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Non-Galois cubic number fields with exceptional units

By STÉPHANE R. LOUBOUTIN (Marseille)

To Catherine H.

Abstract. We consider the family of non-normal totally real cubic number fields Kl

associated with the Q-irreducible cubic polynomials fl(X) = X3 + (l− 1)X2− lX − 1 ∈
Z[X], l ≥ 3. Let εl be a root of fl(X). Then εl and εl − 1 are units of Kl. Let jl denote

the index of the groups of units generated by −1, εl and εl−1 in the group of units Ul of

the ring of algebraic integers of Kl. V. Ennola proved in 1991 (i) that gcd(jl, 2 ·3 ·5) = 1

for l ≥ 3, (ii) that jl = 1 for 3 ≤ l ≤ 500, and (iii) he conjectured that jl = 1 for l ≥ 3.

We prove (i) that gcd(jl, 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19) = 1 for l ≥ 3, and (ii) that jl = 1 for

3 ≤ l ≤ 5 · 107, thus adding a lot more credit to this conjecture.

1. Introduction and statements of the results

A unit η of an algebraic number field K is called exceptional if η − 1 is also

a unit. In that case, the units η, 1 − η, η−1, (1 − η)−1, 1 − η−1 and η(η − 1)−1

are also exceptional. From now on, we assume that K is a cubic number field of

discriminant dK and ring of algebraic integers ZK. One can immediately verify

that there are exactly two families of cubic fields containing exceptional units,

namely,

Kl = Q(εl), Irr(εl,Q) = fl(X) = X3 + (l − 1)X2 − lX − 1,

Lk = Q(τk), Irr(τk,Q) = gk(X) = X3 + kX2 − (k + 3)X + 1,
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for some integers l, k. The discriminants are

Dl = (l2 + 3l − 1)2 − 32, Dk = (k2 + 3k + 9)2.

Hence, Lk/Q is always cyclic, whereas Kl/Q is non-Galois for l 6= 2.

As in [2], throughout this paper, we focus on the totally real cubic number

fields Kl’s with l ≥ 3 (see [6] for some arithmetical problems related to this

family). V. Ennola conjectured that {εl, εl− 1} is a fundamental pair of units for

the maximal order ZKl
of Kl for l ≥ 3. He checked numerically that his conjecture

holds true for 3 ≤ l ≤ 500, and supported it by proving that the unit index

jl := (Ul : 〈−1, εl, εl − 1〉)

of the groups of units generated by −1, εl and εl − 1 in the group of units Ul of

the ring of algebraic integers ZKl
of Kl is always coprime to 2, 3 and 5 for l ≥ 3.

Our aim in the present paper is to add a lot more credit to Ennola’s conjecture

by greatly improving upon this result:

Theorem 1. The unit index jl is coprime to 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 for

l ≥ 3, and jl = 1 for 3 ≤ l ≤ 5 · 107.

We point out that by extending the range of validity of Proposition 15, thanks

to some more easy but time consuming numerical computation, it would be rather

easy to improve upon Theorem 1 by taking into account few of the next prime

integers 23, 29, . . . . We also point out that the present development of V. Ennola’s

method could also be applied to other families of number fields and used to add

some credit to [5, Conjecture 3].

By [9, Proposition (3.6)], for l≥3, the set {εl, εl−1} is a system of fundamen-

tal units of the totally real cubic order Z[εl]. Indeed, if Pn(X) = X3−(n−1)X2+

nX−1, as in [9, Proposition (3.6)], thenX3Pl+4(1−1/X) = X3+(l−1)X2−lX−1.

Hence, λ = 1 − 1/εl and λ − 1 = −1/εl are fundamental units of Z[λ] = Z[εl],

i.e., εl and εl − 1 are fundamental units of Z[εl]. Using Theorem 1 which enables

us to take α = 2 − 2/
√

23 = 1.58297 · · · in Theorem 2, we obtain a much better

result:

Theorem 2. Let p0 ≥ 5 be a given prime integer such that gcd(p, jl) = 1

for 2 ≤ p < p0 and l ≥ 3. Set α = 2− 2/
√
p0. Let M be an order of Kl containing

Z[εl], and such that the index (M : Z[εl]) is less than or equal to lα/2. Then

{εl, εl − 1} is a system of fundamental units of M.

Proof. It is easy to see that for l ≥ 3 the three conjugates of εl satisfy

−l < εl < −l +
1

l2
< −1 < −1

l
< ε′l < −

1

l
+

1

l2
< 0 < 1 < ε′′l < 1 +

1

l
. (1)
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Hence, the regulator

Reg(εl, εl − 1) :=

∣∣∣∣∣det

(
log |εl| log |εl − 1|
log |ε′l| log |ε′l − 1|

)∣∣∣∣∣
= (log |εl|)(log |ε′l − 1|) + (− log |ε′l|)(log |εl − 1|)

is positive, εl and ε′l are multiplicatively independent and

Reg(εl, εl − 1) < f1(l) := (log l)

(
log

(
1 +

1

l

))
−
(

log

(
1

l
− 1

l2

))
(log(l + 1)).

Set f2(l) :=
(
log l + 3

2l

)2
. We have f2(l) − f1(l) = f3(1/l), where f3(x) :=

u(x) log x + v(x) with u(x) = 2 log(1 + x) − log(1 − x) − 3x and v(x) = 9
4x

2 +

(log(1− x))(log(1 + x)). Now, (i) u′(x) = x(3x− 1)/(1− x2) ≤ 0 for 0 ≤ x ≤ 1/3

yields u(x) ≤ u(0) = 0 and u(x) log(x) ≥ 0 for 0 ≤ x ≤ 1/3, and (ii) 0 <

− log(1 − x) ≤ x + x2 for 0 ≤ x ≤ 1/2 and 0 ≤ log(1 + x) ≤ x for x ≥ 0 yield

v(x) ≥ 9
4x

2 − x(x+ x2) = x2(5/4− x) ≥ 0 for 0 ≤ x ≤ 1/2. Hence, for l ≥ 3, we

obtain f3(1/l) ≥ 0 and f1(l) ≤ f2(l), i.e.,

Reg(εl, εl − 1) <

(
log l +

3

2l

)2

. (2)

Let UM be the group of units of M. By [1], there exists a unit ε ∈M such that

Reg(UM) ≥ 1

16
log2(dε/4) ≥ 1

16
log2(dM/4),

where dε is the absolute value of the discriminant of the minimal polynomial of ε.

Noticing that dM = Dl/(M : Z[εl])
2 ≥ 4Dl/l

2α and using (2), we have

(UM : 〈−1, εl, εl − 1〉) =
Reg(εl, εl − 1)

Reg(UM)
≤ Reg(εl, εl − 1)

1
16 log2(dM/4)

<

(
log l + 3

2l
1
4 log(Dl/l2α)

)2

,

by [10, Lemma 4.15]. Now, it is easy to prove that

Dl = (l2 + 3l − 1)2 − 32 > l4 exp(3/l) > l4 exp

(
6/
√
p0

l

)
(l ≥ 3).

Hence,
1

4
log(Dl/l

2α) >
1
√
p0

(
log l +

3

2l

)
,

and (UM : 〈−1, εl, εl − 1〉) < p0.

Now, Z[εl] ⊆ M ⊆ ZKl
yields 〈−1, εl, εl − 1〉 ⊆ UM ⊆ Ul. Hence, the unit

index (UM : 〈−1, εl, εl− 1〉), which divides the unit index jl, is also coprime to all

the prime numbers less than p0, and is therefore equal to 1. �
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In [3, Theorem, page 570], V. Ennola proved that Theorem 2 holds with

the weaker bound l/3. In [4, Theorem 1.1], using the fact that the unit index jl
is coprime to 30, we proved that it holds true with the better but still weaker

bound lα/4, where α = 2− 2/
√

7 = 1.244 · · · .

Remark 3. Roughly speaking, we can reformulate Theorem 2 in the following

way (see the proof of Proposition 15): let ∆l be the square-free part of Dl (i.e.,

∆l is square-free and Dl = ∆lf
2 for some f ≥ 1), then ∆l ≥ 16l4/

√
p0 implies that

{εl, εl−1} is a system of fundamental units of the maximal order ZKl
of Kl. Now,

by Siegel’s theorem, ∆l goes to infinity as l goes to infinity. If there existed some

explicit τ > 0 such that ∆l � lτ , then by extending the validity of Theorem 1 up

to a prime p0 such that 4/
√
p0 < τ , we would obtain that {εl, εl − 1} is a system

of fundamental units of the maximal order ZKl
of Kl for l explicitly large enough.

Of course, we are very far from knowing the existence of such a positive τ (e.g.,

see [8, (2.10), page 161] which gives only ∆l � (log l)τ for some explicit τ > 0).

The remaining of this paper is devoted to proving Theorem 1.

Throughout the paper, we will freely use the following facts:

(i) If α, α′ and α′′ are the three conjugates of an algebraic integer α ∈ Kl and

p ≥ 3 is a prime number, then

Tr(α) := α+ α′ + α′′ ∈ Z and Tr(αp) ≡ Tr(α)p ≡ Tr(α) (mod p). (3)

(ii) If Irr(ε,Q) = X3− sX2 + tX− 1 ∈ Z[X] is the minimal polynomial of a cubic

algebraic unit of norm +1, then s = Tr(ε) and t = Tr(ε−1).

(iii) If ε := εal (εl − 1)b = A+Bεl + Cε2l with A,B,C ∈ Z, then

Irr(ε,Q) = Resultant(X3 + (l − 1)X2 − lX − 1, Y − (A+BX + CX2), X) (4)

is easy to compute.

2. The unit index jl is odd and the units εl, εl − 1 and εp−1
l (εl − 1)

are not p-th powers

Using Lemmas 5, 6 and 7 below, the aim of this section is to prove:

Proposition 4. Assume that l ≥ 3. The unit index jl is odd. Moreover,

an odd prime number p ≥ 3 divides jl if and only if one of the p−2 units εkl (εl−1)

is a p-th power in Kl := Q(εl), where 1 ≤ k ≤ p− 2.
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Lemma 5. Let Z∗K be the group of units of the ring of algebraic integers

ZK of a totally real cubic number field K. Let ε1 and ε2 be two multiplicatively

independent units of ZK. A prime p ≥ 3 divides the unit index (Z∗K : 〈−1, ε1, ε2〉)
if and only if ε1 or one of the εk1ε2, 0 ≤ k ≤ p − 1, is a p-th power in ZK. The

prime p = 2 divides the unit index (Z∗K : 〈−1, ε1, ε2〉) if and only if ±ε1, ±ε2 or

±ε1/ε2 is both totally positive and a square in ZK.

Proof. Notice that εa1ε
b
2, with a or b not divisible by p, is a p-th power if

and only if εka1 εkb2 is a p-th power for any k coprime to p. Hence, we may assume

that b = 0 and 1 ≤ a ≤ p− 1, or that b = 1 and 0 ≤ a ≤ p− 1. �

Lemma 6 (see [2, Proof of Proposition 3.3]). The unit index jl is odd for

l ≥ 3.

Proof. By (1), the units εl and εl−1 are of signature (−,−,+) (two negative

conjugates and one positive conjugate), and it remains to prove that ε := εl/(εl−
1) = ε2l + lεl + 1 is not a square in Kl. Suppose that ε = η2. We may suppose

that N(η) = +1, and hence that Irr(η,Q) = X3 − sX2 + tX − 1 ∈ Z[X]. We get

X3 − (l + 4)X2 + (l + 3)X − 1 = Irr(ε2l + lεl + 1,Q) = Irr(η2,Q) = X3 − (s2 −
2t)X2 +(t2−2s)X−1, by (4). Hence, 1 = (l+4)−(l+3) = (s2−2t)−(t2−2s) =

(s+ t+ 2)(s− t), hence s+ t+ 2 = s− t = ±1, hence t = −1, s = −1± 1 = −2, 0

and l = s2 − 2t− 4 = 2,−2, a contradiction. �

Lemma 7 (see [2, Lemma 4.1 and top of page 111]). Let p ≥ 3 be an odd

prime number. An exceptional unit in an arbitrary totally real number field K is

never a p-th power in K. In particular, εl, εl − 1 and εp−1l (εl − 1) are not p-th

powers in Kl for l ≥ 3.

Proof. First, 1 − εl being exceptional, it is not a p-th power in Kl, hence

neither is εl−1 = −(1−εl). Second, εl/(εl−1) being exceptional, it is not a p-th

power in Kl, hence neither is εp−1l (εl − 1) = εpl (εl − 1)/εl. �

3. The unit index jl is coprime to 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 for

3 ≤ l ≤ 105

We now use Proposition 4 to numerically prove in Proposition 9 that the unit

index jl is coprime to 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 for 3 ≤ l ≤ 105. For ±1 6= ε ∈ Ul,
let ε, ε′ and ε′′ be its three conjugates. We set

Sa,b,p(l) := ε1/p + ε′1/p + ε′′1/p, where ε = εal (εl − 1)b. (5)
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Letting θ stand for an effective real number such that 0 ≤ θ ≤ 1, not necessarily

the same at different places, the three conjugates of εl satisfy

εl = −l(1− θl−2), εl − 1 = −l
(
1 + l−1 − θl−2)

)
,

ε′l = −l−1(1− l−1 + 3θl−2), ε′l − 1 = −(1 + l−1 − θl−2),

ε′′l = 1 + l−1 − 2θl−2, ε′′l − 1 = l−1(1− 2l−1 + 4θl−2).

Hence, we obtain:

Lemma 8. If p ≥ 3 and l ≥ 3 vary in such a way that w := l1/p goes to

infinity, then with an effective implicit constant we have:

Sa,b,p(l) = (−1)a+bwa+b + (−1)a+bw−a + w−b +
1

p

(
(−1)a+bbwa+b−p

+(−1)a+b(b− a)w−a−p + (a− 2b)w−b−p
)

+O(wmax(a+b,−a,−b)−2p).

Proposition 9. The unit index jl is coprime to 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 for

3 ≤ l ≤ 105.

Proof. Set d(x,Z) := minn∈Z |x− n|, and

m(B) := min
3≤l≤B

min
3≤p≤19

min
1≤k≤p−2

min(d(Sk,1,p(l),Z), d(S−k,−1,p(l),Z)).

By Proposition 4, if some p ∈ {2, 3, . . . , 19} divides jl for some l in the range

3 ≤ l ≤ B, then some εkl (εl − 1) is a p-th power in Kl for some p ∈ {3, . . . , 19},
some k ∈ {1, . . . p − 2} and some l in the range 3 ≤ l ≤ B, which implies

Sk,1,p(l) ∈ Z, S−k,−1,p(l) ∈ Z and m(B) = 0. Now, recall that if all the roots of

P (X) = X3−aX2+bX−c ∈ R[X] are real, then its discriminant dP (X) is positive,

P (X+a/3) = X3−3BX−C, where B = (a2−3b)/9 and C = (2a3−9ab+27c)/27,

dP (X) = 27(4B3 − C2), and the three real roots of P (X) are

a

3
+ 2

C

|C|
√
B cos

(
1

3
arctan

(√
dP (X)

27C2

)
− 2kπ

3

)
(0 ≤ k ≤ 2). (6)

This enables us to efficiently compute numerically Sk,1,p(l) and S−k,−1,p(l). Now,

an easy numerical computation on a microcomputer yieldsm(105) = 6.92479(· · · )·
10−12 and m(105) 6= 0 (we did our computation using Maple with a more than

enough precision of 70 digits). �
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4. The primes 3 and 5 do not divide the unit index jl

Using Proposition 4 and Lemmas 11, 12 and 14 below, the aim of this section

is to prove:

Proposition 10. Assume that l ≥ 3. The prime numbers 2 and 3 never

divide the unit index jl, and an odd prime number p ≥ 5 divides jl if and only

if one of the p − 4 units εkl (εl − 1) is a p-th power in Kl, where 2 ≤ k ≤ p − 3.

Moreover, the unit ε
(p−1)/2
l (εl−1) is not a p-th power in Kl, for p a prime integer

in the range 5 ≤ p ≤ 101. Hence, the prime numbers 2, 3 and 5 never divide the

unit index jl.

4.1. The units εl(εl − 1) and εp−2l (εl − 1) are not p-th powers.

Lemma 11 (see [2, top of page 111]). Assume that two of the three con-

jugates ε, ε′ and ε′′ of a totally real cubic unit ε are greater than 1, and that

Irr(ε,Q) = X3 − SX2 + TX − 1 ∈ Z[X] with S2 − 4T = 1. Then ε is not a p-th

power in Q(ε) for any prime number p ≥ 3.

In particular, εl(εl−1) is not a p-th power in Kl for any prime number p ≥ 3.

Proof. We may assume that ε, ε′ > 1 > ε′′ > 0. Suppose that ε = ηp with

η ∈ Q(ε). Then η, η′ > 1 and η′′ = 1/(ηη′). In the range x > 0, set

F (x) = (ηx + η′x + η′′x)2 − 4(ηxη′x + ηxη′′x + η′xη′′x)

= η2x + η′2x + (ηη′)−2x − 2(η−x + η′−x + (ηη′)x),

Hence, F (n) = Tr(ηn)2 − 4 Tr(η−n) ∈ Z and F (n) ≡ 0, 1 (mod 4) for n ∈ Z. Set

X = ηx > 1 and Y = η′x > 1. Then

x

2
F ′(x) = (X − Y )(X logX − Y log Y ) +

(
XY 2 − 1

X2Y 2

)
logX +

(
X2Y − 1

X2Y 2

)
log Y

is positive. Hence, F (0+) = −3 < F (1) < F (p) = S2− 4T = 1. Since F (1) ≡ 0, 1

(mod 4), we have F (1) = 0 and 0 = F (1) ≡ F (p) ≡ 1 (mod p), by (3), which is

impossible.

Finally, ε := ε−1l (εl − 1)−1 = εl + l satisfies the required conditions for its

conjugates verify 0 < ε < 1 < l − 1 < ε′ < l < ε′′ < l + 2, by (1). �

The following result, whose proof is simpler than [2, page 112, Case η5 =

ε(ε− 1)2], generalizes it to any prime p ≥ 5:

Lemma 12. For p ≥ 5 a prime number and l ≥ 3, the unit εp−2l (εl − 1) is

not a p-th power in Kl.
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Proof. To begin with, εp−2l (εl − 1) is a p-th power in Kl if and only if

ε := ε2l (εl − 1)−1 = ε2l + (l + 1)εl + 1 is one. We have Irr(ε,Q) = X3 − 5X2 −
(l2 + 3l − 2)X − 1, by (4), and the conjugates of ε lie in the intervals

−l < ε < −l + 1 < −1 < ε′ < 0 < l + 4 < ε′′ < l + 5.

In particular, ε′′ > −ε > 1 > −ε′ > 0.

Suppose that ε = ηp with η ∈ Kl. Then η′′ > −η > 1 > −η′ > 0 and

F (x) := −(−η)x − (−η′)x + η′′x is an increasing function of x > 0 such that

F (n) = Tr(ηn) ∈ Z for n ∈ Z odd. Hence, −1 = F (0+) < F (1) = Tr(η) < F (p) =

Tr(ε) = 5. However, Tr(η) ≡ Tr(η)p ≡ Tr(ηp) ≡ Tr(ε) ≡ 5 (mod p), by (3).

Hence, −1 < Tr(η) < 5 and Tr(η) ≡ 5 (mod p). It follows that p = 5, Tr(η) = 0,

Irr(η,Q) = X3 + bX − 1 ∈ Z[X] for some b ∈ Z and Irr(ε,Q) = Irr(η5,Q) =

X3 + 5bX2 + (5b2 + b5)X − 1 = X3− 5X2− (l2 + 3l− 2)X − 1, by (4). Therefore,

b = −1 and 4 = −(l2 + 3l − 2), hence l = −1 or l = −2, a contradiction. �

4.2. When is the unit ε
(p−1)/2
l (εl − 1) a p-th power? The following result,

whose proof is simpler than [2, page 111, Case η5 = ε2(ε − 1)], generalizes it to

any prime p ≥ 5:

Lemma 13. Let p > 3 be a given prime number. There are only finitely

many l ≥ 3 for which ε
(p−1)/2
l (εl − 1) is a p-th power in Kl. More precisely, let

Sp(X), Tp(X) ∈ Z[X] be such that

Rp(Y ) := Resultant(X3 − (2S + 1)X2 + (S2 + S)X − 1, Y −Xp, X)

= Y 3 − Sp(S)Y 2 + Tp(S)Y − 1,

and let Lp(X) ∈ Z[X] be defined by

pLp(X) = Sp(X)2 − 4Tp(X)− 1.

If ε
(p−1)/2
l (εl − 1) = ηp is a p-th power in Kl, then there exists S ∈ Z such that

Lp(S) = 0 and Irr(η,Q) = X3 − (2S + 1)X2 + (S2 + S)X − 1.

Proof. To begin with, ε
(p−1)/2
l (εl − 1) is a p-th power in Kl if and only so

is ε := ε−1l (εl − 1)2 = ε2l + lεl − l − 2. Since Irr(ε,Q) = X3 + (2l + 5)X2 + (l2 +

5l + 6)X − 1, by (4), the conjugates of ε lie in the intervals

−l − 3 < ε′ < −l − 3 + 1/l < −l − 2− 1/l < ε < −l − 2 < 0 < ε′′ < 1, (7)

and ε, ε′ < −1 and 0 < ε′′ < 1.



Non-Galois cubic number fields with exceptional units 161

Suppose that ε = ηp with η ∈ Kl. Then η, η′′ < −1 and 0 < η′′ < 1. Set ρ1 :=

−η > 1, ρ2 := −η′ > 1 and F (x) := ρ2x1 +ρ2x2 +(ρ1ρ2)−2x+2(ρ−x1 +ρ−x2 −(ρ1ρ2)x)

with x > 0. Hence, F (n) = Tr(ηn)2 − 4 Tr(η−n) ∈ Z and F (n) ≡ 0, 1 (mod 4)

for n ≥ 1 odd. Moreover, 0 < G(x) < F (x) = G(x) + (ρ1ρ2)−2x + 2ρ−x1 + 2ρ−x2 <

G(x)+5, whereG(x) = (ρx1−ρx2)2 is an increasing function of x > 0. It follows that

0 < F (1) < G(1)+5 < G(p)+5 < F (p)+5 = (2l+5)2−4(l2 +5l+6)+5 = 6 and

F (1) ≡ 0, 1 (mod 4). Hence, F (1) = 1, 4 or 5. But F (1) ≡ F (p) ≡ 1 (mod p),

by (3), yields F (1) 6= 4, 5 for p > 3. Hence, F (1) = 1 and Irr(η,Q) = X3− sX2 +

tX−1 with s2−4t = 1, i.e., Irr(η,Q) = X3−(2S+1)X2+(S2+S)X−1 for some

S ∈ Z. Now, Y 3 − Sp(S)Y 2 + Tp(S)Y − 1 = Rp(Y ) = Irr(ηp,Q) = Irr(ε,Q) =

Y 3+(2l+5)Y 2+(l2+5l+6)Y−1 yields pLp(S) = (2l+5)2−4(l2+5l+6)−1 = 0. �

Lemma 14. Assume that l ≥ 3. Then the unit ε
(p−1)/2
l (εl− 1) is not a p-th

power in Kl for p a prime integer in the range 5 ≤ p ≤ 101.

Proof. Using any software for algebraic computation, we compute Lp(X) ∈
Z[X] and check that it has no root in Z (for example, L5(X) = 5X8 + 40X7 +

110X6 + 180X5 + 217X4 + 188X3 + 116X2 + 52X + 11 and its roots in Z would

divide 11). We would like to point out that for the non-prime odd exponent p = 9

it is easy to check that S = −1 is an integral root of L9(X), even though in that

case l = 1 and Dη = Dη9 = −23 is negative. What we mean to say is that this

example shows that it might be difficult to prove that ε
(p−1)/2
l (εl − 1) is never

a p-th power in Kl, l ≥ 3. �

5. Ennola’s conjecture is true for 3 ≤ l ≤ 5 · 107

According to Propositions 4 and 10, the unit index jl is coprime to 30. Notice

that our proof is simpler than the one in [2] and does not require l to be explicitly

large enough (l > 500 in [2]), which imposes to check numerically the result for

small l’s. Now, using Theorem 2 and Propositions 4 and 10, we are in a position

to prove the last assertion of Theorem 1:

Proposition 15. Set α7 = 2− 2/
√

7 = 1.24407 · · · . Write Dl = ∆lf
2, with

∆l > 1 square-free. If f ≤ lα7/4, then {εl, εl−1} is a system of fundamental units

of the ring of algebraic integers ZKl
of Kl. In particular, {εl, εl − 1} is a system

of fundamental units of ZKl
for all the l’s in the range 3 ≤ l ≤ 5 · 107.

Proof. Since Dl = (ZKl
: Z[εl])

2dKl
, it follows that the index (ZKl

: Z[εl])

divides f . The first assertion follows from Propositions 4 and 10 and Theorem 2

applied with p0 = 7 and M = ZKl
.
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For the second assertion, an easy to program numerical computation on a mi-

crocomputer yields that there are only nine l’s in the range 3 ≤ l ≤ 5·107 for which

f > l/3 (V. Ennola’s bound in [3]): (l, f) = (9, 7), (16, 7), (163, 119), (436, 161),

(1269, 721), (8612, 3409), (1049771, 690319), (2180628, 1661359), (3363845,

8757959), (7335155, 3020857) and (16146757, 7718593), four of them (l, f) =

(9, 7), (16, 7), (163, 119) and (1269, 721) are such that f > lα5/2 with α5 =

2−2/
√

5 = 1.10557 · · · , and only one of them (l, f) = (9, 7) is such that f > lα7/2

with α7 = 2 − 2/
√

7 = 1.24407 · · · . (This clearly shows the effect of the choice

of p0 in Theorem 2.)

Finally, for l = 9, since Irr(εl−2,Q) = X3 +14X2 +35X+21 is 7-Eisenstein,

7 does not divide the index (ZKl
: Z[εl]) (e.g., see [7, Lemma 2.3]). Since 72 ·233 =

D9 = (ZK9
: Z[ε9])2dK9

, for l = 9 we have ZKl
= Z[εl], and the conclusion holds

true for l = 9, by Theorem 2. �

6. The primes 7, 11, 13, 17 and 19 do not divide the unit index jl

In the previous sections, following V. Ennola, we proved that the unit εl and

the four units εkl (εl− 1)’s with k ∈ {0, 1, p− 2, p− 1} are never p-th powers in Kl.
For a given p, we also devised a simple method to find the l’s for which the unit

ε
(p−1)/2
l (εl − 1) is a p-th power in Kl (Lemma 13). Since we could not prove

similar results for other values of k, now our strategy will be different.

Let us explain how we can prove that not only a given εkl (εl − 1) but any

given εal (εl − 1)b is not a p-th power in Kl for l ≥ lp explicitly large enough.

Recalling (5), we set

s = Sa,b,p(l), t = S−a,−b,p(l) and w = l1/p (8)

and notice that if εal (εl−1)b is a p-th power in Kl, then s ∈ Z and t = Z. For given

a, b and p, V. Ennola’s strategy was to arrive at a contradiction by constructing

some Fa,b(X,Y ) ∈ Z[X,Y ] such that 0 < f(w) < 1 (for l large enough), where

f(w) = Fa,b(s, t) = Fa,b(Sa,b,p(w
p), S−a,−b,p(w

p)). (9)

However, to build such polynomials in [2, Pages 111–112], he used the fact that

he was working with a specific prime, namely, p = 5, which enabled him to use

the relation w5 = l to cancel out the exponent w5 in the expansion of f(w).

For example, taking F2,1(X,Y ) = Y 2 + XY + Y − 2X − l − 3, he could prove

that ε2l (εl − 1) is not a 5-th power in Kl, but he did not prove that it was not,
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say, a 7-th power. Our approach is different. For given a and b, we construct

a polynomial Fa,b(X,Y ) ∈ Z[X,Y ] that for any given prime integer p explicitly

large enough works for l ≥ lp explicitly large enough. The small values l < lp are

then dealt with by using Propositions 9 and 15. For example, taking F2,1(X,Y ) =

X2 + Y 3 − 3XY + X − 2Y + 3, we will be able to prove that ε2l (εl − 1) is not

a p-th power for p ∈ {7, 11, 13, 17, 19}. By Lemma 8, our strategy to find such

polynomials is to find some 0 6= Fa,b(X,Y ) ∈ Z[X,Y ] such that the non-negative

powers of w cancel out in the expansion of

Fa,b
(
(−1)a+bwa+b + (−1)a+bw−a + w−b, (−1)a+bw−a−b + (−1)a+bwa + wb

)
.

Since εkl (εl − 1) is a p-th power in Kl if and only if so is εal (εl − 1)b, where b is

not divisible by p and a ≡ kb (mod p), for a given k we will choose b not divisible

by p and a with a ≡ kb (mod p) such that max(|a + b|, |a|, |b|) is as small as

possible. This makes the construction of the Fa,b(X,Y )’s easier than that of the

Fk,1(X,Y )’s. For example, ε
(p+1)/2
l (εl − 1) is a p-th power in Kl if and only if so

is εl(εl − 1)2 (see Lemma 16).

We wanted to extend as far as we thought it reasonable Ennola’s approach

who dealt only with the primes 2, 3 and 5, while we go up to 19. We decided

to stop there because in the process we could not find a nice method for con-

structing the polynomials Fa,b(X,Y ) but wanted to show that it is reasonable to

suspect that it is always possible to find one. We wanted to give enough of them

in the present paper to show that there are not hideous polynomials, and that

maybe some reader could guess an elegant method for constructing them instead

of finding them by trial and error, as we did.

6.1. The prime 7 does not divide the unit index jl. Recall that for the

remainder of this paper, for given exponents a and b, we try to prove that ε :=

εal (ε − 1)b is not a p-th power in Kl for l ≥ lp large enough. In all the following

Lemmas, s and t are as in (8), hence depend on w and p. We have the following

result, whose proof is simpler than [2, Case η5 = ε2(ε − 1)] and generalizes it to

other prime numbers p ≥ 5.

Lemma 16. Fix a prime number p ≥ 7, and assume that l ≥ 3.

(1) We have F2,1(s, t) := s2 + t3 − 3st + s − 2t + 3 = cpw
−1 + O(w−2), where

c7 = 6/7 and cp = 1 for p > 7. Hence, for l ≥ lp large enough, we have

0 < F2,1(s, t) < 1, and ε2l (εl − 1) is not a p-th power in Kl.
(2) We have F1,2(s, t) := −s2 + t3 − 3st− s+ 2t+ 3 = cpw

−1 + O(w−2), where

c7 = 12/7 and cp = 1 for p > 7. Hence, for l ≥ lp large enough, we have

0 < F1,2(s, t) < 1, and εl(εl − 1)2 is not a p-th power in Kl.
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(3) The units ε2l (εl − 1) and ε
(p+1)/2
l (εl − 1) are not p-th powers in Kl for

p∈{7, 11, 13, 17, 19}. Hence, 7 does not divide the unit index jl, by Proposi-

tion 10.

Proof. Assume that p ≥ 7. In the first case, by Lemma 8 we have

s = S2,1,p(l) = −w3 + w−1 − w−2 − 1

p
w3−p +O(w−2−p),

t = S−2,−1,p(l) = −w2 + w − w−3 − 1

p
w2−p +O(w−3−p).

In the second case, by Lemma 8 we have

s = S1,2,p(l) = −w3 − w−1 + w−2 − 2

p
w3−p +O(w−1−p),

t = S−1,−2,p(l) = w2 − w − w−3 +
3

p
w2−p +O(w1−p).

Finally, numerical computation shows that in the first case l7 = 7, l11 = 19,

l13 = 35, l17 = 114 and l19 = 204, and in the second case l7 = 5, l11 = 4977,

l13 = 28629, l17 = 708155 and l19 = 3459663. Hence, noticing that ε
(p+1)/2
l (εl−1)

is a p-th power in Kl if and only if so is εl(εl− 1)2, the last assertion follows from

Propositions 9 and 15.

An easy but maybe not rigorous enough way to obtain these results is to

use (6) and any software for computation (we used Maple) to draw the graph of

f(w) defined in (9) for (a, b) = (2, 1) and (a, b) = (1, 2).

Let us give some details on the involved computation for a rigorous justifi-

cation of these results, i.e., let us make the implicit constants in the error terms

fully explicit, for example, in the second case, with p ≥ 7.

The minimal polynomial of ε := εl(εl − 1)2 = −(l + 1)ε2l + (l + 1)εl + 1 is

Irr(ε,Q) = X3 + (l3 + 2l2 + l− 3)X2 + (l2 + 2l+ 4)X − 1, by (4). It follows that

for l ≥ 4 we have (with 0 ≤ θ ≤ 1, not necessarily the same at different places):

ε = −l3(1 + 2l−1 + θl−2),

ε′ = −l−1(1 + l−1 + 3θl−3) = −l−1(1 + l−1 + θl−2),

ε′′ = l−2(1− 3l−1 + 6θl−2).

Hence, noticing that w := l1/p ≥ 1, by Lemma 17 below, for l ≥ 8 we have

s = −w3

(
1 +

2

pl
+

14θ1
pl2

)
− w−1

(
1 +

1

pl
+

8θ3
pl2

)
+ w−2

(
1− 3

pl
+

54θ2
pl2

)
= −w3 − w−1 + w−2 − 2w3−p + w−1−p + 3w−2−p

p
+

76θ

p
w3−2p (|θ| ≤ 1).
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In the same way, Irr(1/ε,Q) = X3− (l2 +2l+4)X2− (l3 +2l2 + l−3)X−1 yields

1/ε = −l−3(1−2l−1+3θl−2), 1/ε′ = −l(1−l−1+θl−2), 1/ε′′ = l2(1+3l−1+4θl−2),

and, by Lemma 17, for l ≥ 8 we have

t = −w−3
(

1− 2

pl
+

26θ1
pl2

)
− w

(
1− 1

pl
+

8θ3
pl2

)
+ w2

(
1 +

3

pl
+

42θ2
pl2

)
= w2 − w − w−3 +

3w2−p + w1−p + 2w−3−p

p
+

76θ

p
w2−2p (|θ| ≤ 1).

Finally, let us give all the details in the case that p = 19, i.e., let us compute l19.

Let s+ and t+ denote the expressions above for s and t for θ = +1, and s−
and t− those for θ = −1. Hence, s− ≤ s ≤ s+ and t− ≤ t ≤ t+. For l ≥ 3

we have s ≤ s+ < 0, and for l ≥ 208 we have t ≥ t− ≥ 0, which implies

M−(w) ≤ F1,2(s, t) = −s2 + t3 − 3st − s + 2t + 3 ≤ M+(w), where M−(w) :=

−s2−+ t3−−3s+t−−s+ +2t−+3, and M+(w) := −s2+ + t3+−3s−t+−s−+2t+ +3

are polynomials in w−1, i.e., in l−1/p, whose signs are easy to study. It follows

that F1,2(s, t) ≥ M−(w) > 0 for l ≥ 3459663, F1,2(s, t) ≤ M+(w) < 1 for l ≥ 4,

and F1,2(s, t) ≤M+(w) < 0 for 6 ≤ l ≤ 3459662. �

Lemma 17. For |X| ≥ X0 := |A|+
√
A2 + 2|B| and p > 1, it holds that

(
1 +AX−1 +BX−2

)1/p
= 1 +

A

p
X−1 + 2θ

A2 + 3|B|
p

X−2 with |θ| ≤ 1.

Proof. Set x = 1/X, with |x| ≤ x0 := 1/X0. By Taylor’s formula, f(x) :=

(1 +Ax+Bx2)1/p = 1 + Ax
p + x2

2 f
′′(C) for some C between 0 and x. Now,

pf ′′(C) =
2B

(1 +AC +BC2)1−1/p
− (1− 1/p)(A+ 2BC)2

(1 +AC +BC2)2−1/p
.

Using |C| ≤ |x| ≤ x0, |A|x0 + |B|x20 = 1/2 and (|A| + 2|B|x0)2 = A2 + 2|B|, we

obtain that the denominators satisfy |(1 +AC +BC2)k−1/p| ≥ 1/2k−1/p ≥ 1/2k,

k = 1, 2, and the desired result follows. �

Remark 18. (This remark holds also true for the forthcoming Lemmas). By

the first point of Lemma 16, for any given prime number p ≥ 7, there are only

finitely many l’s for which ε2l (εl−1) can be a p-th power in Kl, Ennola’s conjecture

implying that no such l exists. However, our procedure for finding these l’s

is less neat and satisfactory than the one in Lemma 13: we have to make the

error in the asymptotic expansion f(w) = F2,1(s, t) = F2,1(s2,1,p(l), t2,1,p(l)) =

cpw
−1 +O(w−2) explicit to find an explicit lp such that 0 < f(w) < 1 for l ≥ lp,

and then deal with the l’s less than lp.
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6.2. The prime 11 does not divide the unit index jl. By Proposition 10

and Lemma 16, the prime 11 divides jl if and only if one of the four units εkl (εl−1)

is an 11-th power in Kl, k ∈ {3, 4, 7, 8}. Moreover,

(i) ε3l (εl − 1) is an 11-th power in Kl if and only if so is ε2l (εl − 1)−3,

(ii) ε4l (εl − 1) is an 11-th power in Kl if and only if so is ε−3l (εl − 1)2,

(iii) ε7l (εl − 1) is an 11-th power in Kl if and only if so is εl(εl − 1)−3,

(iv) ε8l (εl − 1) is an 11-th power in Kl if and only if so is ε−3l (εl − 1).

Lemma 19. Fix a prime number p ≥ 11, and assume that l ≥ 3.

(1) We have F2,−3(s, t) := −s2 − t3 + 3st− s+ 2t− 3 = w−1 +O(w−2). Hence,

for l ≥ lp large enough we have 0 < F2,−3(s, t)) < 1, and ε2l (εl − 1)−3 is not

a p-th power in Kl.
(2) We have F−3,2(s, t) := −s2 + t3 − 3st− s+ 2t+ 3 = w−1 +O(w−2). Hence,

for l ≥ lp large enough we have 0 < F−3,2(s, t) < 1, and ε−3l (εl − 1)2 is not

a p-th power in Kl.
(3) We have F1,−3(s, t) := s2 − t3 + 3st + s − 2t − 3 = w−1 + O(w−2). Hence,

for l ≥ lp large enough we have 0 < F1,−3(s, t) < 1, and εl(εl − 1)−3 is not

a p-th power in Kl.
(4) We have F−3,1(s, t) := s2− t3 + 3st+ s− 2t− 3 = w−1 +O(w−2). Hence, for

l ≥ lp large enough we have 0 < F−3,1(s, t) < 1, and ε−3l (εl− 1) is not a p-th

power in Kl.
(5) The units ε2l (εl − 1)−3, ε−3l (εl − 1)2, εl(εl − 1)−3 and ε−3l (εl − 1) are not

11-th, 13-th, 17-th or 19-th powers in Kl. Hence, 11 does not divide the unit

index jl, by Proposition 10 and the last point of Lemma 16.

Proof. Assume that p ≥ 11. By Lemma 8 we have

S2,−3,p(l) = w3 − w−1 − w−2 +O(w3−p),

S−2,3,p(l) = −w2 − w + w−3 +O(w2−p),

S−3,2,,p(l) = −w3 − w−1 + w−2 +O(w3−p),

S3,−2,p(l) = w2 − w − w−3 +O(w2−p),

S1,−3,p(l) = w3 + w−1 + w−2 +O(w3−p),

S−1,3,p(l) = w2 + w + w−3 +O(w2−p),

S−3,1,p(l) = w3 + w−1 + w−2 +O(w3−p),

S3,−1,,p(l) = w2 + w + w−3 +O(w2−p).
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Finally, numerical computation shows that in the first case l11 = 3, l13 = 4,

l17 = 8 and l19 = 11, in the second case l11 = 3727, l13 = 27237, l17 = 706748

and l19 = 3458256, in the third case l11 = 3268, l13 = 13328, l17 = 242669 and

l19 = 1042804, and in the fourth case l11 = 3540, l13 = 13591, l17 = 242931 and

l19 = 1043067. Hence, the last assertion follows from Propositions 9 and 15. �

6.3. The prime 13 does not divide the unit index jl. By Proposition 10

and Lemma 16, the prime 13 divides jl if and only if one of the six units εkl (εl−1)

is a 13-th power in Kl, k ∈ {3, 4, 5, 8, 9, 10}. Moreover,

(i) ε4l (εl − 1) is a 13-th power in Kl if and only if so is εl(εl − 1)−3,

(ii) ε5l (εl − 1) is a 13-th power in Kl if and only if so is ε−3l (εl − 1)2,

(iii) ε8l (εl − 1) is a 13-th power in Kl if and only if so is ε2l (εl − 1)−3,

(iv) ε10l (εl − 1) is a 13-th power in Kl if and only if so is ε−3l (εl − 1).

Hence, by Lemma 19, the prime 13 divides jl if and only if ε3l (εl−1) or ε9l (εl−1)

is a 13-th power in Kl. Moreover, ε9l (εl − 1) is a 13-th power in Kl if and only if

so is εl(εl − 1)3.

Lemma 20. Fix a prime number p ≥ 13, and assume that l ≥ 3.

(1) We have 0 < F3,1(s, t) := s3−t4+4st2−2s2−3st+s−4t+3 = cpw
−1+O(w−2),

where c13 = 8/13 and cp = 1 for p > 13. Hence, for l ≥ lp large enough we

have 0 < F3,1(s, t) < 1, and ε3l (εl − 1) is not a p-th power in Kl.
(2) We have F1,3(s, t) := s3− t4 +4st2−2s2−3st+s−4t+3 = cpw

−1 +O(w−2),

where c13 = 2/13 and cp = 1 for p > 13. Hence, for l ≥ lp large enough we

have 0 < F1,3(s, t) < 1, and εl(εl − 1)3 is not a p-th power in Kl.
(3) The units ε3l (εl−1) and εl(εl−1)3 are not 13-th, 17-th or 19-th powers in Kl.

Hence, 13 does not divide the unit index jl, by Proposition 10 and the last

points of Lemmas 16 and 19.

Proof. Assume that p ≥ 13. By Lemma 8 we have

S3,1,p(l) = w4 + w−1 + w−3 +
1

p
w4−p +O(w−1−p),

S−3,−1,p(l) = w3 + w + w−4 +
2

p
w3−p +O(w1−p),

S1,3,p(l) = w4 + w−1 + w−3 +
3

p
w4−p +O(w−1−p),

S−1,−3,p(l) = w3 + w + w−4 +
5

p
w3−p +O(w1−p).
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Finally, numerical computation shows that in the first case l13 = 244, l17 = 7058

and l19 = 23234, and in the second case l13 = 58, l17 = 5485 and l19 = 21430.

Hence, the last assertion follows from Propositions 9 and 15. �

6.4. The prime 17 does not divide the unit index jl. By Proposition 10

and Lemma 16, the prime 17 divides jl if and only if one of the ten units εkl (εl−1)

is a 17-th power in Kl, k ∈ {3, 4, 5, 6, 7, 10, 11, 12, 13, 14}. Moreover,

(i) ε5l (εl − 1) is a 17-th power in Kl if and only if so is ε2l (εl − 1)−3,

(ii) ε6l (εl − 1) is a 17-th power in Kl if and only if so is εl(εl − 1)3,

(iii) ε7l (εl − 1) is a 17-th power in Kl if and only if so is ε−3l (εl − 1)2,

(iv) ε11l (εl − 1) is a 17-th power in Kl if and only if so is εl(εl − 1)−3,

(v) ε14l (εl − 1) is a 17-th power in Kl if and only if so is ε−3l (εl − 1).

Hence, by Lemmas 19, and 20 the prime 17 divides jl if and only if one of the

four units εkl (εl − 1) is a 17-th power in Kl, k ∈ {4, 10, 12, 13}, hence if and only

if one of the four units εl(εl − 1)−4, ε−4l (εl − 1)3, ε3l (εl − 1)−4 or ε−4l (εl − 1) is

a 17-th power in Kl.

Lemma 21. Fix a prime number p ≥ 17, and assume that l ≥ 3.

(1) We have F1,−4(s, t) := −s3+t4−4st2+2s2+3st−s+4t−3 = w−1+O(w−2).

Hence, for l ≥ lp large enough we have 0 < F1,−4(s, t) < 1, and εl(εl − 1)−4

is not a p-th power in Kl.
(2) We have F−4,1(s, t) := s3 + t4−4st2 +2s2−3st+s+4t+3 = w−1 +O(w−2).

Hence, for l ≥ lp large enough we have 0 < F−4,1(s, t) < 1, and ε−4l (εl − 1)

is not a p-th power in Kl.
(3) We have F3,−4(s, t) := −s3+t4−4st2+2s2+3st−s+4t−3 = w−1+O(w−2).

Hence, for l ≥ lp large enough we have 0 < F3,4(s, t) < 1, and ε3l (εl − 1)−4

is not a p-th power in Kl.
(4) We have F−4,3(s, t) := −s3−t4+4st2−2s2+3st−s−4t−3 = w−1+O(w−2).

Hence, for l ≥ lp large enough we have 0 < F−4,3(s, t) < 1, and ε−4l (εl − 1)3

is not a p-th power in Kl.
(5) The units εl(εl − 1)−4, ε−4l (εl − 1)3, ε3l (εl − 1)−4 and ε−4l (εl − 1) are not

17-th or 19-th powers in Kl. Hence, 17 does not divide the unit index jl, by

Proposition 10 and the last points of Lemmas 16, 19 and 20.

Proof. Assume that p ≥ 17. By Lemma 8 we have

S1,−4,p(l) = w4 − w−1 − w−3 +O(w4−p),

S−1,4,p(l) = −w3 − w + w−4 +O(w3−p),
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S−4,1,p(l) = −w4 + w−1 − w−3 +O(w4−p),

S4,−1,p(l) = −w3 + w − w−4 +O(w3−p),

S3,−4,p(l) = w4 − w−1 − w−3 +O(w4−p),

S−3,4,p(l) = −w3 − w + w−4 +O(w3−p),

S−4,3,p(l) = −w4 − w−1 + w−3 +O(w4−p),

S4,−3,p(l) = w3 − w − w−4 +O(w3−p).

Finally, numerical computation shows that in the first case l17 = 5512 and l19 =

21527, in the second case l17 = 3 and l19 = 3, in the third case l17 = 7084 and

l19 = 23330, and in the fourth case l17 = 3 and l19 = 3. Hence, the last assertion

follows from Propositions 9 and 15. �

6.5. The prime 19 does not divide the unit index jl. According to Proposi-

tion 4 and Lemmas 16, 19, 20 and 21, as in the beginning of the previous section,

we have that the prime 19 divides jl if and only if ε7l (εl − 1) or ε11l (εl − 1) is

a 17-th power in Kl, k ∈ {7, 11}. Moreover,

(i) ε7l (εl − 1) is a 19-th power in Kl if and only if so is ε2l (εl − 1)3,

(ii) ε11l (εl − 1) is a 19-th power in Kl if and only if so is ε3l (εl − 1)2.

Lemma 22. Fix a prime number p ≥ 19, and assume that l ≥ 3.

(1) We have F2,3(s, t) = s3 + t5 − 5st3 + 5s2t + s2 − 3st + 5t2 − 5s − 2t + 3 =

cpw
−4 +O(w−5), where c19 = 30/19 and cp = 1 for p > 19. Hence, for l ≥ lp

large enough we have 0 < F2,3(s, t) < 1, and ε2l (εl − 1)3 is not a p-th power

in Kl.
(2) We have F3,2(s, t) = s3 − t5 + 5st3 − 5s2t + s2 − 3st − 5t2 + 5s − 2t + 3 =

cpw
−4 +O(w−5), where c19 = 18/19 and cp = 1 for p > 19. Hence, for l ≥ lp

large enough we have 0 < F3,2(s, t) < 1, and ε2l (εl − 1)3 is not a p-th power

in Kl.
(3) The units ε2l (εl − 1)3 and ε3l (εl − 1)2 are not 19-th powers in Kl. Hence, 19

does not divide the unit index jl, by Proposition 10 and the last points of

Lemmas 16, 19, 20 and 21.

Proof. Assume that p ≥ 19. By Lemma 8 we have

S2,3,p(l) = −w5 − w−2 + w−3 − 3

p
w5−p +O(w−2−p),

S−2,−3,p(l) = w3 − w2 − w−5 +
4

p
w3−p +O(w2−p),
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S3,2,p(l) = −w5 + w−2 − w−3 +−2

p
w5−p +O(w−2−p),

S−3,−2,p(l) = −w3 + w2 − w−5 − 1

p
w3−p +O(w2−p).

Finally, numerical computation shows that in the first case l19 = 39 and in

the second case l19 = 21. Hence, the last assertion follows from Propositions 9

and 10. �
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