>

+
c(c− 2ĉ)

2ĉ
Z̄⊥β ⊗ β>

)
(β]>)

))
d Va = 0, 1 ≤ k ≤ m. (43)

Remark 5. (i) For β(N) = 0, (43) reduces to formula (4.23) in [RW3]. Similar

integral formulae exist for totally umbilical foliations (for β(N) ≡ 0, see [RW3]).

Non-flat closed Riemannian manifolds of constant curvature do not admit such

foliations. (ii) Let β] = fN , for a smooth function f : M → (−1, 1). Then c = 1

and β(N) = f . Theorems 3 and 5 yield trivial identities in this case.
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